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Executive Summary

The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group,
Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M
HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform
detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is
one in a series of four reports to present the results of these analyses. Specifically, this report contains all
the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment
recovered from borehole 41-09-39 installed adjacent to tank SX-109.

This report also presents our interpretation of the data in the context of the sediment lithologies, the
vertical extent of contamination, the migration potential of the contaminants, and the correspondence of
the contaminant distribution to groundwater. The information presented in this report supports the field
investigation report prepared by CH2M HILL Hanford Group, Inc.”

The geology under the SX Tank Farm forms the framework through which the contaminants move,
and provides the basis with which to interpret and extrapolate the physical and geochemical properties
that control the migration and distribution of contaminants. Of particular interest are the
interrelationships between the coarser- and finer-grained facies and the degree of contrast in their physical
and geochemical properties. The vertical distribution of cesium-137, based on borehole gamma logging
and the laboratory analysis of the sediment at borchole 41-09-39, suggests that much of the tank fluid that
leaked from tanks SX-108, and/or SX-109, traveled within the coarse-grained Hanford formation H1 unit
that is found between 20.4 and 26.8 meters (67 and 88 feet) below ground surface (bgs) at borehole 41-
09-39.

It is difficult to differentiate natural zones of higher moisture content due to the presence of finer-
grained material (finer-grained material retains higher moisture contents) from zones of excess moisture
resulting from leaked fluid. Thus, moisture content distribution did not give us a clear indication of the
vertical extent of the plume. However, moisture content does help identify intervals that have been
recently impacted by drilling operations.

The pH values are not nearly as high as would be expected for tank liquor completely saturating
sediment. Therefore, it would appear that significant pH reactions occur from the tank bottoms at
~16.8 meters (~55 feet) to a maximum of 27.4 meters (90 feet) bgs for sediment surrounding the tanks.

The electrical conductivity results suggest that the tank leak fluid dominates the porewater down to a
depth of 38.8 meters (127.4 feet) bgs and the deepest (leading edge of plume) is in borehole extension
sleeve 3A, at a depth of 41.4 meters (136 feet). For other borechole extension sleeves below 41.4 meters
(136 feet) bgs, the electrical conductivity does not show any significant deviations from values found for

(a) Draft Field Investigation Report for Waste Management Area S-SX. RPP-7884, Draft, Volume 2,
Appendix D, CH2M HILL Hanford Group, Inc., Richland, Washington.

111



vadose zone sediment at nearby uncontaminated Resource Conservation and Recovery Act boreholes.
The water obtained at wells near the SX Tank Farm, including the one water sample obtained at the 41-
09-39 borehole extension, has an electrical conductivity of about 250 pS/cm. This suggests that the
groundwater beneath the SX Tank Farm still shows the influence of the large volumes of dilute-salt waste
liquids disposed to facilities upgradient (north and west). Water extract sodium, nitrate, and technetium-
99 also indicate the leading edge of the plume is at 41.4 meters (136 feet) bgs. These mobile constituent
profiles all suggest that the leading edge of the plume resides about 3.4 meters (11 feet) into the fine-
grained Plio-Pleistocene mud (PPlz) unit at 41.4 meters (136 feet) bgs. A key finding is that we do not
observe a continuous vertical distribution of elevated nitrate or any other tank constituent’s concentration
from the elevation of the tank bottoms to the water table in this borehole.

Another key finding is that the 1:1 sediment-to-water extracts give a good estimate of the porewater
chemistry in the vadose zone sediment. The chemical composition of the actual porewater, obtained by
ultracentrifugation, was found to be fairly well estimated by dilution correcting the 1:1 water extracts.
The most concentrated porewater was essentially 5 to 6 M sodium nitrate with several tenths molar
concentrations of calcium and chromate. Because it is much easier to obtain a water extract of the vadose
zone sediment than actually extracting fluid, the finding is important to understanding the porewater
chemistry throughout the vadose zone.

The first significant sign of elevated technetium-99 is at 24.2 meters (79.5 feet) bgs and a high
concentration plume is found from 27.4 to 38.8 meters (90 to 127.4 feet) bgs. Molybdenum distribution
is quite similar. The technetium in situ Ky varies from 0.01 to about 5 mL/g over the whole zone of
contamination. The most significant chemical contaminant in the sediment is chromium. The leading
edge of the chromium plume appears to stop at 34.1 meters (112 feet) bgs, which suggests that it does not
migrate as quickly as molybdenum and technetium. The bulk of the water-leachable chromium has been
confirmed as chromate by its distinct yellow color and by ion chromatography.

Based on comparing the depth of penetration of various contaminants and comparing the percentages
that are water leachable, we determined that chromium migrates faster than cesium-137 but slower than
technetium-99 and nitrate. The slight retardation for the chromate may be a reduction process where the
ferrous minerals in the sediment react with the tank fluids and cause a portion of the soluble chromate to
precipitate.

The major cesium-137 activity is concentrated between the depths 20.1 to 25.6 meters (66 to 84 feet)
bgs, moderate amounts of cesium-137 reached 31.1 meters (102 feet) bgs, and the leading edge perhaps
reaches 39.9 to 41.5 meters (131 to 136 feet) bgs. However, we believe that the high cesium-137 activity
at 40.1 to 40.5 meters (131.7 to 133 feet) bgs is compressed sediment dragged down during the original
pile driving of the closed end casing. In traditional batch sorption tests, the cesium Ky value for several
sediment samples taken from the borehole is moderate (4 to 40 mL/g) for a very high ionic strength but
neutral pH (7.4 M sodium nitrate) solution. The cesium K, increases slightly for the 4 M sodium nitrate
solution as would be expected for a cation-exchange-dominated process. The range of 4 to 40 is similar
to the in situ desorption Kgs (4 to 25 mL/g) calculated from the water extracts and direct counting of the
sediment.

v



The water-extractable cations suggest that an ion-exchange process dominates the porewater/sediment
interactions in the zone where tank fluid passed by or currently exists. The leading edge of the tank leak
plume is enriched in alkaline earth cations that were displaced from the native sediment exchange sites.
Combining the atypical high nitrate with the sodium-to-calcium ratio data for water extracts suggests that
the leading edge of the tank leak plume is at 41.2 meters (135 feet) bgs at borehole 41-09-39. One
plausible explanation for this depth is that the tank leak plume traveled horizontally and vertically over a
relatively short time period through the more permeable Hanford formation sediment and perched on the
less permeable Plio-Pleistocene mud (PPlz) unit. Over the next four decades, after the tank lead\k, the
soluble chemicals/water slowly diffused/percolated into the top of PPlz unit to a depth of 3.4 meters (~11
feet).

The matric suction data suggest that the sediment profile at borehole 41-09-39 is draining. We
estimate a value somewhat >5 miliimeters per year. This is lower than expected based on a number of
studies at the Hanford Site that show coarse gravel surface covers, as found at the tank farms, cause as
much as 50% of the annual precipitation to recharge to the water table. Another source of localized
recharge near tank farms has been hypothesized to be leaking water lines. With the gravel cover alone,
one might expect several centimeters of recharge as opposed to 5 millimeters.

Cation exchange measurements show that the fine-grained Plio-Pleistocene mud has a relatively high
exchange capacity (13 to 16 meq/100 g). The coarse-grained Ringold sediment has a very low cation
exchange capacity (~1 to 3 meq/100 g). Although not measured, the Hanford formation sediment would
fall in between these two values.

X-ray diffraction analyses of the bulk sidewall core samples from five depths in borehole 41-09-39
indicate that the sediment is mostly quartz (~35% to 50%) and feldspar (~25% to 55%), with lesser
amounts of mica and chlorite. Plagioclase feldspar is 2 to 10 times more abundant than potassium
feldspar. The clay fraction (<2 micron) is dominated by four clay minerals: illite, smectite, chlorite, and
kaolinite with minor amounts of quartz, feldspar, and amphibole. Overall, illite was the dominant mineral
in the clay fraction with 20 to 35 wt%. The presence of illites as the dominant clay-size mineral is
fortuitous because illites are strong adsorbers of cesium and can irreversibly adsorb cesium within
interlayer sites.

We conclude that common ion exchange and heterogeneous (solid phase-liquid solute) redox
reactions are two mechanisms that influence the distribution of contaminants in the vadose zone sediment
within the zone impacted by tank liquor. We did not observe significant indications of pH alteration of
the sediment mineralogy or porosity, but we did observe slightly elevated pH values between 16.8 to 27.4
meters (55 to 90 feet) bgs.
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1.0 Introduction

The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group,
Inc., is to define risks from past and future single-shell tank farm activities, to identify and evaluate the
efficacy of interim measures, and to aid, via collection of geotechnical information and data, the future
decisions that must be made by the U.S. Department of Energy regarding the near-term operations, future
waste retrieval, and final closure activities for the single-shell tank waste management areas. For a more
complete discussion of the goals of the Tank Farm Vadose Zone Project, refer to the overall work plan,
Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank
Waste Management Areas (DOE/RL-1999). To meet these goals, CH2M HILL Hanford Group, Inc.,
asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone
sediment from within the S-SX Waste Management Area.

This report is one in a series of four reports to present recent data collected on vadose zone sediments,
both uncontaminated and contaminated, from within the S-SX Waste Management Area. Preliminary
interpretations identifying the distribution of key contaminants within the vadose zone and what their
future migration potential are also included. The information will be incorporated in the field
investigation report ®. This series of documents describe the findings for 1) uncontaminated boreholes
surrounding the S-SX Waste Management Area, 2) the 41-09-39 borehole within the SX Tank Farm, 3)
the SX-115 borehole (B8809) that has been converted into a Resource Conservation and Recovery Act
(RCRA) groundwater monitoring well 299-W23-19, and 4) the SX-108 slant borehole that penetrated
below tank SX-108.

Specifically, this report contains all the geologic, geochemical, and selected physical and hydrologic
characterization data collected on vadose zone sediments recovered from borehole 41-09-39. We also
provide our interpretation of the data in the context of determining the appropriate geologic conceptual
model, the vertical extent of contamination, the migration potential of the contaminants that still reside in
the vadose zone, and the correspondence of the contaminant distribution in the borehole sediments in
relationship to groundwater plumes in the aquifer proximate and downgradient from the SX Tank Farm.

This report is divided into sections that describe the geologic stratification, the geochemical
characterization methods employed, the geochemical results, summary and conclusions, a listing of
stakeholder questions and comments, references cited, and several appendixes.

(a) Draft Field Investigation Report for Waste Management Area S-SX. RPP-7884, Draft, Volume 2,
Appendix D, CH2M HILL Hanford Group, Inc., Richland, Washington.
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2.0 Geology

The geology of the vadose zone underlying the SX Tank Farm forms the framework through which
the contaminants move and the physical structure that, along with geochemistry properties, controls the
migration and distribution of contaminants. Of particular interest are the interrelationships between the
coarser- and finer-grained facies, and the degree of contrast in their physical and geochemical properties.

This section presents a brief discussion on the geologic setting of the tank farm. This is followed by
brief discussions on the drilling, sampling, and geophysical logging of borehole 41-09-39, and a detailed
description of the geologic materials penetrated by borehole 41-09-39 (299-W23-234).

2.1 Geologic Setting of the SX Tank Farm

The SX Tank Farm was constructed into the upper Hanford formation sediments underlying the
200 West Area, along the north limb of the Cold Creek syncline. Sedimentary units underlying the tank
farm (in descending order), include lower Hanford formation sediments, the Plio-Pleistocene unit, and the
Miocene to Pliocene Ringold Formation (Figure 2.1).

The geology beneath this tank farm has been the subject of numerous reports. Price and Fecht
(1976a) presented an initial detailed interpretation of the geology. DOE (1996) presented their interpre-
tation of the geology based primarily on groundwater monitoring wells constructed around the perimeter
of the tank farm in the early 1990s. Johnson and Chou (1998) updated and refined the geologic interpre-
tation. Myers et al. (1998) presented detailed discussions on the geologic materials penetrated by the
extension of borehole 41-09-39, and forms the basis for much of the discussion presented throughout the
remainder of this section. Johnson et al. (1999) further described the geology and other subsurface condi-
tions beneath the S and SX Tank Farms relevant to the occurrence and migration of contaminants.
Lindsey et al. (2000) provided additional interpretations on the geology, facilitated by the collection of
near continuous split-spoon samples from the 299-W22-50 and 299-W23-19 boreholes. Horton and
Johnson (2000) compiled a data package on three groundwater-monitoring wells (299-W22-48, -49, and -
50) completed near the SX Tank Farm in 1999/2000. Most recently, Socbczyk (2000) presented a
reinterpretation on the geology based on gross gamma-ray logs of 98 boreholes within the SX Tank Farm
and several published geology reports of the area (e.g., Johnson et al. 1999; and Lindsey et al. 2000).
Khaleel et al. (2000) prepared a detailed data package that included geologic and hydrologic descriptions
to support numerical simulation of the S and -SX Tank Farms. Serne et al. (2002a, b, and c) present an
update of the geologic setting of the SX Tank Farm based on detailed analyses of vadose zone sediment,
both uncontaminated and contaminated, from boreholes within the S-SX Waste Management Area.
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Figure 2.2 is a location map of borehole 41-09-39 and wells used to create the cross sections shown in
the following figures. The stratigraphy beneath the SX Tank Farm is illustrated in Figures 2.3 and 2.4.
Some slight discrepancies may occur between the depths of the geologic contacts presented here, and
those presented by other authors, because of various sources of uncertainty in the geologic data sets and
the individual geologist’s interpretation. Johnson et al. (1999) described the various sources of uncer-
tainty for locating the stratigraphic contacts within a borehole as well as those uncertainties for drawing
correlations between boreholes. They identified the principal sources of uncertainty as related to the
drilling and sampling techniques, logging of the boreholes, and uncertainties in the geometric shape of the
sedimentary units. They used two different geostatistical techniques to evaluate the stratigraphy/depth
uncertainty and found that both techniques indicated that the stratigraphy beneath the S and SX Tank
Farms is relatively consistent across the area. They also found that the optimal depths for stratigraphic
correlations between different data sets were typically accurate to within 1 to 3 meters (a few feet to
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Figure 2.2. Location of Borehole 41-09-39, Other Pertinent Wells, and Cross Sections. A-A’ and
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2.2 Geology of Borehole 41-09-39

Borehole 41-09-39 (299-W23-234) was originally installed in December 1996. This borehole was
installed by driving a 15-centimeter (6-inch)-inside-diameter thick-wall casing and drive point to a depth
of 39.8 meters (130.5 feet). The construction of this portion of the borehole was summarized by
MACTEC-ERS (1997). The drive point was milled off the end of the casing and the borehole deepened
between September 5 and December 19, 1997. A cable-tool drilling rig was used to deepen and collect
samples from the borehole to a depth of 68.6 meters (225 feet). Split-spoon samples were collected
whenever possible. Myers et al. (1998) provided a summary of the chronology of the drilling and
sampling activities and presented the detailed geologic descriptions of the individual split-spoon samples
(performed in the laboratory). These are reproduced in Appendix A and B, respectively.

The borehole was decommissioned between May 27 and August 11, 1999. Sidewall core samples
were collected at selected intervals throughout the top portion of the borehole (i.e., that portion completed
in 1996, and not previously sampled). Three cores were collected from each sample interval at approxi-
mately 90 degrees to each other and generally oriented to the north, south, and west. All material from all
three sidewall cores at a specific depth was composited in the laboratory into a single sample tray for
geologic description and subsampling, with the exception of one depth. For samples from 19.7 meters
(65 feet) below ground surface (bgs), it was noted that one sidewall core was reading 10x higher dose
than the other two cores and it was treated like a separate sample. A summary of the geologic
descriptions made in the laboratory is provided in Appendix C. Note however, that the geologic
descriptions of these small (2.5 centimeters x 2.5 centimeters x 28 centimeters) sidewall core samples
may not be wholly representative of the native geologic materials. These cores likely penetrated (on
averag<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>