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‘ Figure C-2. Low-Level Waste Vitrification

Process Flow Diagram (sheet 6 of 13).
I BULK HNO3 |
0 ‘—.— FROM SHEET 13
I - VoG AFM36 i
BULK H,0
)
oW l@ 5%, FROM SHEET 13
1 AFM3E
I SCRUB SOLUTION
MAKEUP TANK
——  TK-619-2
BULK WASH WATER
FROM SHEET 13
AFM36
I 627
foreh D
{519 625, —
&w "¢ p=a I~ — .
N\ NTURI i
{621 scruager LSO L
I SC-515 ==~ uw |
N CHILLER p-— —1 DEMISTER
I 75°C cow EC-617 —1 DE-£18 I
622 624
{518)
AT \°igy CCYR
uw LLW SEPARATOR | S-616
QUENCH CHILLER
TOWER ccw | EC-610
A 623
3 P
{528}
PUMP
P-613 10
CWR——r | VO
] T-608 20y |
I Q {530 Ufszg\ [
PUMP
0 P-612
CWR=—  voG =)

oW @l
(3 1 LLW SCRUB SOLUTION
| PUMP LLY TANK
. — P-5620 $CRUB TK-614
FILTER

= TANK
TK-61%

MATCH LINE FROM DRAWING AFM28
MATCH LINE TO DRAWING AFM30

STAND ALONE LLW TREATMENT FACILITY PROCESS FLOW DIAGRAM SHEET & AFM29 /MAN/T=11=94-1

C-89/C-90




l BULK FILTER WASH
FROM SHEET 13

MATCH LINE FROM DRAWING AFM29

ENEN RN FT A

METAL
HEPA
FILTER
FH—§:

|

E-625A FTAL
HEPA
FILTER
Fd—

HEATER
£-625B

METAL
HEPA
FILTER

2541 FM-—-625A2

METAL
HEPA
FILTER

BLOWER
MB-525A

52581 FM-625B2

BLOWER
MB-625B

634

FROM SHEET 8
AFM31

586

10
CWR——— VoG

8

63
VELTER OFFGAS /

HEAT EXCHANGER
@ EC-628-2

OXYGEN
FROM SHEET 11
AFI434

LLW MELTER
FILTER WASH TO
LW EVAPQRATOR

| ="

LW MELTER

FILTER WASH

CATCH TANK
TK~626

cw —ry
Y ey @ FEED TANK
N i o SHEET 1
PUMP AFMZ4
P-627

WHC-SD-WM-EV-100 Rev. 0

Figure C-2. Low-Level Waste Vitrification
Process Flow Diagram (sheet 7 of 13).
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Figure C-2. Low-Level Waste Vitrification
Process Flow Diagram (sheet 8 of 13).
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Figure C-2. Low-Lcvel Waste Vitrification
Process Flow Diagram (sheet 9 of 13).
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Figure C-2. Low-Level Waste Vitrification
Process Flow Diagram (sheet 10 of 13).
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Figure C-2. Low-Level Waste Vitrification
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DESCRIPTION AND SPECIFICATIONS FOR UNIT PROCESSES

D-1



WHC-SD-WM-EV-100 Rev. 0

This page intentionally left blank.

D-2




9515385, 1183

WHC-SD-WM-EV-100 Rev. 0

CONTENTS
D1.0 INTRODUCTION . ........ e, D-9
D2.0 SOLID-LIQUID SEPARATION TREATMENT/ASSUMPTIONS . . ...... D-12
D3.0 INITIAL SOLID-LIQUID SEPARATION .. oo ovoeoeneeennnnn. D-14
D4.0 ORGANIC DESTRUCTION (ZIMPRO PROCESS) . ..o eveeennn... D-15
D5.0 SOLIDS DISSOLUTION - - v - v o e ee e e e D-17
D6.0 TRIBUTYL PHOSPHATE SOLVENT EXTRACTION |
OF TRANSURANIC COMPONENTS . . + o oo v ovoeee e e eeeean D-21
D7.0 URANIUM PURIFICATION .« & v eve oo e e D-23
D8.0 CMPO SOLVENT EXTRACTION FOR
AMERICTUM AND LANTHANIDE REMOVAL . . . v o oooe e D-24
D9.0 AMERICIUM/LANTHANIDE SEPARATION BY
BAND DISPLACEMENT CATION EXCHANGE . ..o oo oo, D-26
D10.0 CROWN ETHER SOLVENT EXTRACTION FOR
STRONTIUM AND TECHNETIUM REMOVAL . . « o oo voee e D-28
D11.0 AMMONIUM PHOSPHOMOLYBDATE ION
EXCHANGE FOR CESIUM REMOVAL . - « o v o oo D-29
D12.0 RESORCINOL-FORMALDEHYDE ION
EXCHANGE FOR CESTUM REMOVAL . .« o v o ooeveeeee e D-30
D13.0 CRYSTALLINE SILICOTITANATE ION EXCHANGE
FOR STRONTIUM REMOVAL . - . oot vee e e oo e e e D-31
D14.0 ANION EXCHANGE REMOVAL OF TECHNETTUM . . - o o o e ... D-32
D15.0 STRONTIUM AND CESIUM CAPSULE DISSOLUTION AND
. METATHESIS (HIGH-LEVEL WASTE OPTION 2) . . ... ...0o\..... D-33
D16.0 HIGH-LEVEL WASTE STREAM VITRIFICATION TREATMENT . . . ... D-34
D16.1 HIGH-LEVEL WASTE CONCENTRATION/DENITRATION . . ... D-34
D16.2 HIGH-LEVEL WASTE VITRIFICATION . ... ..o oo .. D-34

D-3



WHC-SD-WM-EV-100 Rev. 0

CONTENTS (Continued)

D17.0 INITIAL TREATMENT FOR ACIDIC LOW-LEVEL

WASTETREATMENT . ......... .ttt enretnennnonnnnanas
D17.2 LOW-LEVEL WASTE CALCINATION (T-THERMAL PROCESS)

D17.3 DISSOLUTION/CONCENTRATION . . . .. .....coviivn ..

D18.0 GLASS IN SULFUR (LOW-LEVEL WASTEOPTIONA) ............
D18.1 LOW-LEVEL WASTE VITRIFICATION ..................
D18.2 LOW-LEVEL WASTE MELTER OFFGAS PROCESSING .......
D18.3 SO, REMOVAL AND SULFURRECOVERY ...............
D18.4 NOx DESTRUCTIONPROCESSING ....................
D18.5 OFFGAS TREATMENT SYSTEM .... .. ...t nren.

D19.0 LOW-LEVEL WASTE STREAM GROUT TREATMENT
(LOW-LEVEL WASTE OPTIONB) ... .. et et e e e,

D19.1 CHROMIUM REDUCTION ... ...... it tennnnannnesas
D19.2 SALT GROUT . ... ..ttt it iiieaeennaanonnsannans

D21.0 NITRICACIDRECYCLING . .. . ...t ittt it et et ieeenns
D22.0 WATERRECYCLING . . .. ...ttt et ittt etaeeannnn

D23.0 CLEAN SALT PROCESS . ... ..ttt ittt ettt eanannns

D240 REFERENCES . .. ... ..ttt ittt sttt st e et ia e e e




9513385, 1 1pM

WHC-SD-WM-EV-100 Rev. 0

D-2
D-3
D-4
D-5
D-6

D-7

LIST OF TABLES
Component Dissolution by Base/Acid Process . .................... D-1i8
TBP Extraction of Transuranics Section: Component Distribution . ........ D-22
Uranium Purification Section: Component Distribution . . . ... .......... D-23
CMPO Extraction Am/La Section: Component Distribution . . . .......... D-24
Am/La Band Displacement Section: Component Distribution . ........... D-27
Crown Ether Extraction St/Tc Section: Component Distribution . ... ...... D-28
Basic Cesiom IX: Relative Flow Volumes of Streams . . ... ........... D-30
Basic Technetium IX: Relative Flow Volume of Streams .. ............ D-32

D-5



WHC-SD-WM-EV-100 Rev. 0

This page intentionally left blank.

£



9513305, WE5.sD-WM-EV-100 Rev. 0

LIST OF TERMS
APM Ammonium Phosphomolybdate
CMPO octylphenyl-N, N-diisobutylcarbamoylmethylphosphine oxide
DST double-shell tank ‘
DTPA Diethylene-triamine-penta-acetic acid
EDTA Ethylenediaminetetraacetic acid
EIS Environmental Impact Statement
ESP Extensive Separations Pretreatment (alternative)
HEPA high-efficiency particulate air (filter)
HVAC heating, ventilating and air conditioning
HILW high-level waste
X ion exchange
LLW low-level waste
M molarity
NOx Oxides of Nitrogen
NFH Normal Paraffin Hydrocarbon
psig pounds per square inch gauge
SLS solid/liquid separation
SST single-shell tank
TBP Tributyl Phosphate
TOC Total Organic Carbon
TRU Transuranic
TWRS Tank Waste Remediation System

" D-7



WHC-SD-WM-EV-100 Rev. 0

This page intentionally left blank.

D-8



o 13385, WEG-SD-WM-EV-100 Rev. 0

D1.0 INTRODUCTION

This appendix describes the Extensive Separations Pretreatment (ESP) alternative flowsheet
model. To meet two principal objectives, this alternative contains additional acid-stream and
alkaline-stream separation and chemical reaction steps beyond those in the Tri-Party
Agreement baseline flowsheet. The objectives are to decrease the toxicity of the low-level
radioactive waste form to U.S. Nuclear Regulatory Commission Class A limits and to
decrease the volume of high-level radioactive waste to a limit of 1,000 canisters of glass. To
reduce the production of glass, a high-level waste (HLW) vitrification facility would be
included as part of the separations facility; therefore a separate HLW vitrification facility and
associated tank farm lag storage would not be required. A proposed set of processes
illustrates how the objectives could be met and have been combined into the process

described below.

In the main body of this supporting document, Figure 3-1 shows a block diagram
representing the Tank Waste Remediation System (TWRS) ESP alternative flowsheet.

Figure 4-1 shows the differences between process alternatives included in the Environmental
Impact Statement (EIS). Figure 4-2 shows the disposal of tank waste for the ESP alternative.
Figure 4-3 shows the ESP flowsheet differences for the LLW form. The numerical bases of
the inventories and separations factors for the unit processes are in Tables D-1 through D-8.

The following is a summary of the extensive processing unit operations. Many of the
process descriptions in this appendix are summaries of information in WHC-EP-0616

(Boomer et al. 1993) and PNL-8388 (Swanson 1993).
SEPARATE AND DISSOLVE SOLIDS

Separate and wash sludge

Leach sludge with sodium hydroxide

Dissolve siudge with nitric acid

Dissolve sludge with nitric acid containing fluoride.

PURIFY ACID SOLUBLE RADIONUCLIDES

e  Extract uranium, plutonium, neptunium, and thorium with tributyl phosphate |
- Purify uranium with tributyl phosphate

e  Extract americium and lanthanides with octylphenyl-N,
N-diisobutylcarbamoylmethylphosphine oxide (CMPO)
- Purify americium and higher lanthanides by chromatographic ion
exchange (IX)
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o  Extract technetium, strontium and banum with crown ether

e Remove and recycle cesium by ammonium phosphomolybdate.

REMOVE RADIONUCLIDES FROM ALKALINE LIQUIDS

Destroy complexants hydrothermally

Remove cesium by resorcinol formaldehyde IX

Remove and recycle strontium by crystalline silicotitanate IX
Remove technetium by anion exchange.

RECOVER AND REUSE BULK CHEMICALS

| Evaporate and reuse water

L

e  Distill fractionate and reuse nitric acid

e  Destroy nitrate by calcination or electrolysis

e  Recover and recycle sodium hydroxide.
REMOVE HEAVY METALS

e  Chromium reduction and removal from recycled sodium hydroxide for LLW
grout option.

The following processing alternatives were not considered in the Extensive Separations
alternative.

e  In-tank sludge wash
e  Duolite™* CS-100 cesium ion exchange
o  Irreversible high selectivity cesium absorbents
¢  Organic destruction by supercritical water oxidation (by heating and digesting
at atmospheric pressure, by adding oxygen and potassium permanganate, or by
higher temperature and pressure hydrothermal oxidation)

¢ Combined single-solvent extraction of americium, plutonium and strontium

e  Purification of strontium from barium by IX chromatography

*Duolite is a trademark of the Rohm & Haas Company.
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Disposal of uranium in grout
Ferric hydroxide precipitation of plutonium

| Removal of iodine from lov;v-leve.l waste or vitrification offgas (Boldt 1995)
Sodium nitrate purification by clean salt precipitation (see Section D23.0)
Conversion of sodium hydroxide to sodium carbonate.
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D2.0 SOLID-LIQUID SEPARATION TREATMENT/ASSUMPTIONS

The CLEAN flowsheet employs centrifuges for solid/liquid separation (SLS) in seven parts
of the flowsheet (Figure C-1, Appeadix C). These systems are located as follows: after
waste tank retrieval (sheet 2, G-1), after organic destruction processing (sheet 4, G-4), after
sodium hydroxide dissolution (sheet 8, G-2), after both acid dissolution steps (sheets 10 and
12, G-3 and G-5, respectively), after the chromium reduction step (sheet 35B, G-10) before
sodium hydroxide production and recycling, and prior to the HLW melter (sheet 27, G-305).
Process specifications which apply to some or all of these systems are listed below.

1.

2.

Liguid from the centrifuge would have a solid/liquid weight ratio of 0.001.

Supernate entrainment in the solids from the centrifuge is 12 percent of the
solid weight in the centrifuge feed.

Polyelectrolyte solution is blended in line with the slurry feed to the centrifuge
to coagulate colloidal solids and thereby improve solids recovery. This
solution would have a weight equivalent to 19 percent of the solids in the
centrifuge feed and would have a composition of 1 wt% polyelectrolyte and

99 wt% water.

Centrifuge wash water amount would be four times the total solids weight in

the centrifuge feed. Of this 400 percent solid weight equivalent wash water, a
one-to-one weight ratio of this wash water to solids would accompany these
solids and entrained supernate to the centrifuge catch tank; the remainder of

the wash water would accompany the clarified supemnate.

Sufficient dilution water would be added to the centrifuge catch tank to achieve
a pumpable slurry containing 10wt % solid content.

0.25 wt% of the clarified liquid from the centrifuge would be recycled to the
centrifuge feed tank. The remainder of the liquid would be sent to the inertial
filters.

The inertial filters would produce a clarified liquid containing 12.5 percent of
the total liquids and 1 percent of the total solids from the incoming flow. The
remainder of the liquids and solids would be returned to the inertial filter feed
tank.

D-12
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8. 25 percent of the clarified liquid from the inertial filters would be recycled to
the inertial filters.

Specifications 1 and 2 apply to all systems. Specification 3 applies to all except the G-305.
Specifications 6, 7, and 8 apply to all systems except G-305, G-2, and G-10.

The ESP flowsheet also inciudes sand (or glass frit) filters to capture solids before all of the
ion exchange column processes. These filters are assumed engineering judgment to capture
99.9 percent of the solids. These solids are recycled back to the dissolution process head
end. This assumption impacts the amount of solids reading the LLW, affecting the LLW
radionuclide concentrations. It aiso impacts the HLW volume by forcing more solids
towards HLW. The addition of the filter glass frit was assumed to be compensated by
reducing the glass former addition in the subsequent glass making processes.

D-13
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D3.0 INITIAL SOLID-LIQUID SEPARATION

Sludge washing steps are shown in Figure C-1, sheets 1 and 2. Waste feed from retrieval
and transfer would enter receipt and sample tanks (TK-1). The waste would be mixed
(TK-2) with purge from an inertial filter, mixed with polyelectrolyte, and sent to a centrifuge
(G-1). The polyelectrolyte would coagulate colloidal solids to increase the solids recovery
during centrifuging and filtration, The solids would be water washed and collected in the
centrifuge catch tank (TK-3). Additional water would be added to produce a pumpable
slurry which would be sent to the sodium hydroxide leach tank (sheet 3, TK-31), The
centrate would be seat to an inertial filter (FI-1) to remove residual solids and pass through
the inertial filter catch tank (TK-9). The clarified liquid from the catch tank then would be

sent to the organic destruction step (sheet 3).
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D4.0 ORGANIC DESTRUCI'IOI*i (ZIMPRO PROCESS)

After initial solid/liquid separation of retrieved tank waste, the resulting liquid would
undergo wet air oxidation to destroy organics and ferrocyanides as shown in Figure C-1, .
sheets 3 and 4. This technology has been utilized for 30 years by Zimpro-Passavant
Environmental Systems,. Inc. in designing commercial processes for organic destruction.

Diluted tank waste liquid from the preceding solid/liquid separation step (Stream 14, sheet 2)
and the liquid centrate from sodium hydroxide leaching (Stream 208, sheet 8) would be fed
to the organic destruction feed tank (TK-80) and would enter the wet air oxidation process at
25 °C and less than 50 pounds per square inch gauge (psig). A high-pressure pump (P-1)
would pressurize feed from this tank to 2,000 psig. The pressurized feed would be heated to
approximately 300 °C by a heat exchanger (E-11) that would recover heat from processed
tank waste exiting the reactor. The exchanger would recover approximately 90 percent of
the heat necessary to bring the feed stream from ambient to reactor temperature (325 °C).
After passing through the heat exchanger, the feed would enter a jacketed tubular reactor
(TK-81) along with air compressed from ambient to reactor pressure. Heat transfer fluid in
the jacket of the reactor would supply the additional heat required to raise the feed stream to
the target reactor temperature. The jacketed reactor concept would maintain constant reactor
temperature.

At reactor conditions and 29 percent excess air (based on 100 percent organic destruction),
oxygen and hydroxide would react with the organic constituents to form carbonate, oxalate,
nitrogen, ammonia, and some hydrogen. Organic would decompose according to the
following overall reaction stoichiometry based on experimental data for
ethylenediaminetetraacetic acid (EDTA) (Schmidt et al. 19%94):

CpoO:NH,,* + 160H + 80, —> 10CO,> + 2NH, + 10H,0 +H,

Ferrocyanide destruction would proceed according to the following reactions
(Schmidt et al. 1993):

[Fe(CN)J* + 12H,0 > Fe*? + 6HCOO" + 6NH,

SHCOO" + 2NOy —> N, + 3HCO, +2C0;% + H,0
A heat exchanger (E-10) would cool the reactor effluent from 325 °C to 50 °C. Two |
liquid/gas separators in series (T-3, T-4) would reduce the pressure of the cooled processed

feed from 2,000 psig to atmospheric pressure. Gases from these two separators would be
combined and cooled (EC-102) before being sent to offgas treatment.
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A reactor residence time of oae hour at 325 °C and 2,000 psig would achieve 99 percent
organic and ferrocyanide destruction. Metals complexed with organic in the reactor feed
would precipitate as hydroxides upon cooling. Hydroxides of strontium, nickel, calcium, and
iron would be likely along with coprecipitation of transuranic (TRU) components and
lanthanides, These solids would be removed by ceatrifuging (G~4) and inertial filter (F1-4)
systems and routed to sodium hydroxide leaching (sheet 8, TK-31). The clarified liquid from
organic destruction would be combined with the wash raffinate from the actinide extraction
with tributyl phosphate (IBP) in the ion exchange evaporator feed tank (TK-89).

L ——
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D5.0 SOLIDS DISSOLUTION

Three dissolution steps, along with undissolved sludge recycle, would minimize the amount
of sludge routed to HLW. One dissolution cycle would involve sequential sludge processing
through the following steps: (1) sodium hydroxide leach, (2) nitric acid/oxalic acid
dissolution, and (3) nitric acid/hydrofiuoric acid dissolution. Solid/liquid separation

(SLS) would occur after each of these steps. Each of these processes would require several
hours of digestion at approximately 90 °C under the following basic/acidic conditions:

Sodium hydroxide Leach: [OH-] = 4.0M

Nitric/Oxalic [H+] = 4.5M
Acid Dissolution:  [C,0,7] = 0.3M (approx. 1 mole/mole cations dissolved)

Nitric/HF acid [H+] = 4.5M
Dissolution: [F-] = 1.0M (approx. 1 mole/mole equivalent of cations
dissolved).

The extent of dissolution assumed by component is shown in Table D-1 for each dissolution
process.

The solids dissolution steps are shown in Figure C-1, sheets 8 through 12. Feeds to the
sodium hydroxide leach tank (TK-31) would include washed solids collected from the solid
wash (sheet 2, TK-6) and organic destruction (sheet 4, TK-88) steps, solids recycled from
the second acid dissolution step (sheet 12, TK-116), ammonium phosphomolybdate from the
acid cesium ion exchange step (sheet 23, X-6), and sodium hydroxide recycled from LLW
treatment (sheet 35, TK-10-PL). After digestion by sodium hydroxide, the contents would
be sent to a centrifuge (G-2). The centrate (Stream 208) would be routed to the orgamc
destruction feed tank (sheet 3, TK-80).

Solids remaining after sodium hydroxide leaching would be collected (TK-34) and sent to a
nitric acid-oxalic acid dissolution step (sheet 9). The solids would be combined with nitric
and oxalic acids in a dissolver (TK-29). Strontium-loaded crystalline silicotitanate resin from
acid-side treatment (sheet 6, TK-132) would also be fed to this dissolver. Offgas from the
dissolver would be treated in a condenser-scrubber offgas treatment system (T-1, T-2,
TK-30). This system would convert 90 percent of evolved nitrogen dioxide to nitric acid for
recycling to the dissolver, The digested solid-liguid mixture would be sent to a centrifuge
(G-3) and filter (FI-5) sequence. The filtrate would be sent to the TBP extraction step

(sheet 13) after blending with filtrate from the nitric-hydrofluoric dissolution step,

Solids remaining after the nitric acid-oxalic acid dissolution would be collected (TK-104) and
sent to a nitric acid-hydrofluoric acid dissolution step (sheet 11). The solids would be
combined with nitric and hydrofiuoric acid in a dissolver (TK-110) with an associated offgas
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treatment system (T-8, T-9, TK-111) as described for previous acid dissolution step. The
digested solid-liquid mixture would be sent to a centrifuge (G-5) and filter (FI-6) sequence.
The fitrate would be sent to the TBP extraction step (sheet 13) after blending with filtrate
from the nitric-oxalic dissolution step. Solids remaining after the sodium hydroxide,
nitric-oxalic, and nitric-hydrofluoric dissolution steps would be collected (TK-114) and
sampled (TK-115). In this flowsheet, 5 percent of the remaining solids would be purged to
HLW treatment (sheet 24), and the remainder would be recycled to the sodium hydroxide
dissolution step (sheet 8).

AS+5 90% 90%
B+3 90% 90%
BA+2 %0% 90%
BE+2 90 % 90%
Bi+3 90% 90%
Cl4 50% 90%
CA+2 90% 90%
CANCRINITE 50% 10%
CD+2 50% 90%
CE+3 ‘ — 50% 90%
CL- 90% 90%
CM+3 90% 90%
CO+3 | 50% 90%
C032 90% 90%
CR+3 90% 50%
Cs+ = 90% 90%
CU+2 : 90% 90%
F- 90% 90%

D-18



9513305119

WHC-SD-WM-EV-100 Rev. 0

Table D-1. Component Dissolution by Base/Acid Process. (3 sheets)

FE+3 " 90% 50%
FECNG-3 0% 0%
HG+2 0% 9%
I- 90% 9%
X+ 50% 0%
LA+3 90% 50%
I+ 90% 0%
MG+2 50% 0%
MNT2 50% 0%
MNQO2 90% 90%
MO+6 90% 0%
NA+ 90% 90%
NE+5 0% 50%
NI+3 90% 90% -
NIZFECN6 AN% ’

NO2- . % V%
NO3- 0% %0%
NPi4 90% 50%
OH- . 0% 90%
P305:24W 90% 0%
PE+4 90% 50%
PO4-3 90% 90% 90%
PUL4 0% 0%
RB+ 50% 50%
RE+7 90% 9%0%
RE+3 50% 90%
RU+3 90% 90%
SB+5 90% 90%
SE+6 9%0% 90%
ST+4 0% 0%
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Table D-l Component Dlssoluuon by Base/Amd Process (3 sheets)

SM+3 90% 0%
SN+4 0% 9%
S04-2 90% S0% 90%
SR+2 90% 50%
TCO4- 90% %0%
TE+6 W% 90%
TH-+4 90 % 50%
TI+4 90% 90%
TL+3 90% 90%
TOC 90% 90%
U02+2 ’ " 90% 90%
V+5 90% 50%
W6 90% 50%
ZN+2 S0% 90%
ZR+4 90% 90%
ZRO2:2H2 90% 50%

The base case assumption (see Table A-1) of 90 percent dissolution for major matrix
components of the sludge per pass for the series of three dissolution processes closely
parallels the clean option example flowsheet assumptions (Swanson 1993). Engineering
judgment, based on experience in B-Plant, is that in multiple passes with a single dissolvent,
the fraction of sludge dissolved decreases with each pass. To show the effect of this poor
dissolution assumption, the number of passes was limited to three cycles and the percent
dissolution was arbitrarily reduced from 90 percent to 10 percent to 5 percent on the first,
second, and third passes, respectively. The result of the poor dissolution assumption given
in Table A-6 is a large increase in the HLW glass volume. Clearly, verification of the
dissolution assumption in the base case will be critical to the success of the Extensive
Separations concept and should receive high priority in the experimental program.
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D6.0 TRIBUTYL PHOSPHATE SOLVENT EXTRACTION
OF TRANSURANIC COMPONENTS

‘The TBP extraction separation step is shown in Figure C-1, sheets 13 through 15. Feed for
TBP extraction would consist of clarified dissolver supernatant from the acid dissolution steps
.(sheets 10 and 12) and acid recycled (sheet 17, TK-130) from the backcycle evaporator in the
uranium concentration step. This combined feed would be contacted with TBP in a solvent
extractor (CB-5). The solvent composition would be the 30 percent TBP in hydrocarbon
diluent as used in the well-known plutonium-uranium extraction (PUREX) process.

In the first extraction contactor (CB-5) of this TBP cycle, uranium, plutonium, neptunium,
and thorium would be extracted into the TBP organic phase, which would then be scrubbed
with nitric acid to increase the separation from the bulk metal ions, some of which have a
slight extractability. The raffinate from this contactor, 3.5M nitric acid containing
lanthanides and the remaining components of the dissolved sludge solution, would be steam
stripped (EV-1) before being sent to the CMPO exiraction step (sheet 18).

The solvent phase in this first extraction contactor would be scrubbed using 0.6M nitric acid
and then would be stripped in a reduction step (sheet 14, CB-6) using (.1M hydroxylamine
and 0.2M nitric acid. This contacting would concentrate plutonium, neptunium, and thorium
in the acidic water phase (Stream 716) which would be concentrated by evaporation (EV-12)
and sent to HLW treatment (sheet 24). The solvent would be stripped a second time (CB-6)
using water to remove uranium and using 0.01M 1-hydroxyethyl-1,1-diphosphonic acid
(HEDTA) (TK-247) to remove trace TRU not stripped in the previous steps. This would
remove uranium, which would be concentrated by evaporation (EV-13). After adding nitric
acid to a concentration of 1.4M (TK-129), the concentrate would be sent to uranium
purification (sheets 16 and 17). The solvent would be washed using 0.25M sodium
carbonate (TM-4) and would be recycled (TK-128). The wash solution would be collected
(TK-127) and sent to basic side processing (sheet 4).

Table D-2 presents the percent split of feed components among the various product streams
from this process. The dissolved sludge stream would be decontaminated from uramium and
neptunium by a factor of 10* and from thorium and plutonium by a factor of 10?. Cesium,
strontium, americium, and trivalent lanthanides would be inextractable by TBP, and very
little technetium would be extracted at the high acidity used here (~4M HNO;). Thus, these
elements would remain in the dissolved sludge stream (Stream 721) leaving this step, along
with the nonradioactive elements present in the stream.

For this solvent extraction process as well as other extraction operations described later in
this appendix, evaporation steps downstream of the process would recover solvent from the
agueous streamns which would contact the organic solvent. Where evaporator condensate
contains solvent, this condensate would be sent to a decanter, and the organic phase would be
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recycled to the closest upstream solvent extraction sy;tem to minimize discharging solvent to
water treatment. This is shown at various locations in Figure C-1, but the individual cases
are not described in this appendix.

Table D-2. TBP Extraction of uranics Section: Component Distribution.
3 65905555 SRR T 3 SR R e W‘@ = -st =

TSR SRS
5 ‘ - : &@%ﬁ
99.99% 01%
99.90% 10%
99.99% 01%
Cm+3 99.99% 01%
Fe+3 9.9% 01%
La+3 9.9% 01%
Np+4 01% 99.98% 01%
Pu+4 1.00% 98.99% 01%
Sm+4 99.99% 01%
TcO4- 99.90% 05% 045% 005%
Th+4 1.00% 08.99% 01%
U02+2 01% 10% 99.88% 01%
Zr+4 0.90% .10%
TBP A13% 99.87%
Solvent .
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D7.0 URANIUM PURIFICATION

Uranium purification is shown in Figure C-1, sheets 16 and 17. Concentrate from the TBP
separation (TK-129, sheet 15) would be contacted (CB-3) with TBP. This contactor would
run at Jow acidity (0.01M nitric acid) and a high degree of saturation of the TBP by
uranium, Hydroxylamine reductant would be employed in the scrub stream to enhance )
removal of fission product and TRU elements. These conditions would lead to a significant
uranium "loss” to the contactor raffinate catch tank (TK-51), but the "loss” would be
recovered by evaporation (EV-14), collection (TK-130), and recycling of the raffinate to the
first TBP extraction separation (TK-120, sheet 13). Finally, the purified uranium would
again be stripped into dilute acid (Stream 326). This stream would be concentrated by
evaporation (EV-6), sampled, and stored for shipment for use offsite (TK-56). The solvent
from this cycle would be washed with sodium carbonate to prepare it for reuse.

The distribution of key components among the outlet streams from this operation is shown in
Table D-3.

able D-3. Urani : Component Distrib

N— - —

Np+4 100%

Pu+4 100%

TcO4- 100%

Th+4 100%

[U02+2] 5.7% 894.29% 01%

Solvent 05% 99.95%
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D$.0 CMPO SOLVENT EXTRACTION FOR
AMERICIUM AND LANTHANIDE REMOVAL

The CMPO extraction step is shown in Figure C-1, sheets 18 and 19. Raffinate from the
TBP extraction step would be adjusted for complexation (TK-39), contacted with CMPO
(CB-1) to remove 99.99 percent of the americium and the lanthanides and 99.5 percent of the
bismuth, and scrubbed using 0.6M nitric acid. The raffinate, which would contain 2.9M
hydrogen ion, would retain essentially all the cesium, strontium, and technetium in the
dissolved sludge feed to this step. The raffinate would be sent to the crown cther extraction
step (sheets 21 and 22).

The solvent from the extractor would be stripped (contactor CB-2) using 0.05M nitric acid to
remove the americium and lanthanum. The strip solution would be concentrated by
evaporation (EV-4) and would be sent to an americium/lanthanum band ion exchange
separation (sheet 20). Bismuth is retained in the extract under these stripping conditions and
would be removed from the solvent in a subsequent sodium bicarbonate wash step (TM-1).
The wash solution containing bismuth would be collected (TK-46) and sent to LLW treatment
(sheet 26). The washed soivent would be recycled (TK-47). Table D-4 shows the
distribution of key components among the outlet streams from this process.

Am+3 01% 99.98% 0%
Bi+3 S0% .0.50% 99.00%
Ce+3 01% 99.99%

Cm-+3 01% 99.99%

Cs+ 100.00%

Fe+3 99.99% 01%

H+ 91.40% 8.60%
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e SEmERTE e e

Sr+2 100.00%

TcO4- 99.90% 10%

95.90% 10%

Solvent 26% 99.74%
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D9.0 AMERICIUM/LANTHANIDE SEPARATION BY
BAND DISPLACEMENT CATION EXCHANGE

The americium/lanthanum separation is shown in Figure C-1, sheet 20. Concentrate from
CMPO stripping (TK-43, sheet 19) would be contacted with a cation exchange resin (X-3) in
preparation for separation by band displacement cation exchange. Wheelwright (1974)
recommends Dowex 50w, X-8 (100 to 200 mesh) for both the feed adsorption column and
the subsequent efution columns where band development of DTPA complexes with the +3
metals occurs. Following a water wash of the resin, the trivalent ions would be eluted with a
pH-adjusted 0.05M diethylenetriaminepentaacetic acid (DTPA) solution (TK-257) onto a
zinc-loaded cation exchange resin column. Continued elution through a series of columnas
(X-3) would establish discrete bands of metal ions in a sequence that would depend on the
magnitudes of the constants governing the formation of the meta! ion-DTPA compiexes.
This order would be zinc; curium, americium, terbium, and dysprosium (together);
gadolinium; europium; samarium; yttrium; and light lanthanides.

The first effluent cut would contain most of the zinc; the second would contain the remainder
of the zinc and some of the yitrium along with all of the americium, curium, and lanthanides
heavier than promethium; and the third would contain the remainder of the yitrium plus the
lanthanides lighter than samarium.

Final removal of light lanthanides from the resin would be accelerated by using a more
highly concentrated DTPA solution (TK-256) to strip them. The resin beds then would be

regenerated, following a water wash, to prepare them for the next cycle. The first (sorption)

bed would be regenerated with HNO,; subsequent (band displacement) beds would be
regenerated with Zn(NQs),. After another water wash, the resin beds would be ready for the
next cycle of operation.

The first and third effluent cuts, which would contain most of the zinc, some yttrium, and
lanthanides lighter than samarium, would be collected (TK-160) and sent to acidic LLW
treatment (sheet 26). The second effluent cut, which would contain some zinc and yttrium
and all of the americium, curium, and lanthanides heavier than promethium, would be
collected (TK-158) and sent to HLW treatment (sheet 27). Component distributions among
the outlet streams from this operation are provided in Table D-5.
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Table D~5 Am/La Band Dlsplacement Sectlon' Component msmbuuon

R »&Vk&*?Mé%% TR

.01%
Ce+3 01%
Cm+3 01%
La+3 01%
Sm+3 01%

DTPA-3 (from .05SM DTPA
strip solution)

Na+ (from 0.5M DTPA 99.00% 1.00%
strip solution)
Zn+2 (from Zn 99.00% 1.00%

regeneration solution)
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D10.0 CROWN ETHER SOLVENT EXTRACTION FOR
STRONTIUM AND TECHNETIUM REMOVAL

Thecrownethmemacuonsq)arauonmshowangureC-l sheets 21 and 22. Raffinate
from the CMPO separation (sheet 18, TK-41) would be concentrated by evaporation (EV-7);
contacted (CB-4) with a crown ether solvent (0.2M in diluent) to remove strontium, barium
and technetium; and scrubbed using 0.6M nitric acid. The raffinate, which is 3.5M in
hydrogen ion, would be steam stripped (EV-9) before being sent to a cesium ion exchange
separation (sheet 24). The solvent would be stripped using 0.01M nitric acid to remove the
strontium, barium, and technetium. The strip solution would be concentrated by evaporation
(EV-8) and would be sent to a HLW treatment (sheet 24). The solvent would be washed
using sodium bicarbonate (TM-3) and recycled (TK-66). The wash solution would be
collected (TK-65) and would be sent to LLW treatment (sheet 26).

As shown in Table D-6, the aqueous dilute acid HLW stream from this extraction step would
contain 99.99 percent of the strontium and barium and 99 percent of the technetium in the
feed to this operation.

Table D-6 Crown Ether Extracuon Sr/Tc Section: Componcnt Dlstnbutxon.

s g _‘vo:-.-\.‘ A
’*' =ns $if.wf
RRE,

Sr+2 99.99% 01%
TcO4- 9.00% 1.00%
Solvent .05% 99.95%
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D11.0 AMMONIUM PHOSPHOMOLYBDATE ION
EXCHANGE FOR CESIUM REMOVAL

The acidic cesium ion exchange separation is shown in Figure C-1, sheet 23. Raffinate from
the crown ether extraction separation step (sheet 22) would be sent to a feed tank (TK-133),
filtered (FS-5), and contacted with ammonium phosphomolybdate (X-6) to sorb 99,99 percent
of the cesium. Raffinate is sent to LL'W treatment (sheet 25, TK-175). The resin would
consist of Ammonium Phosphomolybdate (APM) on an alumina substrate (10 wt% APM) to
meet the mass and heat transfer requirements for this application. Because cesium cannot be
readily eluted from APM, the loaded sorbent (50 grams of cesium per kilogram of APM)
would be routed to the sodium hydroxide leach step of the sludge dissolution process (IK-31,
sheet 8). Sodium hydroxide conditions would dissolve 90 percent of the alumina, APM and
its associated cesium according to the following dissolution reactions, with unltimate cesium.
removal by basic-side ion exchange (sheet 5, X-1).

27 OH' + APM = 3NH, + 15H,0 + PO,* + 12 MoO,?

' ALO, + 3H,0 + 20H = 2 Al(OH),
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D12.0 RESORCINOL-FORMALDEHYDE ION
EXCHANGE FOR CESTUM REMOVAL

Cesium ion exchange is shown in Figure C-1, sheet 5. A 4-column carousel arrangement
would be employed, in which 3 columns in series would be in operation while the fourth
column wouid be undergoing regeneration. Table D-7 provides volumetric information on
the regeneration/wash streams required for this ion exchange process.

Evaporation (EV-0) would concentrate basic-side feed (sheet 4, TK-89) and cesium ion
exchange wash streams (water and sodium hydroxide) to meet a cesium ion exchange feed
specification of 7M NaOH. The ion exchange feed (TK-11) would be filtered (FS-1) and
contacted with a resorcinol-formaldehyde ion exchange resin (X-1) to achieve 99.61 percent
cesium removal. The column raffinate would be sent to strontium ion exchange (sheet 6,
TK-152).

For regeneration, the resin would be washed using 2M NaOH and water, then eluted with
IM formic acid. The eluted cesium would be sent to HLW treatment (sheet 24). Next the
resin would be washed with water and regenerated with 2M NaOH. These water and sodium
hydroxide wash streams would be recycled to the evaporator (EV-0) upstream of this ion
exchange operation.

Regeneration Streams
Feed flush 113 3 2M NaOH
Sodium hydroxide 110 6 Water
flush
Cesium Eluant 108 20 IM Formic acid
Eluant Flush 117 3 Water
Regeneration 115 3 2M NaOH
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D13.0 CRYSTALLINE SILICOTITANATE ION EXCHANGE
- FOR STRONTIUM REMOVAL

Strontium ion exchange is shown in Figure C-1, sheet 6. Raffinate from the cesium ion
exchange step would be sent to a feed tank (TK-152), filtered (FS-6), and contacted with
crystailine silicotitanate (CST) cation exchange resin (X-6) to achieve 99.6 percent strontium
removal. The raffinate would be sent to technetium ion exchange (sheet 7, TK-93).

The CST bed would not be regenerated since strontium cannot be eluted from the resin. The
strontium loaded resin (4 wt% strontium loading for engineered CST) would be recycled to
the acid dissolution section (sheet 9, TK-29). Dissolution of the resin and associated
strontium (90 percent dissolution per pass) would occur in the nitric acid-hydrofluoric acid
dissolver (sheet 11, TK-110). The nominal composition of the engineered CST would be

32 wt% TiO,, 16 wt% Na,0, 44 wt% SiO, and 8 wt% water, '

The CST will coexchange plutonium and cesium along with strontium at approximately the
same extent as the strontium when the lower cesium and plutonium concentrations are
considered. However, only the strontium exchange is represented in the flowsheet.

The strontium removal assumptions impact whether the LLW radiotoxicity objective is met,
and also impact the HLW volume because CST material adds oxides of sodium, titanium,
and silicon during vitrification. The additional removal of cesium and plutonium could also
aid in meeting the LLW radiotoxicity objective, and while not represented in the flowsheet,
will be addressed in the presentation of the LLW product composition results (see Table 9-1)
relative to the radiotoxicity limits.
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D14.0 ANION EXCHANGE REI\IOifAL OF TECHNETIUM

Technetium ion exchange is shown in Figure C-1, sheet 7. Raffinate from the basic-side
strontium ion exchange step would be sent to a feed tank (TK-93), filtered (¥S-2), and
contacted with an anion exchange resin (X-2) to achieve 99.5 percent technetium removal as
pertechnetate ion (TcO-). Table D-8 provides volumetric information on the
regeneration/wash streams required for this ion exchange process. '

The Tank Waste Technical Options Report (Boomer et al. 1993) contains a summary of feed
and regeneration rates for technetium ion exchange. Using a strong base anion exchange
resin, 100 stream or column volumes of feed were assumed processed to reach breakthrough.
This data is based on experimental work done by Schultz (1980). That work used NO; form
of three different resins: Dowex 1x4, Dowex MSA-1, and IRA 401. Results are provided in
the body of that report for only the last two of these three resins.

The loaded resin bed would be washed with sodium hydroxide to remove residual feed
solution, then with water in preparation for acid elution. A dilute nitric acid (0.25M) would
be used first to ensure conversion of the resin to the nitrate form before technetium elution
begins. The technetium would be eluted with 6M nitric acid. The bed would be prepared
for the next loading cycle by displacing the acid first with water, then with sodium
hydroxide.

The eluted technetium would be concentrated by evaporation (EV-10) and sent to HL.W
treatment (sheet 24). Vapor from the evaporation would be sent to a fractionator (T-5)
where nitric acid would be recovered and recycled (TK-101) for use in the technetium ion

exchange step. Raffinate would be sent to basic LLW treatment (sheet 26, TK-139).

treams
Feed flush 504 8 2M NaOH
Sodium hydroxide fiush 507 12 Water
OH- displacement 513 6 0.25M HNO,
Technetium Eluant 515 20 6M HNO,
Eluant Fiush 518 6 Water
Regeneration 533 8 2M NaOH
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D15.0 STRONTIUM AND CESIUM CAPSULE DISSOLUTION AND
METATHESIS (HIGH-LEVEL WASTE OPTION 2)

The cesium/strontium capsules would be transferred in a Beneficial Uses Shipping System
cask from the waste encapsulation storage facility to a capsule cut-up cell in the extensive
separations complex. After delidding using a cask lid/delid machine (CN15), the cask would
be transferred to the hot cell. :

Once in the hot cell, inner capsules would be transferred from the turnstile to the end crop
machine (FX7) using a manipulator or tongs. After end cropping, the cesium capsules would
be transferred to the cesium rinse tank (TK21) via a basket (BB9). Dissolved cesium would
be transferred from the cesium collection tank (TK22), to ion exchanger (IX25) to remove
the chloride ions prior to blending with the main HLW stream.

To prevent diffuse breakthrough of chloride, the anion exchanger must have a selectivity for
chloride greater than 1.0. A bed composed of 50/100 mesh Dowex™* 2x8 in the hydroxyl
form would achieve this purpose (Helfferich 1962). The capacity of the exchanger on a mole
equivalent basis would only need to be 1.5 times the equivalents of chloride in the CsCl feed,
since there are no other anions in the feed stream. One bed volume of wash water would be
adequate to rinse the exchanger free of cesium ions. The resin would not be regenerated, but
the chloride loaded bed would be discarded periodically and mixed into the LL'W glass

melter feed stream. The chloride concentration due to resin would be very low; therefore, it
would not affect LLW melter operations or the quality of the glass product.

Strontium fluoride capsule contents would be removed by a hydraulic press on the end crop
machine table and transferred to a slurry tank (TK20) via roll crushers. The strontium
fluoride would then be transferred to HLW for blending and vitrification.

Outer and inner capsule hulls would be decontaminated in tank TK24 and shredded for size
reduction (FX13). The shredded material would be drummed and removed from the facility
for burial.

*Dowex is a trademark of the Dow Chemical Company.
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D16.0 HIGH-LEVEL WASTE STREAM VITRIFICATION TREATMENT

D16.1 HIGH-LEVEL WASTE CONCENTRATION/DENITRATION

High-level waste stream treatment preceding vitrification is shown in Figure C-1, sheet 24.
The HLW streams, from the separation steps described in the previous sections (undissolved
sludge purge from acid dissolution, strontium and technetium from crown ether extraction,
americium and lanthanides from band ion exchange, transuranics from TBP extraction, and
technetium from basic side ion exchange) would be combined, (TK-141) and a concentrated
nitric acid liquid (specific gravity=1.37) would be produced by evaporation (EV-16). The
HILW evaporator would operate under a vacuum in order to remove the nitric acid. Dilute
acid vapor from this operation would be sent to acid recovery (sheet 25, TK-142). The
concentrated nitric acid solution and formic acid eluant containing cesium from
resorcinol-formaldehyde ion exchange would be mixed (TK-149) and would undergo
denitration by reaction with sucrose and formic acid destruction.

24 H* + 24 NO, + CpH»O, = 12 CO, + 12 NO + 12 NO, + 23 H,0

T

HCOOH + 2 HNQ; = 2 NO, + CO, + 2 H,0

Sufficient 2M sucrose would be supplied to this denitration step to achieve 0.5M HNO, in
the liquid after complete sucrose conversion. This liquid, containing undissolved solids from

the acid dissolution operation, would be fed to the HLW centrifuge feed tank (sheet 27,
TK-302). The NOx produced by denitration would be sent to the acid recovery portion of
the flowsheet (sheet 25) for conversion back to HNO;.

Di6.2 HIGH-LEVEL WASTE VITRIFICATION

The denitrated HLW solid slurry would be routed to the HLW centrifuge. The centrifuged
HLW solids (assumed 20 wt%) would be sent to the melter feed section; the liquid would go
to a HLLW evaporator. The HLW evaporator would concentrate the stream to decrease the
amount of water entering the HLW melter. The evaporator bottoms would be routed to the
melter feed section.

In the melter feed section, the solids from the HLW centrifuge and the melter offgas
processing (MOG) treatment recycle would be combined together. Glass formers and an
organic acid (glycolic) would be added to this stream before it enters the melter section. The
organic acid would be added for reduction/oxidation control in the melter. The melter would
be a joule-heated, liquid-siurry-fed glass melter. The molten glass would exit the melter and
proceed to the canister filling and handling section. The MOG would be routed to the MOG
‘treatment section.
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A high-temperature or a stirred melter would convert the incoming feed slurry into molten
borosilicate glass containing > 50 wt% waste oxides (based on glass composition
optimization calculations in the flowsheet simulation). Volatilized melter feed components
would form a separate stream of offgas that passes overhead. The hot glass would be
semi-continuously poured into cylindrical, stainless steel canisters.

The melter used in the BLW vitrification process would be a joule-heated design that would
operate at 1200 °C. The composition and flowrate of glass formers {containing primarily
Si0,, B,0; Fe,04 Li,0, N2,0, Al,O,, and Ca0) would be adjusted to minimize total HLW
glass weight subject to the foliowing glass constraints:

SiO, content > 42 wt% < 57 wth
B,03 content > 5 wt% < 20 wi%
Na,0 content > § wth < 20 wt%
Li,O0 content > 1 wth < 7 wt%
Fe,0, content > 2 wt% < 15 wth
~Ca0 content < 10 wi%
MgO content < 8 wit%h
ALO; content < 15 wt%
ZrQ, content < 13 wt%
Cr,O; content < 0.5 wt%
P,O; content < 3 wi%
SO, content < 0.5 wt%

The separation of glass/offgas was assumed to send 100 percent gas and 1 percent solids to
HLW offgas treatment with 99 percent solids to glass. Glass rework of off-specification
material would be processed through a separate cyclone/roll crusher/catch tank to prepare a
20 wt% solid slurry which would be recycled to the HLW meiter.

The glass-filled canisters would be plugged and welded closed before being decontaminated
to remove exterior contamination. The spent decontamination liquids would be accumulated
and recycled to the feed preparation system to' evaporate excess water and recover
contaminants. The decontaminated canisters, filled with monolithic HLW glass, would be
placed into an overpack container (four canisters per overpack). The overpack containers
would be transferred from the vitrification building to an interim storage building while
awaiting eventual shipment to a federal geologic repository.

The high-activity glass vitrification process would be relatively independent of the type of
melter employed. Most of the data used for sizing and costing purposes for this document
used a combustion melter for high-activity glass vitrification. This would impact the
high-activity melter’s offgas equipment but would have a small impact on the volume of
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offgas when compared to the low-activity melter’s 0&gas. Also, the masses of components
in the offgas stream and the volume of glass produced would not change with the melter

type.

Rather than the oxide-specific glass composition limits given above and used in this report, 2
simpler composition limit of 25 wt% total waste oxides is specified in the TWRS Process
Flowsheet (Orme 1994). This limit is the so-called low temperature glass limit which is used
in the Tri-Party Agreement Alternative Data Package for the Tank Waste Remediation System
Environmemntal Impact Statement (Slaathaug 1995). This limit may be more conservative and
reduce the likelihood of devitrification by reducing the giass temperature. The resuits of an
Extensive Separations case using this limit is shown in Table A-5 for comparison purposes.

D16.3 HIGH-L‘EVEL WASTE MELTER O¥FGAS PROCESSING

The HLW MOG systems would receive the hot gases from the melter and subject them to a
water quench, a Venturi scrubber/separator, a demister, and a high-efficiency particulate air
(HEPA) filtering system. Quenching these offgases by countercurrent contact with cool
scrub water (75 °C) would remove most of the entrained particulates and water-soluble
contaminants and would condense much of the water vapor. Excess condensates from the
HLW MOG system would recycie to the HL'W feed preparation system for re-evaporation.
Excess process condensates would be continuously purged to the process liquid waste system
while quenched offgas would pass through a mist eliminator and multiple stages of
high-efficiency filtration where most of the remaining radionuclides would be captured. The
scrubbed MOGs would flow to a catalytic de-NOx reactor before final discharge to the
heating, ventilating and air conditioning (HVAC) system. The treated MOG would combine
with the vessel offgas before passing through NOx abatement equipment enroute to the
HVAC system.

Overall separation of gas from condensed phases achieved by these processing steps was
assumed to be 99.999+ percent solid oxide removal, 100 percent Hg removal, 50 percent
NH; removal, 100 percent TcO, removal, with conversion to TcO,(aq), and 99+ percent
water removal. Condensed stream recycle would send the solid slurry to the LLW
pretreatment evaporator and the liquid to HLW pretreatment evaporator.
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D17.0 INITIAL TREATMENT FOR ACIDIC LOW-LEVEL WASTE TREATMENT

D17.1 LOW-LEVEL WASTE CONCENTRATION

The LLW concentration portion of the flowsheet is shown in Figure C-1, sheets 25 and 26.
The LLW streams from the separation steps described in the previous sections (solvent wash
waste from uranium purification, solvent wash waste from CMPO extraction, Am/La band
ion exchange elution waste, solvent wash waste from crown cther extraction, and raffinate
from base-side ion exchanges) would be combined (TK-139) and concentrated (EV-15) by
evaporation of water to a 7M NaOH solution. This concentrated LLW stream from
evaporation would be fed to the LLW calcination process while the basic evaporator
overheads would be allocated to dilution water for the salt grout process and/or combined
(TK-145) with slightly acidic evaporator overheads from the separation steps described in the
previous sections (evaporator overheads from crown ether extraction, from CMPO
extraction, from uranium purification, from TBP extraction, from organic destruction, and
from acid recovery) and recycled to the wash operations for the former separation processes.
The LLW waste would be processed through an evaporator at 76 liters per minute to provide
an evaporated feed of 15.1 liters per minute to the calciner.

D17.2 LOW-LEVEL WASTE CALCINATION (T-THERMAL PROCESS)

The LLW calcination portion of the flowsheet is shown in Figure C-1, sheet 34,
Low-activity waste feedstreams to the calcination process (TK-4-PL) would consist of the
liquid from the basic L.LW evaporator (sheet 26, EV-15) and the denitrated liquid from the
acidic LLW evaporation (sheet 25, EV-20) of the raffinate streams from Am/Ln band ion
exchange and APM cesium ion exchange. These streams would be fed to the calcination/
T-Thermal process for primarily nitrate destruction.

Destruction of nitrate/nitrite salts, organics, and ferrocyanide, in addition to solubilizing
aluminum compounds would be accomplished using a modified plasma arc calcination
(Hendrickson 1994) process known as the T-Thermal process. The main modification is
related to using ammonia as the combustion fuel. The amount of ammonia required would
be based on calculating the sensible heat required to raise the reactants to a temperature of
~800 °C. The major process steps would consist of waste calcination, product handling,
and offgas treatment. Preliminary tests at the Westinghouse Science and Technology Center
indicated an operating temperature range of 750 - 850 °C for the plasma arc calciner
operation. However, further temperature optimization must be done together with kinetics
studies.

The flowsheet equipment used assumptions of 0.1 second residence time and an 800 °C
operating temperature, under atmospheric pressure to provide 91 to 86 percent nitrate/nitrite
decomposition and 99 percent organic decomposition. The percent decomposition, not the
residence time, is based on engineering judgment of the of the Westinghouse Science and
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Technology Center test data (Hendrickson 1994, Colby et al. 1994, and McLaughlin 1994).
The residence time assumption is engineering judgment that would require further test data to
optimize. It was assumed that 100 percent excess NH; was supplied, where unreacted NH;
was oxidized to nitrogen and water.

The high operating temperatures would oxidize the waste resulting in the destruction of
organics and oxidation of metals which would produce a fluid molten salt, primarily sodium
hydroxide (NaOH). The oxidation produces gaseous decomposition products that would
consist of primarily N,, O,, and water vapor with small amounts of NO,, NO, CO,, and CO.
The molten salt, carried by the gas stream, would be redissolved in an integral water quench.

The reaction stoichiometry for conversion to sodium hydroxide would be described by the
following reactions, where 91 and 86 percent conversion of nitrate and nitrite respectively
would be assumed:

NaNO, = NaNO, + 0.5 O,
2 NaNO, = Na,0 + N2 + 1.5 0,
Na,0 + H,0 = 2 NaOH

The remaining sodium nitrate and sodium nitrite would decompose to NOx, which would be
destroyed by addition of ammonia. The overall calcination/NOx destruction stoichiometry
was described as foilows:

3 NaNO, + 5 NH; = 4 N2 + 6 H,0 + 3 NaOH
NaNO, + NH; = N2+ H,0 + NaOH

It was assumed that 100 percent excess NH, was supplied, where unreacted NH; is oxidized
to nitrogen and water.

After condensing the reactions products, nitrogen gas would be separated from the sodium
hydroxide slurry (7M NaOH). The calcination would also convert the NaOH to Na,CQ, by
action of CO, gas generated by organic decomposition shown by the reactions below.

TOC (total organic carbon) + O, = CO, +H,0 (T = 850 C) (+ associated H)
CO, +H,0(Q) = H,CO,
H,CO; + 2NaOH (aq) = 2H,0Q) + Na,CO, (100 C, agueous)

The equipment for the offgas system would consist of a liquid/vapor separator, Venturi
scrubber, NOx reactor, condensers, heaters, two stages of HEPA filters, and stack. To be
conservative, a 5 percent entrainment of cesium and technetium was assumed for the quench
tank offgas.
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D17.3 DISSOLUTION/CONCENTRATION

The calciner molten salt stream, carried by the gas stream, would be redissolved in an
integral water quench, Originally, the water-insoluble stream was expected to contain a
majority of the transuranic (TRU) isotopes, the multivalent metal oxides and hydroxides as
well as the aluminates. However, literature data suggest that the TRUs may become soluble
under process conditions (Delegard et al. 1993).

The quench solution would be about 85 °C and would remove particles two microns or
larger from the gas stream, some of the soluble gases, and 95 percent of the cesium and
technetium. Solubility data from testing performed at Los Alamos National Laboratories
indicate 25 to 30 wt% of the calcine product is insoluble (Hendrickson 1994). Thirty wt%
insoluble aluminum was assumed for the flowsheet.
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D18.0 GLASS IN SULFUR (LOW-LEVEL WASTE OPTION A)

D18.1 LOW-LEVEL WASTE VITRIFTCATION

The type of melter selected would have its largest impact on the volume of offgas produced
but generally would not impact the masses of the componeats in it. The melter models have
not been developed to such an extent that individual component carryover in the offgas
streams are based upon the melter type. For example, every melter would bave the same
percent of sodium fed to it in its offgas regardless of its (combustion, joule, etc.). Also, the
glass produced would meet the same criteria regardless of the melter type.

The melter used in the LLW vitrification process was represented as a combustion (kerosene
fuel) driven design that would operate at a temperature of 1200 °C. The feed slurry and the
dry glass formers would be added to the melter simultaneously. The composition and
flowrate of glass formers (containing primarily Si0,, Al,0;, and CaO) would be adjusted to
minimize total LLW glass weight subject to the following glass constraints:

Na,O content < 25 wt%
ALQ; content = 5 wt%
CaO content = 10 wt%
Si0, content = 50 wt%

The separation of glass/offgas was assumed to send 100 percent gas and 1 percent solids to
LLW offgas treatment with 99 percent of solids to quench. The glass quench water would

be 2,000 wt% of glass. The glass screening was assumed to use screen wash water at

12 wt% of the glass with the screened solid containing 2 wt% liquid where the liquid from
screening operation would be recycled to quench. The glass cullet was assumed to be
saturated at 30 °C when loaded in the drying bin. The inlet air was assumed to be water
saturated at 15.5 °C with the cullet carryover to drying air assumed to be 0.1 percent. Air
would be passed through cullet bins to remove 99 percent of moisture from the cullet. Outlet
air would be water saturated at 30 °C after contacting cullet. Water would be condensed
from the outlet air and the air would be sent to offgas treatment.

Cullet transfer to sulfur processing would require 7.16 kilogram of air per kilogram solid to
fluidize the cullet. The cyclone was assumed to recover 99.999 percent of fluidized cullet
for cask loading with the air from the cyclone sent through filters in offgas treatment. Glass
rework of off-specification material would be processed through a separate cyclone/roll
crusher/catch tank to prepare a 20 wt% solid slurry which would be recycled to the LIW
melter. Glass in the sulfur product mixture was assumed to be 67 wt% oxides and 33 wt%
sulfur (60/40 by percent volume). The glass/sulfur molten stream recycle from molten vault
to vault surge tank would aid in control of vault surge tank temperature. Oligimer and
Dicyclopentadiene each would constitute 2.5 vol% of sulfur feed stream.
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The sulfur polymer cement would be composed principally of elemental sulfur with additions
of plasticizing agents to inhibit crystal growth and to control polymerization and viscosity.

Di8.2 LOW-LEVEIL, WASTE MELTER OFFGAS PROCESSING

Low-level waste melter offgas would be sequentially pmcessed through the following steps to
remove condensables and solid carryover: water quenching (75 °C), Venturi
scrubber/separator (75 °C) processing, demisting, and HEPA. filtering. Overall separatmn of
gas from condensed phases achieved by these processing steps was assumed to be 99.999+
percent solid oxide removal, 100 percent Hg removal, 50 percent NH, removal, 100 percent
TcO, removal, with conversion to TcO,(aq), and 99+ percent water removal. Condensed
stream recycle would send the solid slurry to the LLW pretreatment evaporator and the liquid
to the HL'W pretreatment evaporator. Remaining offgas would be sent to SO, removal/NOx
destruction processing.

D18.3 SO, REMOVAL AND SULFUR RECOVERY

Gas from melter offgas processing would undergo SO, removal by adsorption on CuO beds
before NOx destruction would take place as described in the next section. The SO, would be
desorbed, converted to H,S, and then sent to Claus units for sulfur recovery. The CuO bed
was assumed to have an operating temperature of 400 °C with 90 percent absorption of SO,
by the reaction:

SO, + 0.5 O, + CuO = CuSO,

A 10 percent excess O, feed was assumed along with 100 percent excess CuQ in bed. The
NH; cracker that supplies H, for bed desorption of SO, was assumed to have a 99 percent
cracking efficiency of NH,, where no excess NH, beyond stoichiometric H, requirement was
assumed. The CuO bed operation for SO, desorption was assumed to have a 100 percent
conversion for the following reactions:

CuSO, + 2 H, = 80, + 2H,0 + Cu
3H, + SO, = H,S + 2 H,0

The CuQ bed regeneration was assumed 100 percent regeneration of Cu to CuO per reaction:
Cu+ 050, =CuO

The air for regeneration was based on three times the stoichiometric O, requirement.

D-41



WHC-SD-WM-EV-100 Rev. 0 .

The sulfur recovery process would mix the H,S gas mixture from SO, desorption with air
and heats the mixture to 800 °C where the following reactions achieve 100 percent H,S

conversion:

2HS + 0, =28 + 2H,0 (60 percent H,S conversion)
HS + 1.5 0, = SO, + H,O (40 perceat H,S conversion)

The remaining gas mixture would be cooled to 300 °C and sent through two Claus units in
series with Jiquid sulfur dropout before and after each Claus unit. Each Claus unit achieves

95 percent conversion of H,S to sulfur by the reaction:
2HS +80,=38 +2H,0

A 100 percent separation efficiency was assumed for sulfur removal from gas.

D18.4 NOx DESTRUCTION FROCESSING

The reaction conditions for NOx destruction was assumed to have an operating temperature .
of 500 °C with no excess NH,. The process was modeled by the following reactions
assuming 99 percent conversion:

NO + 0.5 0, = NO2
3 NO, + 4 NH, = 3.5 N, + 6 H;0. o

D18.5 OFFGAS TREATMENT SYSTEM

A set of HEPA filters (99.95 percent fines removal) would treat offgas from the following
portions of the flowsheet before gas would be sent to the stack: plasma arc calciner (Stream
1543, HLW process sheet 35A and B of Figure C-1), salt grout process (Stream 15, grout
process sheet 1 of Figure C-3), LLW melter offgas (Stream 907, LLW process sheet 9 of
Figure C-2), HLW melter offgas (Streams 1371 and 1374, HL W process sheet 31 of

Figure C-1). '

\

L




Po13505. 3308 sp-wEv-100 Rev. 0

D19.0 LOW-LEVEL WASTE STREAM GROUT TREATMENT
(LOW-LEVEL WASTE OPTION B)

D19.1 CHROMIUM REDUCTION

To address the issues of chrominm reduction and removal (see discussion in Section 4.7.5),
the ESP flowsheet calculations included a grout product calculation with and without a prior
chromium reduction and removal process. Based on the CLEAN flowsheet (Swanson 1993),
a 1.5M NH,OH reductant would be used to reduce soluble Cr(+6) to insoluble Cr(+3). The
proposed reaction was as follows:

Cr*$ + 3 NH,OH + 60H" = 1.5N,[gas] + 6 B,0 + Cr*¥[solid] + 30H- [solid]

where all species above would be in solution unless denoted otherwise. Since the flowsheet
mass balance calculations did not distinguish between the two different valence states of
chromium, it was assumed that all chromium to this reduction step is Cr™*°.

The reaction extent was assumed to achieve 99 percent Cr reduction. A subsequent ventmg
step would be included to allow for separation of evolved nitrogen gas. :

Insoluble chromium would be removed after this reduction step by a centrifuge system and
sent to a separate waste processing step. Approximately 90 percent of the centrate

(7M NaOH) would be recycled to the sodium hydroxide leach tank (sheet 8, TK-31) to
achieve 4M NaOH in the leaching tank. The remainder of the centrate would feed the salt
grout LLW process.

D19.2 SALT GROUT

The concept for the salt grout process is to mix a waste slurry with cementitious materials to
form a grout that can be pumped into removable tubes placed retrievably onsite in
underground concrete vaults (5,300 m® volume). The grout formulation is 1,100 grams dry
mix per 1 liter waste. The dry mix used in the grout flowsheet consists of 40 wt%
limestone, 28 wt% fly ash, 28 wt% slag, and 4 wt% Portland cement (Hendrickson 1992 and
Serny et al. 1989). Grout formulations to date have been limited to 3M total nitrate and
nitrite in the feed along with a 5M sodium content. These two constraints are present in the
grout flowsheet. Further discussion of grout formulation issues is provided in Section 4.7.3.
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D20.0 SODIUM HYDROXIDE RECYCLING

The sodium hydroxide slurry produced in the caicination operation would be concentrated by
evaporation (sheet 35, EV-OH) to 7M sodium hydroxide, which can be recycled to meet
sodium hydroxide dissolution process needs and thereby minimize LLW disposal volume.

To eliminate chromium from recycled sodium hydroxide, soluble Cr(VI) is reduced to
insoluble Cr(Ill) with hydroxylamine. After solid-liquid separation, approximately

90 percent of this sodium hydroxide stream must be recycled to meet flowsheet requirements
for sodium hydroxide (e.g., the sodium hydroxide leach step of the solid dissolution -
operation)., The remaining portion of the sodium hydroxide slurry is incorporated into a
LLW form for disposal.

In the Extensive Separations base case (see Table A-1), a fraction of the sodium hydroxide
product from the LLW calciner would be recycled without further treatment. The recycle
stream contains part of the solids that were formed in the calciner but which had previously
been decontaminated to NRC Class A levels. To determine the effect of not recycling these
solids on the quantity of HLLW glass, a centrifuge was placed downstream from the calciner
to remove 99.9 percent of the solids. The net resuit of the calculation (see Table A-2), is to
greatly reduce the volume of HLW glass by reducing the volume of solids including the
volume limiting P,y that had come from the recycled sodium hydroxide.
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D21.0 NITRIC ACID RECYCLING

Acidic evaporator overheads (from HLW treatment, strontium ion exchange, and acidic LLW
treatment) are contacted with NOx streams (from denitration and calcination steps) with the '
addition of hydrogen peroxide and air to absorb and convert NOx to nitric acid. Conversion
of 80 percent NOx to acid is accomplished by oxidation by oxygen.

2 NO + 1.5 0, = 2 HNO, + H0.
2 NO, + .5 0, = 2 HNG, + H,0.
"The remaining 20 percent of the NOx is oxidized by hydrogen peroxide.
H,0, + NO = NO, + H,0.
H,0, + 2 NO, = 2 HNO,.

The resulting dilute acid liguid is concentrated by acid fractionation to recover 99.5 percent
of the nitric acid as 12M HNO,. The weak acid overhead is used as water recycle.
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D22.0 WATER RECYCLING

Water from the numerous evaporators throughout the flowsheet would uitimately be routed to
wash water tank TK-145, sheet 26. The dilution water requirements of the various
separations processes would be supplied from this wash water tank.
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D23.0 CLEAN SALT PROCESS

The clean salt process (CSP) is an optional process shown in Figure 4-2. The results of the
preliminary assessment of the clean salt process documented in the Clean Salr Integrated
Flow Sheet (Lunsford 1994), estimate that the process has the potential to reduce the LLW
volume by 90 percent. The primary salts produced by the process are sodium nitrate and
aluminum nitrate. It is estimated that a total of 65,000 to 75,000 metric tons of sodium
nitrate and 1,800 to 3,200 metric tons of aluminum nitrate will be produced by CSP
(Herting 1993, Lunsford 1994). The salts are expected to be extracted and decontaminated
to very low levels of radioactivity.  The primary constituent of concern is cesium-137. The
degrees to which these salts are decontaminated is dependent upon the design and operations
of the CSP. Varying levels of decontamination can be achieved by increasing the number of
recrystallization stages applied to the waste steam. Current efforts indicate that CSP is a
viable method to achieve volume reduction, and therefore provide significant cost savings,

especially in the LLW stream.

A number of potential disposition options for the product material have been evaluated, and
the issues arising from the regulatory framework that affect each disposition option have been

defined (Herting 1995).
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FACILITY LAYOUTS
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APPENDIX E

FACILITY LAYOUTS

This appendix includes the following facility layouts.

Figure E-1. Extensive Separations Pretreatment and High-Level Waste Treatment
Facility Layout.

Figure E-2. Low-Level Waste Vitrification Facility Layout.

Figure E-3. Low-Level Waste Grout Facility Layout.

Figure E-4. Cesium and Strontium Cut-Up Cell Layout.

Figures E-1 through E-4 provide facility layouts for the integrated extensive separations
pretreatment and high-level waste vitrification treatment facility, low-level waste vitrification
treatment facility, low-level waste grout treatment facility, and cesium and strontium capsule

pretreatment, disassembly, and metathesis cell, respectively. The equipment lists for these
facilities/cell are in Appendix B. '
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Figure E-1.

Extensive Separations Pretreatment
and High-Level Waste Treaiment Facility
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Figure E-1. Extensive Separalions Pretreaiment
and High-Level Wasle Treatment Facility
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Figure E-2. Low-Level Waste Vitrification

Facility Layout (sheet 1 of 10).
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Figure E-2, Low-Level Waste Vilriﬁ'cation
Facility Layout (sheet 3 of 10).

e
Go
[—t- r-v- r—'— r—-—
W WiF:
LI L
HD OO0 NG
itk [
NI lGR
154 Tt Faod
s a4 !
BiITRE f
LTRLEATEH smid =55
rd
VIONIA Ry 1N {0IPCHT IS : e .
. .
B
/’li —-%
WM 1D
et e 3 G
: ek || T
W
wmie vl

iIn
nsa

(R o st FrAR RAITRIL
1 Al [N | HaH MG EOUIR T 58
(EA oy ey L. 1
w\-/a'aml 18 waph g O O o O l m;:m“

By
e FRITE Y ALSTIE RN )
L < waiuilnoet W3 KiHe S22 QM FUNCR M _4%
Kald FEEDA. WOVGM TIED(R 13112
& SN TSR i ]

Toumrs{nt -
KLU PPN

s
L [ oeimssasiion caoins 4

GIELS IRANRT 1812

L _@mm i i 7 .

A L .
- U 15-R1 122501 €52 17001 (RO A
. lenls"m ms% sacrb “we é .

PLAN YIEW @ 12.6m

DAlLr MINIAH

anm? + - " waTp or
R EEEEER
I = =
1 | I N | — xr
1 by —— ey — = ] MCEITY W9 TI0N D T T
e S5 0 il - RO EE-Q,TgA—éi rzl
X . EII CWHIY] Ivm;_‘_ b E-19/E-20F== 3 T



o~

B T ey

Hn

owmri

I.—— L
il BOW i

B ;

BEQIERN AriireIkg caR
[{R1:¢]

EcHAGE SECONDARY § 1 IRATION
& S1aCh WOWETDAIKG AFE A

==
1 e |
==

CEHEIREEL Sublonivg LR
[LETCY]

WHC-SD-WM-EV-100 Rev. 0

Figure E-2. Low-Level Waste Vitrification

Facility Layout {sheet 4 of 10).
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. Figure E-2. Low-Level Waste Vitrification
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Figure E-2. Low-Level Wasle Vitrification
Facility Layout (sheet 6 of 10).
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Figure E-2. Low-Level Waste Vilrif';calion
Facility Layout (sheet 8 of 10).
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Figure E-2. Low-Level Waste Vilrif':cation
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APPENDIX F

BACKUP TABLES

The tables in this appendix provide backup information for the data tables in Section 9.0,
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Table F-1. Backup to Table 9-2. Unit Process: Operating Personnel Requirements

LILW vitrification 15 160 2,400 4.3E+06
HLW vitrification 15 160 2,400 4.3E+06
Indirect staffing 19 29 551 1.0E+06
Pretreatment start-up 1.5 626 939 1.76+06
1LLW vitrification start-up 1.5 157 236 4.3E+05
HLW start-up 1.5 157 236 4,3E-+05
Pretreatment decontamination and
decommissioning 2 626 1,252 2.3E+06
LLW vitrification decontamination and
decommissioning 2 157 314 5.7E+05
HLW vitrification decontamination and
decommissioning 2 157 314 5.7E+05
HL'W monitoring and maintenance 12 10 120 2.2E+05
HLW transportation - 30 30 5.4E+04
Total 3.3E+07
Note:

HLW = high-level waste
LILW = Jlow-level waste

All staff hours are based on a staff-year of 1,812 houss.
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Table F-1A. Baclcup to Table 9-2 Unit Process Operatmg Personnel Reqmrements (Staff Hours)

. 7E+07 -

Extenswe aratloﬁs

LLW vitrification 4,348,800 1 4.3E+06

HLW vitrification 4,348,800 4.3B4-06

Indirect staffing 249,603 249,603 249,603 249,603 1.0E+-06

Pretreatment start-up 1,701,468 1.7E+-06

LLW vitrification start-up 426,726 4.3B+05

HLW start-up 426,726 4.3B+05

Pretreatment decontamination

and decommissioning 2,268,624 2.3B4-06

LLW vitrification

decontamination and

decommissioning 568,968 5.7B+4+05

HLW decontamination and

decommissioning 568,968 3.7E+05

HLW monitoring and

maintenance 217,440 2.2B4+05

HLW transportation 54,360| 5.4E+04
Total 2.1E4+07 5.6E4+06 2.5E+05 5.8B+06 5.4E+04| 3.3E+07

Notes:

HLW = high-level waste
LLW = low-level waste
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Table E-2.

Pretwatment

Backup to Table 9-3. Operatlng Personnel Reqmrements (Staff Hourlewrs)

61%
LLW vitrification 52 10 98 160 33% 6% 61%
HLW vitrification 52 10 98 160 33% 6% 61%
Total 306 60 574 940 98% 19% 183%
Notes:

HLW = high-level waste
LLW = low-level waste

Total staffing of 940 was based on an estimate by K. D. Boomer.

“WM-3S-DHM
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Table F-2A. Backup to Table 9-3. Operating Personnel Requirements
(Staff-Hours./Year)

S R %g o T PR ﬂ%%&%@? T
;i % e S R :, S 5 %‘* s S SRS ; '*-_'_:5":'\:'_;_\, \}%’Sﬁ& R R 3%
L e e .aaﬁﬁggm %}%ﬁ%@%@%
Extensive separations 1.6E+07 1.1IE+06 1.7E+07
Low-level waste vitrification 4.1E+06 2.7E+05 4.3E+06
High-level waste vitrification 4.1E+06 2.7E+05 4.3E+06
Indirect staffing® 1.0E+06 1.0E+-06
Pretreatment start-up 1.6E+06 1.1E+05 1.7E+06
Low-level waste vitrification start-up 4.0E+05 1.4E4+05 5.4E+05
High-level waste start-up 4.0E+05 2. 7TE+04 4.3E+05
Pretreatment decontamination and
decommissioning 2.1E+06 1.5E+05 2.3E+06
Low-level waste vitrification
decontamination and decommissioning 5.3E+05 3.6E+04 5.7E+05
High-level waste decontamination and
decommissioning S.3E+05 3.6E+04 5.7E+05
High-level waste monitoring and
maintenance® , 4.3E+04 1.7E+05 2.2E+05
High-level waste transportation* 3.9E+-04 1.5E+04 5.4E+04

Total . 3.0E+07 3.3E+06 3.3E4+07
Notes:

'All exempt and bargaining unit employees are assumed to be radiation workers. All nonexempt
employees are nonradiation workers.

For indirect staffing, it was assumed that all workers would be nonexempt employees.

*For monitoring and maintenance, it was assumed that exempt employees would be 10 percent,
bargaining unit employees would be 10 perceat, and nonexempt employees would be 80 perceat.

“For high-level waste transportation, it was assumed that exempt employees would be
36 percent, bargaining unit employees would be 36 percent, and nonexempt employees would be
28 perceat.
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Table F-3A. Backup to Table 9-7. Transportation in Support of

Processing’.

Glass former 354,814
Bulk frit | 52 949,937
Nitric acid 4,200
Sodium hydroxide 26,000
Sodium nitrite 54
Flocculent : 85
Glycolic acid 3,500
Decontamination chemicals 5,300
Ammonia 8,800
Kerosene 57,800
Sulfur 130,000
Dicyclopentadiene (DCPD) 3,400
Oligomer 3,400

Total 532,551 1,304,751
Notes:

Information is taken from Table 9-4 in the Tri-Party Agreement Alternative
Engineering Data Package for the Tank Waste Remediation System Environmensal
Impact Staternent (Slaathaug 1995).

Slaathaug, E. J., 1995, Tri-Party Agreement Alternative Engineering Data Package
Jfor the Tank Waste Remediation System Environmental Impact Statemen,
WHC-SD-WM-EV-104, Rev, 0, Westingbouse Hanford Company, Richland,
‘Washington.

F-8




, ” ‘2 048 metric tons -per tram’
Train 637 102 metric tons per car’
Truck 513 4,910 cubic meters*
Notes

! Assumes jon exchange media will be delivered by truck and all other materials will be delivered by
train.

Ynformation is taken from Table 9-2 and 9-7 in the Tri-Party Agreemen: Alternative Engineering Data
Package for the Tank Waste Remediation System Environmental Impact Statement, (Slasthaug 1995).

IMetric tons of cold chemicals.

‘Jon exchange mediu.

Slaathaug, E. J., 1995, Tri-Party Agreement Alternative Engineering Data Package for the Tank Waste
Remediation System Environmental Impact Statement, WHC-SD-WM-EV-104, Rev. 0, Westinghouse
Hanford Company, Richland, Washington.,
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Table P-4, Backup to Tables 9-8 and 9-9. Construction Personnet Reqmrements (Staff-Hours)

Demgn and engineering 7,924,000 1,822,000 2,135,000 1,916,000 13 797 000
Construction
Radiation worker 0 0 0 0 -0
Nonradiation construction worker 17,012,000 4,559,000 3,984,000 3,737,000 129,292,000
Supervision 4,953,000 1,118,000 1,335,000 1,197,000 | 8,603,000
Total 29,889,000 7,499,000 7,454,000 6,850,000 51,692,000
Notes:

HLW = highevel waste
LLW = low-leve! waste

'Low-level wasts vitrification (low source), Option 2A.

High-leve! waste vitrification facility is combined with extensive pretreatment.

“INM-dS-OHM
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Table F 6A Backup to Table 9 10 Construchon Resource Reqmrements

‘S.tr‘uc.tur;l ijackﬁ]l (m?) =

Excavation (mc) 350,000] 71,300  770,600| 81,600 436,000 83,000 1,792,800

Clear and grubbing (m) 1,498,100 54,660 10,400 1,563,160

Concrete (m®) 27,750] 19,300 186,200 33,520 138,400 37,400 442.570

Carbon steel (metric ton) 15,713 7,011 67,632 12,855 16,200 12,391} 131,802
Reinforcing bar 1,685 3,433 36,671 6,939 7,570 56,298
Piping 1,890 22 1,839 112 465 4,328
Bquipment 7,526 694 2,399 359 465 11,443
Structural steel 3,864 2,528 23,502 4,833 16,200 3,301 54,228
Misc @ 5% 748 334 3,221 612 590 5,505

Stainless steel (metric ton) 1,776 0 10,508 1,530 0 3,157 16,971
Piping 473 2,470 243 835 4,021
Equipment 1,218 5,105 550 1,452 8,325
Wall boxes 821 349 440 1,610
Liner plate 1,612 315 280 2,207
Misc. at 5% 85 500 73 150 808

0 A%y QOT-ASWAM-ASTHAY "GROCY G7
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Table F-6A. Backup to Table 9-10. Construction Resource Requirements.

Hastelloy 0 0 1,344 396 0 97 1,837
Piping 50 19 53 122
Equipment 1,214 336 13 1,563
Wall boxes 16 22 26 64
Misc. @ 5% 64 19 5 88

Notes:

HLW = high-level waste
LLW = low leve! waste

m® = square meters
m® = cubic meters

0 "A3d 0OT-AT-WM-US-OHM -
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Table F-6B. Backup to Table 9-10. Construction Resource Requirements.

Surface committed temporarily (hectares/acres) 125 309
Surface committed permanently (hectares/acres) 12 30
Clearing and Grubbing Area (acres) 309
Excavation
Total excavation {cubic yards [yd*]) 2,344,894
Total excavation (cubic meters [m®]) : 1,792,800
Excavation for buildings
0.00 to - 35.0 0 (yd 1,887,732

haul ¢to waste pile 1,233,005

haul to stockpile 654,727
Elevation -35 to -50 (yd®) (hauled to stockpile) 457,162
Structural backfill (must match cubic yards to stockpile)

1,111,889

Concrete Total (m*) 442,570
Steel Total (metric tons) 150,61
Total concrete guantity (m®) (includes concrete for facilities that will

not be contaminated) 442 570

Concrete associated with facilities that are not expected to be contaminated () 429,714

Total concrete expected to be contaminated (m?) 12,856
Total Steel Quantities (metric tons)

Carbon Steel  Total: 131,802 Contaminated: 4,644 tons. Uncontaminated: 127,158
Stainless Total: 16,971 Contaminated: 12,916 tons. Uncontaminated: 4,055
Hastl/Incnl Total: _1,837 Contaminated: 1,837 tons. Uncontaminated: 0

Total: 150,610

F-13
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Table F-6C. Backup to Table 9-10. Construcnon Resource Reqmremems

Water (cubic meters [m’]) 48
Energy
Electrical (gigawatt hours) 82.5
Propane (m?*) 0
Diesel fuel (liters) , 2.6E+07
Gasoline (liters) ' 9.6E+06
Materials
Concrete (m*) 4.43E+05
Steel (metric tons)
Carbon Steel 1.32E+05
Stainless Steel 1.70E+04
Hastelloy/Incnl 1.84E+03
Excavation (m®) 1.79E+06
Riprap (m? : 0
Structural backfill (m®) 8.50E+05
Total contaminated material (m®) 6.00E+03

F-14
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Table F-7. Backup for Table 9-11. Nonmdiologi&l Construction Emission.
Summary of PM10 Fugmve Emissions in Metric Tons.

WM:-W

uﬁum SRGEEE
3 W@S&\% .""-‘é‘-x

7.82
11.79
Construction Site Excavation*
Unpaved road traffic® 348
Scraper unloading® 5
Dozer grading’ 13.74
Wind erosion (storage and waste files)* 113.08
Aggregate Borrow Pit Excavation’
Dump truck loading, truck unloading, crusher 3.51
loading® 4,1
Unpaved road traffic!!
Batch Plant Operation
Dump truck unloading™ see above
Batch plant operation® 22
Wind erosion (aggregate and sand pile)™ 0.28
Paved road traffic 213.8
Unpaved road traffic' 1.84
Low-level waste vaults 284.12
Total 1,029.08
Notes:
ER = emission rate EF emission factor
f = foot/feet fi* = square feet
f* = cubic feet g = gams
k= hour in. = inch
kg = kilogram km = kilometer
Ib = pound m = meler
m = cubic meters PM =, particulate matter
sec = seconds yd = yard
yd* = cubic yard yr = Year

'Emission sources would include dust from the clearing and grubbing by bulldozer and travel by dump
truck on & paved road to dump collected vegetation.

lAssuming this operation is the same as soil grading, the ER, which factors in the silt and moisture
content is estimated at 1.2g/sec, The time estimate for clearing and grubbing is 1.2g/sec x 1,810 x 3,600
sec/h = 7.82E4-06g (7.82 metric tons),

F-15
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Table F-7. Backup for Table 9-11. Nonradiological Construction Emission.
Summary of PM10 Fugitive Emissions in Metric Tons.

Notes: (continued)

>The particiulate emission rate, or PM 10 factor caused by traffic on paved roads is estimated at EF =
236g/km = EF. The total emission because of paved roads is as follows: 235g/km x 5 miles/trip X
6,237 x 1.609 kms/mile = 1.179E+07g (11.79 metric tous).

*Excavation would be done with push loaded scrapers. Once filled, the scrapers are assumed to travel
2,000 ft on a gravel road before dumping. A dozer with a vibratory roller would grade and compact the
dumped soil. Scrapers also would be used for backfill operations. Emission sources would inciude the
following: vehicular travel on unpaved roads, scraper unioading, dozer grading, and wind erosion of
storage pits. ,

The EF for travel on unpaved roads is calculated to be EF = 657g/km. It is assumed that a scraper
would travel an average of 2,000 ft from the excavation pit to storage and waste piles and that it would
take 100 fi for the scraper to fill its bowl and another 100 ft for the scraper to get to the road leading to
the storage pile. Thus a one-way trip would be spproximately 2,200 ft (0.6706 km). To complete the
excavation, the number of one-way trips required would be 268,000. For the beckfill operatioa, 127,100
one-way trips are required. The PM10 emission is as follows: 657g/km x 0.6706 km/trip x 2 x
(268,000 + 127,100) trips = 3.48E+08g (348 metric tons).

%This is a transfer operation where particulate emissions would be affected by the particle size, mean
wind speed, moisture content, the quantity of soil handled, etc.

The amount of soil unloaded by scraper would be equal to the soil excavated (2,344,894 yd’) and the soil
used for backfill operation (1,111,889 yd®), that is 3,456,783 yd'.

The conversion from yd® of soil to kilograms is based on a soil density of 108 Ibs per cubic foot (f’) and
is as follows: 3,456,783 yd® x 108 lbs per ft* x 27 ft* per yd x 0.4536 kilograms (kg) per lb =
4.572E+09 kg.

The PM emissions from scraper unioading are estimated as follows:
E = (.35)(C.0016)(4.572E+09(3.431652879)/(1.764118534) = 5.0E+06 g (5.0 metric tons).

TPM 10 emissions also would be created during dozer grading of the storage and waste piles. The
particulate emission rate would be a function of the silt content of the soil and the percent moisture
content. The ER is calculated as 1.2 g/sec.

It is estimated that grading for the storage and waste piles would take approximately 3,180 hours. The
PM 10 emissions for pile grading would be as follows: Pile grading emissions = 1.2 grams per socond x
3,180h x 3,600 sec/h = 1.374E+07 (13.74 metric tons). .

'Storage and waste piles would be continuously active. The total suspended particulates caused by wind
erosion of contiguously active piles would be a function of the percent silt in the aggregate, the number
of days with precipitation above 0.01 in. during a year, and the fraction of time the wind is above 5.4
m/sec at the mean pile beight. Using parameters spplicable for the Hanford Site and Extensive
Pretreatment alternative specifics, the EF is calculated to be: EF = 0.060 grams per o’ per day.

F-16
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Table F-7. Backup for Table 9-11. Nonradiological Construction Emission.
Summary of PM10 Fugitive Emissions in Metric Tons.

Notes: (continued)

The storage pile arca is estimated at 23 acres with & surface area of 1,002,000 ft* and about 30 ft high.
The pite would be assumed to exist for a 2-year period. Assuming that the fraction of total suspended
particulates that is PM10 is 50 perceat, the tonnage of PM10 particulate is calculated as follows:

PM10 = 0.060 gr/(m® day) x 1,002,000 fi* x 2 yrs x 365 days/yr x 0.5 = 2.194E+07 g (21.94 metric
tons),

Excavation would be done with a front end load that excavates s0il and loads it into & ump truck. The
dump truck would travel 500 ft to & crushers and dump the load. Another front end loader would feed
the crusher which would produce aggregate and reject material. Both materials, now wet, would be
moved on a separate conveyor belt to form separate storage piles. A front end ieader would pick up the
reject material and put it into & dump truck which returns it to the borrow pit. A front end loader would
pick up the crushed material and put it into & dump truck which would travel 5 miles over paved roads to
the batch plant, located on the construction site, and dump the load. Emission sources include material
transfers and unpaved road travel. No emissions are assumed to be gencrated at the conveyor belt since
all materials are wet.

Transfer operations include the following: unprocessed aggregate from a front end loader to a dump
truck, dumping, feeding material into the crusher, loading processed aggregate and reject into dump truck
with front end loaders, and dumping. Emissions are calculated as follows:

Mass of material excavated is 486,510 y& x 108 Ibs/ft® x 27‘ft’lyd’ x 0.4536 kg/ib x 5 = 3.224+09 kgs.
The emissions are thea calculated as follows:

E = {0.35) x (0.0016) x (3.22E+09) x (3.431652879)/(1.764118534) = 3.51E+06 g (3.5] metric tons).
“Based on the model used, the EF would be 659 g/kin. The EF would be used to calcuiate the total
emissions for the 16,000 round trips required to excavate the quantity of aggregate, Arn additional 4,600
round trips would be required to dump the reject back into the borrow pit. Once loaded, the dump truck
would carry the excavated raw aggregate an average of 500 ft (.152 km) to the crusher. The same
distance is assumed fo truck the reject back to the pit.

2Jnpaved road emissions are calculated as follows: 659 g/km x 0.1524 km/trip 41000 = 4.]E+06 g
(4.1 metric tons.)

ZMaterial transfers have already been considered.
“Fugitive emissions from batch plant operations is estimated at 2,20E+01 metric tons.

“Wind erosion for aggregate and sand storage piles is estimated as follows: aggregate pile, 0.09 metric
tons (9.GE-02) sand pile, 0.19 metric tons {1.9E-01).

*Total emissions from aggregate transfer from the borrow pit to the batch plant is estimated at 213.8
metric tons (2.1E+02).

“Unpaved road emissions from concrete transfer to the construction site is estimated at 1.84 metric toas
(1.8E+00).
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Radlonucllde removal B
[Central facilities $638| $638
LLW vitrification $749( $308 $224] $24] $193] $151 $268 $1917
LLW disposal $14 $14 $1 $9 $n $190 $14 $248
HLW vitrification 36720 $320, $28| $25| $201 $157 $282 $1,685
HLW transportation - 83 $0 $2 $1 $6
HLW disposal $11 $491 $502
Total $4,837] $1,803 $392| $143|$1,132 $885| $190; $11] $846 $491| $10,730
Note:

D&D = decontamination and decommissioning

HLW = high-level waste

LLW = low-level waste

R&D = Research and Development

IStart-up and operation materials and supplies are allocated based on operation labor.

*Decontamination and decommissioning materials and supplies are allocated based on construction cost.

“NM-TS-OHM
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Table F-9. Backup to Table 9-18. Capltal Costs (1995 Dollars)

R
i

S e i ».a..}«.'fH s “%’%& -‘Q?Jm,“n g ey e
Labor 1,210,606,000 318 524, 000 2,678,586,000 272 903 000 | 2, 778 350 000
Materials and supplies 479,276,000 202,194,000 98,837,000 147,518,000 748,665,000
Bguipment 1,088,477,000 117,735,000 381,972,000 251,358,000 671,779,000
Total 2,778,359,000 p38,453,000 748,665,0000 671,779,000 | 4,837,256,000
Notes:

HLW = high-level waste
LLW = low-level waste

11 ow-level waste vitrification (low source), Option 2A.

High-level waste vitrification facility is combined with extensive pretreatment.

0 ‘A% QOT-AT-INM-dS-DHM
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Table F-10a. Backup to Table 9-19. Operating Cost Component (Millions of 1995 Dollars)
Extensive Pretreatment, Annual Consumables for Extensive Pretreatment with High-level
Vitrification Detached Low-Level Waste Vitrification—Option 2A. (2 sheets).

Glass Former A
B $1,000 57,500 $57,500,000
Felr $500 14 | $7,000
Li0? $5,000 2,100 $10,500,00
Si0? $40 287,000 $11,480,000
MgO $500 4,100 $2,050,000
Ca0 $60 4,100 $246,000
Nitric acid 50 percent (Mg) $160 465,000 $74,400,000
NaOH, 505 (Mg) $250 150,000 $37,500,000
Flocculant (Mg) $1,100 150 $165,000
Glycolic acid, 50 percent Mg) | =~ $1,740 7,700 $13,398,000
Oxalic acid (Mg) $860 11,900 $10,234,000
Ammonia (Mg) $350 9,240 $3,234,000
Ion exchange media (m®) $10,600 4,910 $52,046,000
FeSA (Mg) $660 4,720 $3,115,200
Aluminum nitrate (Mg) $460 112 $51,520
CMPO (Mg) $6,530 5 $32,650
TBP (Mg) $6,530 755 $4,930,150
NPH (Mg) $440 703 , $309,320
Sodium Carbonate (Mg) $170 180 $30,600
Crown ether (Mg) $6,530 284 $1,854,520
Formic acid, 96 percent (Mg) $1,210 1,470 $1,778,700
HF (Mg) $500 740 $370,000
Sodium oxalate (Mg) $500 20,900 $10,450,000
Sodium bicarbonate (Mg) $500 12,500 $6,250,000
Zinc nitrate (Mg) $500 47 $23,500
Na®* DTPA (Mg) $500 196 $98,000
APM (Mg) $500 10 $5,000
Hydroxylamine nitrate (Mg) $500 95 $47,500
DCPD (Mg) $150 4,480 $672,000
CPD (Mg) $150 4,480 $672,000
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Table F-10a. Backup to Table 9-19. Operating Cost Component (Millions of 1995 Dollars)
Extenslve Pretreatment Annual Consumables for Extensive Pretreatment with High-levcl

N RIS
'A\' 132 Y‘*&

R B % : :f.:m&oxms e Qa#um%..'%ﬁ-:-.ﬂ-.”w‘t o
Decontamination chemicals (Mg) " $401 14,000
Sulfur (Mg) $370 170,100 362,937,000
Grout powders (Mg) $100 0 30
Kerosene (Mg) $150 70,170 $10,525,500
Raw water (m’) $0.03{ 30,000,000 $900,000
Sanitary water (m*) $0.03 1,100,000 $33,000
Electricity (MWh) $30 16,600,000 $498,000,000
Subtotal $881,460,160
Solid waste (m?) $1,000 4,000 $4,000,000
Equipment (per year x 14 years) $28,000,000 14 $352,000,000
Vaults $5,000,000 38 $190,000,000
Canisters $10,000 448 $4,480,000
Containers $25,000 0 30
Overpacks $60,000 112 $6,720,000
Subtotal $597,200,00
Total $1,478,660, 160
Total minus equipment $1,086,660,160
Start-up costs (materials) $143,000,000
Decontamination and $1,132,000,000
decommmissioning (material)
Total $2,753,660,160
Total minus equipment $2,361,660,160
Notes: :

HLW = high-level waste

LLW = low-level waste

m’ = gubic meters

Mg = megagrams

Annual equipment purchase estimated by K. D. Boomer.
Pretreatment $ 9 million per year (size increase)

HLW vitrification = $ 2 million per year (melter)
LLW vitrification = § 16 million per year (melter)
Sub-total = $27 mm per year
Miscellaneous = 1_million ear

Total =  §28 million per year
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Table F-10B. Backup to Table 9-19. Operating Cost Component
: (Millions of 1995 Dollars).

-

Extensive separations 15 620

LLW vitrification 15 160 2,400 4.3E+06

HLW vitrification 15 160 2,400 4.3E+06

Indirect staffing 19 29 551 1.0E+06

Pretreatment start-up 1.5 626 939 1.7E+06

LIW vitrification start-up 1.5 157 236 4.3E+05

HILW start-up 1.5 157 236 4.3E+05

Pretreatment

decontamination and

decommissioning 2 626 1,252 2.3E+06

LLW vitrification

decontamination and

decommissioning 2 157 314 5.7TE+05

HLW decontamination and

decommissioning 2 157 314 5.7E+405

HIW monitoring and

maintenance 12 10 120 2.2E+05

HLW transportation - 30 30 5.4E+04
Total 3.3E+07

Notes:

HLW high-level waste

[

LLW

low-level waste

All staff hours are based on a staff-year of 1,812 hours.
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Table F-10C. Backup to Table 9-19. Operating Cost Component

HILW vitification 52 10 98 160 $16
Total 306 60 ' 574 940 895

HIW == high-level wasts
= Jow-level waste
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Table F-10D. Backup to Table 9-19. Operating Cost Component

I~:‘~.xté.ns1v;ﬁ ééiﬁamnons N T , $940
LLW vitrification $243
HLW vitrification $243
Indirect staffing! $33
Pretreatment start-up? $94
LLW vitrification start-up’ $24
HLW start-up’ $24
Pretreatment decontamination and decommissioning® $125
LLW vitrification decontamination and decommissioning® $32
HLW decontamination and decommissioning $32
HLW monitoring and maintenance® 4 $8
HLW transportation® $3

Total $1,803
Notes:

'For indirect staffing, it was assumed that all workers would be nonexempt.

The total start-up cost for each facility is arbitrarily set to the annual staffing requiremeats. These start-
up requirements have been set to 1 1/2 years of the annual. This leaves 1 1/2 years of staff cost ($95
million + $24 million + $24 million = $143 million) for start-up materials and supplies.

($63 million x 1.5 yrs = $95 million) ($16 million x 1.5 yrs = $24 million) ($16 million x 1.5 yrs =
$24 million).

IDecontamination and decommissioning for each facility is arbitrarily set equal to three years of staff cost
plus thirty percent of the total capital cost minus the contingency. The staffing requircments have becn
set to two years of the annual. This leaves one year of staff cost ($63 million + $16 million + $16
million = $95 million) pius thirty percent of the capital for material and supplies.

The total capital is equal to the capital plus a forty percent conﬁngency; therefore, the capital value to be
used for the decontamination and decommissioning cost for materials and supplies is equal to:
Capital $4,837 million per 140 percent = $3,455 million

The cost based upon the capital would be as follows: capital decontamination and decommissioning =
$3,455 million x 30 percent = $1,037 million. Thus, the total decontamination and decommissioning
cost for materials and supplies is set to $1,132 million.
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Table F-10D. Backup to Table 9-19. Operating Cost Component
(Millions of 1995 Dollars).

Notes (continued):

“For monitoring and maintenance, the following was assumed: exempt would be 10 percent, bargaining
unit 10 percent, and nonexempt 80 percent.

*For HLW transportation, the following was assumed: exempt would be 36 percent, bargaining unit 36
percent, and nonexempt 28 percent.

AH exempt and bargaining unit employees are assumed to be radiation workers. All nonexempt
employees are nonmadiation workers.
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Table F-11. Backup to Table 9-20. Overall Schedule.

Construction
Facility
. Configuration

Option Start Finish Study
Pretreatment + HLW vitrification {July 2001 December 2006 |page 114
Standalone LLW vitrification December 1997 |July 2005 page 63
Overall December 1997 |December 2006
Operation
Pretreatment January 2004 January 2018 pages 114, 33
HLW vitrification March 2005 March 2019 pages 114, 33
LLW vitrification September 2005 |September 2019 {pages 63, 33
Overall January 2004  |September 2019

Decontamination and decommissioning for all facilities is assumed to start after the
completion of process duration, that is, 5 years.

October 2019

October 2024

Monitoring and maintenance is for HL'W canisters.

Monitoring and maintenance is assumed to start with the completion of HLW vitrification,

Monitoring and maintenance is assumed to finish when the last multi-purpose canisters is

shipped to the repository.

Shipments to the repository start in 2035,

Based on discussions with K. D. Boomer, 1,000 canisters are assumed, 250 multi-purpose

canisters.

10 multi-purpose canisters would be transported per week (Slaathaug 1995, Table 9-7,

footnote 35).

Duration of shipments = 250 muilti-purpose canisters/10 = 25 weeks.

March 2019

September 2035

‘page 151

Research and Development

1995

2018

Notes:
HLW = high-level waste
LLW = low-level waste
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APPENDIX G
SITE LAYOUTS

This appendix includes the following figures:

Figure G-1. Disturbed Area.

Figure G-2. Temporary Facilities and Laydown Areas.
Figure G-3. Construction Aggregate Pit.

Site layouts for the Extensive Separations Pretreatment (ESP) alternative with Low-Level
Waste (LLW) vitrification treatment and optionally with LLW grout treatment are shown in
Section 8.0, Figures 8-2 and 8-2, respectively.

Figures G-1 through G-3, which are associated with the Tri-Party Agreement preferred
alternative (Slaathaug 1995), also provide the information required for the ESP alternative.
Figure G-1 shows the areas disturbed by construction and operation of the two facilities [i.e.,
pretreatment/LLW vitrification and high-level waste (HLW) vitrification]. Figure G-2
displays the temporary facilities and laydown areas associated with construction. Figure G-3
gives the location of the construction aggregate pit and the relative proximity of it to the
construction site.

Each facility provides most required process support equipment. Common utilities and cold
chemical areas prov1de common headers for services to support mdmdual systems in the
plants. Common services include the following:

Medium pressure steam (consumed) and condensate

Compressed air (instrument/plant air)

Cooling tower

Water (sanitary, process, demineralized, raw, and fire)

Sanitary sewer

Non-radioactive liquid waste processing

Cold chemicals bulk storage and make-up (including glass formers)
Bulk cold chemical building vent system

Oxygen

Electricity.

® & & 0 0 5 & 0 00

The medium pressure steam system provides consumed steam (e.g., steam jets) to the
facilities as 4 shared utility. The steam trap condensate collection systems are located in
individual facilities. Certain systems within individual processing plants require closed loop
steam (to minimize the amount of potentially radioactive material leaving the area). Steam is
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provided by packaged process steam generators located within each facility. The closed loop
process steam system is independent of the medium pressure steam system.

The compressed air system provides instrument air for pneumatically controlled components,
plant air for spargers, jets, and general maintenance use. Plant air is provided preferentially
to critical plant air users. This utility source is located in the Mechanical Utilities Building.

The cooling tower system removes heat from the normal processing operations of the cooling
water systems, and rejects the heat by evaporative cooling. It includes a cooling tower,
cooling tower water circulation pumps, inhibitor addition pump, and distribution piping.

Raw water is used for cooling tower make up. Bleedoff is routed to the 200 Area Treated
Effluent Disposal Facility.

The sanitary water system supplies water for domestic uses and for heating, ventilating and
air conditioning humidifiers; it is also the source for the process water system. The sanitary
water system consists of distribution piping installed in a loop around its users/facilities.

The process water system is the source water for low-pressure process water tanks and other
users in the separations, vitrification treatment facilities and annexes, the Bulk Cold
Chemical Building, the Waste Staging and Handling Facility, and demineralizer and other
users in the Mechanical Utilities Building. The process water system is the source for
chemical dilution water, priming for pumps, and equipment flushing.

Sanitary water, separated from the process water by a backflow preventer, is the source for
the process water system.

The nonradioactive liquid waste processing system receives, collects, stores, and disposes of
all nonradioactive liquid waste in a safe and environmentally acceptable manner. Chemically
contaminated liquid wastes are sufficiently neutralized prior to transfer to the 200 Area
Treated Effluent Disposal Facility. The nonradioactive liquid waste processing system
includes hold tanks, neutralization tanks, sumps, and pumps.

The cold chemicals bulk storage and make-up system includes all facilities required to
receive, store, prepare, and feed cold chemicals to process users. It includes storage tanks,
make-up tanks, feed tanks, sump tanks, and appurtenances, such as pumps, agitators,
heaters, and distribution facilities. Glass former bins and transport equipment are also a part
of this system.

The site will require approximately 120 MVA to support operations. A new power line will
be provided to the 200 Area. It will provide a new 230 KV power ]mc approximately 2-km
long to the TWRS Treatment Complex Switch Yard.

G-4

-,
.
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W.52.000 W.51.000 W.50,000 W.49,000 Figure G-2. Temporary Facilities and .
. _ Layout Areas.
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