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CHAPTER NINE 

HYPOTHESIS TESTING 

IKE ESTIMATION, HYPOTHFSIS TFSTING is one of the basic forms of 
statistical inference. This broad area of statistics usually culminates in 
an immediate decision, making it the more dynamic form of statistical 
inference. Testing is based on two complementary assumptions, or 

hypotheses, regarding unknown populations. Taking various forms, the most 
common hypotheses involve assumed levels for a population parameter. Later 
portions of this book describe other types of hypotheses that help to compare 
two or more populations or are concerned with properties such as the random­
ness of data, the manner in which two variables are related (if at all), or the 
shape of the population distribution. 

This chapter begins with hypothesis tests for the unknown value of the 
population mean. These procedures are useful for evaluating decisions involving 
two complementary actions when the unknown level of µ, is the pivotal factor. 
For example, the decision whether or not to repair equipment might depend on 
how much the mean reading deviates from some nominal figure. Statistical 
inferences are needed in such evaluations because µ, can be evaluated only 
indirectly from sample data . For this purpose the sample mean serves as the t~ 
statistic. Thus, repairs might be requested only if the computed level of X 
exceeds a specified level. 

Of course samples may give false readings of reality. The potential for such 
sampling error can be controlled but never eliminated. Sampling error is man­
aged differently in hypothesis testing than in estimating, where the major con­
cern is with precision and reliability. This control is achieved by establishing 
a decision rule that achieves some optimal balance among the probabilities 
for taking incorrect actions. For example, the incidence of unnecessary repairs 
must be kept small, while failure to make needed repairs must be avoided. 
Hypothesis testing procedures focus on such errors of commission and omission, 
which may be controlled by judicious determination of the decision rule or by 
selecting a sample large enough to keep the error probabilities acceptably small. 

• 
1 f , I ' '4 , .. 1 ' ~ f : 

To introduce hypothesis testing, we will consider a decision involving the popu­
lation mean. The sample mean X will serve as the test statistic. The following 
example illustrates the underlying concepts of hypothesis testing. A general 
procedure that may be applied in most testing situations is introduced later. 
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9-1 BASIC CONCEPTS OF HYPOTHESIS TESTING 

A mining engineer is studying ways to increase the production of metal from a 
large copper deposit. A substantial amount of copper-bearing ore is presently 
bypassed because its quality is too low for economical processing at current 
world prices. The engineer is interested in a new process based on bacterial 
leaching. This technique isolates key minerals in poor ores through a chemi­
cal reaction caused by strains of the bacterium Thiobacil/us. These microbes 
convert the iron in the ore from a ferrous form into ferric iron that then acts 
in oxidizing the insoluble copper sulfides present in the ore's pyrites. The pro­
cess culminates in collection of a liquid solution from which copper may be 
recovered. 

The effectiveness of bacterial leaching depends on the particular strain of 
bacteria used and the composition of the ore. Since there is little history of 
successful application, a statistical sampling study will be performed to deter­
mine whether bacterial leaching should be adopted on a major scale. A sample 
of 100 loads of ore will be removed from random coordinates throughout the 
unworkable deposit site and processed by a promising strain of bacteria at a test 
leaching dump. The final yield, in pounds of copper per ton of ore, will then be 
determined for each sample load. These data will represent the yields obtain­
able from bacterial leaching of the more than I 00 million tons of target ore. 

The success of large-scale bacterial leaching will depend on the level of the 
mean copper yieldµ that will ultimately be achieved from the entire deposit. On 
the basis of current prices and present processing costs, the break-even level has 
been established at 36 pounds of recoverable copper per ton of presently un­
workable ore. This quantity is the pivotal level for the statistical investigation. 

The Structure of a Hypothesis Test 
Statistical testing involves two complementary hypotheses. Here these are de­
fined in terms of levels for the unknown population mean µ. The engineer has 
established the following hypotheses: 

Null Hypothesis (process is uneconomical) 

H0 : µ < 36 lb/ton 

Altemath-e Hypothesis (process is economical) 

H1 : µ > 36 lb/ton 

Although the adjective "null" has historically been applied to the hypothesis 
representing no change, this designation is arbitrary. Most often, the null hy­
pothesis will be the one for which erroneous rejection is the more serious con­
sequence. For notational convenience, the null hypothesis is represented by H0 , 

and the opposite or alternative hypothesis by H 1• 

Hypothesis testing involves two complementary actions or choices. Our 
mining engineer must decide whether to adopt full-scale bacterial leaching or to 
abandon the process for now (and perhaps do further testing). These two ac­
tions may be expressed in terms of the foregoing hypotheses as 

Accept H0 (Abandon bacterial leaching for now) 
Reject H0 (Adopt bacterial leaching) 

(Rejecting the null hypothesis is the same as accepting the alternative, and ac-
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cepting H0 is tantamount to rejecting H 1 .) The engineer's choice will be based 
on the results of the sample investigation. 

The decision must be made without knowing which of the two hypotheses is 
true. A determination must be made whether the sample evidence tends to favor 
the null hypothesis or refute it. This will be based on the following 

TEST STATISTIC 

Sample mean copper yield X (lb/ton) 

A large level for X (say 50 lb/ton) will give support to the efficacy of bacterial 
leaching, whereas a small value (such as 10) will deny it. Some critical level 
must serve as the point of demarcation between adopting the process or aban­
doning it. 

After the sample data are obtained, the engineer will compute the above 
and apply the following 

DECISION RULE 

Accept H0 (ab~ndon bacterial leaching for now) 
if X < 40 lb/ton. 

Reject H0 (a~pt bacterial leaching) 
if X > 40. 

The pivotal value of 40 lb/ton serves as the critical value of the test statistic. It 
is sometimes convenient to portray the decision rule in terms of acceptance and 
rejection regions, as in the following : 

Accept H 0 Reject H0 

(Abandon bacterial leaching.) (Adopt bacterial leaching.) 
- ------- ------.&.-- --- ---------x 

40 

The critical value of X lies above the 36 lb/ton break-even level forµ that the 
engineer used to establish the hypotheses. The test statistic's critical value will 
ordinarily lie outside the range of the null hypothesis. This provides some lee­
way and reduces the chance that an atypical sample result will cause the wrong 
decision. 

At this point it may be helpful to summarize the structure of the mining 
engineer's investigation. Table 9-1 arranges the problem in terms of a decision 
table. There is a column for each of the decision-maker's two choices or acts 
and a row for the two uncertain population events, representing the truth or 
falsity of the null hypothesis . Notice that each act-event combination culmi­
nates in a particular outcome. Two of these are correct decisions: 

To accept H 0 when H 0 is true 
(abandon an uneconomical process). 

To reject H 0 when H 0 is false 
(adopt an economical process). 
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9-1 BASIC CONCEPTS OF HYPOTHESIS TESTING 

Table 9-1 Decision Table for Bactertal Leaching lllustratlon 

Acts 

Accept H 0 Reject H 0 

{Aban~on Process) (Ad~t Process) 
Events X ~40 X>40 

H0 True Correct Decision Type I Error 
(Process Uneconomical) (Abandon Uneconomical Process) (Adopt Uneconomical Process) 

µ. ~ 36 (= 11-o) Probability a 

H0 False Type II Error Correct Decision 
(Process Economical) (Abandon Economical Process) (Adopt Economical Process) 

µ. > 36 ( = µ.o) Probability {J 

Two other outcomes result in errors. These are: 

Type I Error: To reject H 0 when it is true 
(adopt an uneconomical process). 

Type II Error: To accept H 0 when it is false 
(abandon an economical process). 

Finding the Error Probabilities 
A major concern in hypothesis testing is controlling the incidence of the two 
kinds of errors. The degree of such control may be summarized by the error 
probabilities: 

a = Pr [type I error] = Pr [reject H 0 I H 0 true] 

f3 = Pr [type II error] = Pr [accept H 0 I H 0 false] 

Although both errors are undesirable, rejecting a true null hypothesis is typi­
cally the more significant. For this reason the type I error probability a is also 
referred to as the significance )eve.!: 

The sampling distribution of X may be assumed to be normally distributed 
with mean µ, and standard error ux = u / ./n. Appropriate parameters must 
be estaolished for the particular normal curve used in finding the error 
probabilities. 

Using the decision rule established earlier for the bacterial leaching study, 
we may evaluate the error probabilities. Under the null hypothesisµ,< 36, so a 
range of values applies. Any value 36 or less is permitted under H 0 , such as 
µ. = 12.3, µ, = 27.5, orµ,= 34.99. Probability evaluations are usually made for 
the worst case, whenµ, falls exactly at the H 0 limit, which is denoted by~- In 
the present illustration ~ = 36 lb/ton. In computing a it is assumed that 
µ. = µo. 

The mining engineer does not know the value for u any more than he knows 
µ., but he was able to arrive at a "ballpark" guess. A yield almost certain to be 
exceeded, I pound per ton (which is what would be expected by just washing 
the ore with water and processing the rinse waste) was subtracted from the 
present yield of higher-quality, conventionally processed ores-150 lb/ton. A 
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HYPOTHESIS TESTING 

range of 6 standard deviations was thereby established. Thus, for planning 
purposes he found 

u = 99.9th - .1st percentiles= 150 - 1 = 24_83 
6 6 

which for convenience was rounded to 25 lb/ton. (Keep in mind that the above 
is simply the best guess available for u, and any probability evaluations based 
on it may vary considerably from the truth. But some value must be used, and q 

can never be precisely known anyway until the entire d~it has been processed 
by bacteria.) Using this quantity, we have ux = 25/ -v'lOO = 2.5. 

We use the engineer's decision rule to compute the type I error probability 

a = Pr [reject H 0 I H 0 true] 

= Pr [.x > 40 Iµ = 36 ( = µo)l 

(
40 - 36) = 1 - ~ --- = 1 - .9452 = .0548 

2.5 

Thus, there is a better than 5% chance that the engineer would get a sample 
result so untypically great that he would adopt an uneconomical bacterial 
leaching program. (This is actually a worst-case figure, since when µ = ~ = 
'36, the adopted program would exactly break even; for any lower level, such as 
µ = 20, the chance of incorrect rejection of H 0 would be more remote.) 

This appears to be very good. But what about that other error, accepting H0 

when it is false? 
Similar computations provide type II error probabilities. There are many 

ways for the null hypothesis to be false-this will happen in the present illustra­
tion whenever the trueµ exceeds ~ - Suppose we assume thatµ= 42 lb/ton. 
We then have 

f3 = Pr [accept H 0 I H 0 false] 

= Pr [.x < 40 I µ = 421 

= ~(40 - 42) = .2119 
2.5 

There is a substantial probability that the engineer will get an untypically 
small level for X when indeed the bacterial leaching process would be quite 
economical. 

Figure 9-1 shows the two separate normal curves that apply for the type I 
and II error probabilities we have just computed. Notice that a is represented 
by an upper-tail area in the top curve, whereas f3 is represented by a lower-tail 
area in the bottom curve. 

Similar type II error probabilities could be obtained for other economical 
levels for population mean copper yield. Figure 9-2 shows several cases, includ­
ingµ= 50 (which gives f3 < .00001) andµ= 39 (giving f3 = .6554) . 

· ' · .. ,. Tthe, dilemma of ,hypothesis testing-achievipg ~ ,A9Feptable balance be­
'·.: twehn~ii •aod tfh-e -·s pcctrum,:o'Lpossible" ,{3's~ay,,.be1.r~0Jved by selecting an 

appropriate decision rule. And, as in statistical estimation, where increasing the 
sample size will provide greater precision and reliability, a larger n will reduce 
both the type I and type II error probabilities. 
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Sampling Distribu tion 
when H0 is True 

f3 = Pr[accept H 0 I H 0 false) 
= .2119 

Accept H0 

(Abandon process. ) 

9- 1 BASIC CONCEPTS OF HYPOTHESIS TESTING 

a = Pr[reject H 0 I H 0 true] 
= .0528 

42 
µ 

Sampl ing Distribution 
when H0 is False 

Reject H0 

(Adopt process.) __________ _._ __________ x 

40 
Critical Va lue 

Determining an Appropriate Decision Rule 
A new decision rule may be found simply by shifting the critical value for X to 
a new position. Two new decision rules for the bacterial leaching decision are 
illustrated in Figure 9-3 . 

In (a) the critical value has been reduced to 38.5 lb/ton. Notice under this 
rule that it will be more likely to reject a true H 0 (adopt an uneconomical 
process) with a= .1587. But there is less chance of accepting a false H 0 (aban­
doning an economical process) with fJ = .0808. In (b) the critical value for Xis 
at 41 lb/ton, with reverse changes providing a lower a (.0228) and a higher fJ 
(.3446) . 

Either of these rules might be an improvement over the original one. That 
will depend on the attitudes of the engineer and mining company management. 
The null hypothesis was formulated in such a way that the type I error is the 
more serious one of adopting an uneconomical bacterial leaching process. This 
is typical of statistical testing, where a target level (such as 5%) for the prob­
ability of this outcome is often prescribed in advance; that in turn establishes a 
unique critical value and decision rule. Unfortunately, a decision-maker must 
live with whatever {J's the chosen decision rule brings. As we have seen, when 
the engineer's critical value is 40 there will be a considerable chance that the 
bacterial leaching process will be abandoned when it might indeed be economi­
cal-perhaps considerably so. 

Choice of critical value is really a matter of deciding where to position the 
"fulcrum" so that a proper balance is achieved between a and the {J's. If none of 
the equilibria prove satisfactory, the decision-maker must improve the "lever­
age," which can be achieved only by increasing the sample size. 

The Effect of Sample Size 
Like precision and reliability in estimation, the type I and type II error prob­
abilities of hypothesis testing are competing ends, so that one cannot be im-
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39 

40 

45 

50 

Accept H0 

40 

proved except at the expense of the other. The only way to improve both a and 
fJ is to reduce potential sampling error by increasing the sample size. Figure 9-4 
shows how the mining engineer's situation improves when n is raised from 100 
to 200 while the original decision rule is retained. Notice that the normal curves 
cluster more tightly about the mean, with new levels of a= .0119 (when p. = 
µ,0 = 36) and fJ = .1292 (whenµ, = 42). 

Making the Decision 
: ,:J) ~:.P,r~t:ding discu:~s~?1:1, .~Ppli~s. entire~y t~ ~pe P,hpming stage of a hypothesis 
t esting study. At that time-before data are collected-the hypotheses are for­
mulated, the sample size is established (usually by budgetary considerations), 
and the decision rule is established (often being dictated by the chosen signifi• 
cance level a). The sample data are then collected. The actual decision is more 
or less automatic, depending on the computed level of the test statistic. 
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9-1 BASIC CONCEPTS OF HYPOTHESIS TESTING 

(a) 
H0 True (Uneconomical Process) 

36 
µ=/lo 

H 0 False 
(Economical Process) 

Accept H0 

(Aba ndon process.) 

42 
µ 

'Reject H0 

-(Adopt process.) ___________ _._ ________ _ __ x 

38.5 
Critical Value 

H0 True 

(b) 

42 
µ 
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Figure 9-3 Error 
Accept H0 Reject Ho probabilit ies as they 

(Abandon process.) (Adopt ,_.,._c) change with a shift In 
---- ----- -------'-"---'.:;..:;..:..:::_..:-:......--... _- _-_· ----'"-'~-x crit ical value 

41 
Critical Value 

We will conclude the bacterial leaching illustration by considering two hy­
pothetical scenarios that might result after the data are in. 

SCENARIO ONE. Suppose that the mean yield per ton from the 100 test loads 
brought to the leaching dump turns out to be X = 47.6 lb/ton. Since this 
quantity falls in the rejection region, the null hypothesis that µ, < 36 must be 
rejected; the sample results are statistically significant. The engineer concludes 
that large-scale bacterial leaching will be economical and recommends to man-

for bacterial 
leaching decision. 
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H0 True 

Accept H0 

for n = 200, a= .0119 

for n = 100, a = .0528 

H0 False 

42 
µ 

n = 200 

Reject H0 __________ _._ __________ x 

40 
Critical Value 

agement that it be adopted. The engineer takes comfort in the magnitude by 
which the computed mean exceeds the break-even level of 36 lb/ton. This quan­
tity exceeds that hypothetical level forµ by more than 4 times " x· 

SCENARIO TWO. Suppose instead that the resulting mean copper yield from 
the test batches is only X = 32.1 lb/ton. This value falls in the acceptance 
region, and the engineer concludes that bacterial leaching is not economical at 
this time. (Indeed, under the established decision rule the engineer would take 
the same action even if the computed X were much closer to the critical value 
of 40 lb/ton-say 38, or even 39.9.) In accepting H 0 the test results are found 
not to be statistically significant. This does not mean the findings are unimpor­
tant, only that H 0 cannot be rejected. The engineer realizes that there is a 
substantial probability that this decision is incorrect because µ might indeed be 
greater than the postulated break-even point. Unfortunately, there is no way to 
know. The case for bacterial leaching can always be reopened should conditions 
change, perhaps because of rising copper prices or development of an improved 
strain of bacteria. 

Formulating the Hypotheses 
As noted, H 0 is usually designated in such a way that the type I error is the 
most important one to avoid. Consider the following example. 
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9-1 BASIC CONCEPTS OF HYPOHESIS TESTING 

A design engineer for consumer products is evaluating a new battery substance based 
on different chemistry than is presently in use. It gives batteries a mean lifetime of 
approximately 100 hours. The new battery may last at least as long, on the average, 
as the present one--or it may die more rapidly. A sampling study will be used, and a 
decision whether or not to change to the new battery will be based on the observed 
mean time between failures (MTBF) of test cells composed under the new chemistry. 
Either of the following assumptions regarding the mean lifetime µ of the new battery 
might serve as the null hypothesis : 

µ :S 100 hours or µ ~ 100 hours 

Since the company wants to keep its reputation for innovation, the more serious 
error was judged to be keeping the present battery when the new one lasts longer. 
(Certainly it would be undesirable to introduce a new battery that doesn't have a 
longer life, but this was judged far less damaging.) Thus, the following designation 
was made: 

H 0 : µ ~ 100 hours (New battery is at least as good.) 

H 1 : µ < 100 hours (New battery has a shorter lifetime.) 

A decision rule based on X was established so that H 0 would be rejected for shorter 
computed MTBFs and accepted for longer ones: 

Reject H0 

(Keep present battery.) 
Accept H0 

(Change to new battery.) 
--------------'""'--.._-- --- ----------x 

99 

The test described in the battery example is a lower-tailed test, since the 
rejection region coincides with the lower tail of the normal curve for X that 
applies under the null hypothesis. The reversed rejection region in the bacterial 
leaching illustration indicates that an upper-tailed test applies in that applica­
tion. Some tests involve hypotheses in which the rejection region is split in two, 
with an intervening acceptance region. The following is an example of such a 
two-sided test. 

Packaging items for public consumption can be an exacting task because of regula­
tions or trade practices regarding labeling of the volume or weight of the contents. 
Too much ingredient is as much to be avoided as too little. Sampling is often used in 
quality-control investigations concerning weights and measures. Typically the null 
hypothesis takes the form that the labeled mean is being met exactly, with the oppo­
site alternative. For example, 

H0 : µ = 32 grams (Labeling specifications are met) 

H 1 : µ * 32 grams (Labeling specifications are violated) 

There are two ways for the null hypothesis to be untrue- if there is overfilling 
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(µ > 32 grams) or if there is underfilling (µ < 32 grams) . The following form is used 
for the decision rule: 

Reject H0 

(Remedy 
underfilling.) 

Accept H0 

(Leave alone.) 

Reject H0 

(Remedy 
overfilling.) 

----------~-------- -~----------x 
31.5 32.5 

Problems 
9-1 Suppose that copper prices have dropped so that the break-even level for the mean 

yield from bacterial leaching rises to 37 lb/ton. Answer the following: 
(a) Reformulate the engineer's hypotheses. 
(b) Using the critical value of 40, determine (1) the type I error probability a and 

(2) the type II error probability /3 when µ = 42. 
9-2 Suppose a mining engineer must decide whether to use a new steel alloy instead of 

the one presently used to reinforce the mineshaft linings. The null hypothesis is that 
the present bars are at least as strong as the new ones. He will either accept this 
assumption, retaining the present reinforcing bars, or reject it and replace them. 

State in words (a) the type I error, and (b) the type II error. 
9-3 Consider each of the hypothesis-testing applications below. Indicate for each out­

come whether it is a correct decision, a type I error, or a type II error: 
(a) H 0 : New power cell's lifetime does not exceed old one's. 

( 1) Change to new when old lasts as long or longer. 
(2) Keep old when new lasts longer. 
(3) Keep old when old lasts as long or longer. 
(4) Change to new when new lasts longer. 

(b) H 0 : Memory chips are satisfactory. 
(1) Reject satisfactory shipment. 
(2) Accept satisfactory shipment. 
(3) Reject unsatisfactory shipment. 
(4) Accept unsatisfactory shipment. 

(c) H0 : New design is safe. 
(1) Approve an unsafe design. 
(2) Disapprove an unsafe design. 
(3) Disapprove a safe design. 
(4) Approve a safe design. 

9-4 The following hypotheses are to be tested, with~= 100. 

Assume that the population standard deviation is u = 28 and the sample size is 
n = 100. The following decision rule applies: 

Accept H 0 if X :s; 104 

Reject H 0 if X > 104 

Determine the type I error probability a whenµ= 100 and the type II error prob­
ability f3 whenµ= 110. 

, . _ , , .9~5, R~peat ~oble~ 9-4, us,i.ng __ 1 ~~ ine~tead a,~ .we ~fi~i~tialue. Is the new a larger or 
'· ... ~ 1 • , "! 1. 111 , s!halle'r? !Js the now ·,q larger or smaller? . , __ . . . . r , .... ~...... • · I .~• ,.,.1'Td 

9-6 Repeat Problem 9-4 using a larger sample size· of n ~ 150. Is the new a larger or 
smaller? Is the new {3 larger or smaller? 

9-7 The following hypotheses are to be tested, with ~ = 900. 
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9-2 TESTING THE MEAN USING LARGE SAMPLES 

Assume that the population standard deviation is u = 50 and the sample size is 
n = 100. The following decision rule applies: 

Accept H0 if X 2:: 885 

Reject H 0 if X < 885 

Determine the type I error probability a whenµ = 900 and the type II error prob­
ability {3 when µ = 875. 

TESTING THE MEAN USING LARGE SAMPLES 

We are now ready to apply the basic concepts of the preceding section to testing 
the mean. A general procedure has been developed for this application that may 
be adapted to a wide variety of hypothesis testing situations. Some of these 
pertain to other parameters than the mean and will be described later in this 
chapter. 

The Hypothesis Testing Steps 
All statistical tests involve the same basic steps outlined below. 

STEP 1. Formulate the hypotheses. In all cases involving the mean, the decision 
parameter is the unknownµ . A limiting value µ 0 must be identified for defining 
H0• In the bacterial leaching illustration, µ0 was the break-even point for the 
procedure. Although the choice of µ0 is often an economic consideration, other 
reasons may prevail. The level of µ0 may be prescribed, as in a labeling specifi­
cation for package contents. Or, µ0 might be a benchmark level that corre­
sponds to a present procedure, process, material, or part; we saw such an exam­
ple in the battery example of Section 9-1. 

In one-sided tests, error considerations usually determine which side of µ 0 

to include under H 0 • The null hypothesis will be selected from one of the 
two forms, 

The two errors are: 

I. Taking the wrong action when in fact µ :s; µ0 • 

2. Taking the wrong action when in fact µ > ~-

The null hypothesis will be H 0 : µ <~if (I) is more serious and H 0 : µ > ~ if 
(2) is more serious. 

STEP 2. Select the test statistic. In testing the mean, X is the natural test 
statistic. By the central limit theorem we m~ ordinarily use the normal curve 
to represent the sampling distribution of X. When the population standard 
deviation is known, ux may be computed, and for any given level ofµ we may 
establish probabilities for possible values of .X. 

But when u is unknown, the appropriate normal curve may not be specified. 
In those cases, testing procedures employ instead the 

.. Ji!J.~t· 
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Figure 9-5 One-sided 
hypothesis tests will 
be lower- or upper­
talled. depending on 
the orientation of H0• 

HYPOHESIS TESTING 

NORMAL DEVIATE TEST STATISTIC 
(uUNKNOWN) 

X - µ o 
z=---

s/ ../n 

The above quantity is approximately normally distributed and should be used 
only when n is large. The analogous small sample procedure uses instead the 
Student t statistic and is described in Section 9-4. 

STEP 3. Establish the significance level and the acceptance and rejection re­
gions for the decision rule. As we have seen, the common practice in statistical 
testing is to base the procedure on avoidance of the more serious type I error. 
The probability a of this, also referred to as the significance level, may then be 
prescribed in advance. With one-sided applications, the resulting experiment 
will be a lower- or upper-tailed test, depending on whether small or large values 
of the test statistic refute H0 • Figure 9-5 summarizes those two situations. 

a= Area= 
Pr [reject H 0 I H 0 true] 

RejcctH0 

· Reject H0 

Lower-Tailed Test 
Ho: µ 2: ~ 

Accept H0 

x• 
Accept H0 ,.._ __ _;_ ___ ~~----'---- -------- z 

-z. 

Upper-Tai led Test 
Ho: µ ~~ 

~.i: ,.;.. i~ ~~:· t~.'_·r ~.M,: , ·, ', .t.) 1,.:. 

a= Ar::a = 
Pr [reject H 0 I H 0 true] 

Accept H0 Reject H0 - ---------- - -+=--'------~--~ Mean 

Accept H0 llejec,t H0 

z. 
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9-2 TESTING THE MEAN USING LARGE SAMPLES 

The critical value of the test statistic defines the acceptance and rejection 
regions. In testing the mean, this is determined by the critical normal deviate za 
for which t~ normal-curve upper-tail area is a . 

When X serves directly as the test statistic, the foregoing normal deviates 
are used to compute the 

CRITICAL VALUE FOR THE SAMPLE 
MEAN (a KNOWN) 

Upper-Tailed Test: 

Lower-Tailed Test: 

STEP 4. Collect the sample data and compute the value of the test statistic. 
This step incorporates the time-consuming and expensive second stage of the 
statistical sampling study. No revisions to the earlier steps should be based on 
the particular results obtained here. 

STEPS. Make the decision. The final choice is automatic, in accordance with 
the decision rule established in Step 3. H 0 must be accepted if the computed 
value of the test statistic falls in the acceptance region and rejected otherwise. 
By convention, should the computed value round precisely to the critical value, 
H0 must be accepted. 

An Upper-Talled Test 
A mechanical engineer is considering a new nickel-<:hrome-iron alloy. She has 
ordered I 00 sample castings, which are to be tested at a materials laboratory 
for endurance under axial stress. The engineer is seeking a metal strong enough 
to meet customer specifications for parts in a new stamping machine. These 
require that the mean number of cycles to failure µ obtained in vibration testing 
exceed 500,000. The target population represents the endurance measurements 
that might be obtained if every possible casting-not just the sample I 00-were 
subjected to the test procedure. So that quick results may be obtained, a lower 
endurance figure was specified than is ordinarily found in stress testing. Ac­
cordingly, unusually extreme levels were set for the test displacement and force 
parameters. 

The following hypothesis testing steps were taken. 

STEP 1. Formulate the hypotheses. The engineer selects as her hypotheses: 

H0 : µ < 500,000 (Endurance specifications are not exceeded) 

H 1 : µ > 500,000 (Endurance specifications are exceeded) 

The designations reflect her strong desire to avoid choosing the alloy when it 
does not exceed customer specifications. These specifications establish ~ = 
500,000 as the limiting value for the mean number of cycles to failure. 
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Figure 9-6 

ILLUSTRATION: 
Selectlng 
the Faster 
Fermentation 
Temperature 

HYPOTHESIS TESTING 

STEP 2. Select the test statistic. The sample mean X will serve as the test 
statistic. Its sampling distribution may be represented by the normal curve 
centered atµ with standard deviation <1x = u/ ../n. From previous testing with 
other materials, it has been established that the standard deviation in endur­
ance should be around 50,000 cycles to failure. For planning purposes that 
value will be assumed for u, regardless of the level for µ . Thus, <1x = 
50,000/ .../100 = 5,000. 

STEP 3. Establish the significance level and the acceptance and rejection re­
gions for the decision rule. Because she regards so seriously the type I error of 
rejecting H 0 when it is true, the engineer chooses a 1 % significance level, so that 
a = .01. From Appendix Table E this corresponds to a critical normal deviate 
of z_01 = 2.33. Large positive levels for z will refute H 0 , and the test is upper­
tailed. The critical value for the sample mean is 

x• = soo,ooo + 2.33 (s,ooo) = s11,6so 
The decision rule is shown in Figure 9-6. 

Accept H0 

(Continue search 
for alloy.) 

Computed 
Value 

Reject H0 

(Use new alloy.) 

Mean 
Endurance 

-----------'-------+----- x 
511 ,650 
x• 

519_,.,5 00 
X 

STEP 4. Collect the sample data and compute the val~ of the test statistic. 
The test results provide a computed sample mean of X = 519,500 cycles to 
failure. 

STEPS. Make the decision. The computed mean exceeds the critical value and 
falls in the rejection region. The engineer must therefore reject H0 and adopt 
the new alloy in the stamping machine. 

The computed X lies about 4 standard deviations above µ0 , so the chance is 
remote for getting a result as extreme as that obtained should the true µ actu­
ally:be equal to µ0 • 

,·,.: -~ ,..7 

A Lower-Talled Test 
A chemical engineer is pilot-testing a fermentation process for the manufac­
ture of a pharmaceutical product. All design parameters have been selected ex­
cept for the temperature at which fermentation itself will take place. Current 
temperature-control hardware is designed to operate at a low nominal level, 
although theoretically an environment 10°C higher should provide a faster 
fermentation rate. Since the higher-temperature operation will require speciaUy 
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9-2 TESTING THE MEAN USING LARGE SAMPLES 

designed control devices, that environment will be incorporated into the final 
design only if sample batches ferment significantly faster than the nominal 
mean time of 30 hours. A series of 50 pilot batches are to be run at the hotter 
temperature. 

The following hypothesis testing steps apply: 

STEP 1. Formulate the hypotheses. Expressing by µ, the mean fermentation 
time of all future batches that might be processed under high temperatures, the 
engineer establishes: 

H 0 : µ > 30 hours (Higher-temperature fermentation is not faster) 

H 1 : µ < 30 hours (Higher-temperature fermentation is faster) 

The limiting case is the nominal processing time~ = 30 hours. The> orienta­
tion was selected for H 0 because the more serious (type I) error is to choose the 
higher-temperature process when it is not actually the faster one. 

STEP 2. Select the test statistic. Because the population· standard deviation is 
not known, the test statistic is the normal deviate z. 

STEP 3. Establish the significance level and the acceptance and rejection re­
gions for the decision rule. The engineer establishes a significance level of 
a= .05 . This level reflects his conservatism regarding the possible type II error 
(accepting H0 when H0 is false). The probabilities ({3's) of this second error (not 
designing the higher-temperature process when in fact it is faster) would be un­
comfortably large with a smaller a. The critical normal d~iate is z_05 = 1.64. 
The test is lower-tailed, since a fast mean processing time X under the higher­
temperature environment will refute H 0 • Thus, negative values for z lying below 
-1 .64 will lead to rejection. Figure 9-7 applies. 

Reject H0 
(Design for high 

temperature.) 

Computed 
Values 

29.5 
X 

30 

!lo 

Accept H0 

(Design for low 
temperature.) 

-----------'-----il-------- z 
-1.64 - .72 
-z. z 

Mean 
Fermentation Time 

STEP 4. Collect the sample data and compute the value of the test statistic. 
The following test results were obtained: 

X = 29.5 hours 

s = 4.91 
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HYPOTHESIS TESTING 

The above provide the computed normal deviate 

z = 29.5 - 30 -.72 
4.91 / ../so 

STEP 5. Make the decision. The above quantity falls inside the acceptance re­
gion, so the engineer must accept H 0 and design the process for low f ermenta­
tion temperatures. 

Type II Error Considerations 
In accepting the null hypothesis that the low-temperature environment results 
in faster fermentation, there is the danger that the type II error has been 
committed. It is good statistical procedure to consider the potential for such 
error. The engineer might be incorrectly designing for low fermentation tem­
peratures when the actual value of µ is faster than nominal. Of course that 
could not be established without further testing. As we have seen, the incidence 
of such type II errors may be controlled by using a larger a or by increasing the 
sample size. We will discuss this point further in Section 9-7. 

Problems 
9-8 Answer the following for each of the hypothesis testing situations given below: 

(a) Find the critical value(s) for the sample mean. 
(b) For the given computed sample mean indicate in each case whether the null 

hypothesis should be accepted or rejected. 

(1 ) (2) (3) (4) 

n 100 50 200 150 
q 5 4 20 15 

Ho µ ::5 50 µ~ 60 µ ~ 100 µ ::5 100 

~ .05 .01 .01 .05 
X 55.3 63.5 95.8 101.2 

9-9 The mechanical engineer from the text illustration performs another stress test on 
a new material, where u = 600,000 cycles to failure and H 0 : µ ::5 10,000,000. 
Suppose a sample size of n = 50 castings is tested at a significance level of 
a= .05. 
(a) Assuming that the same choices must be made, identify the acceptance and 

rejection regions. 
(b) The computed mean is 10,115,000. What action should the engineer take? 

9-10 Suppose that the chemical engineer in the fermentation-temperature illustration 
had reported identical sample results, but for a larger sample size of n = 100 
instead. Perform hypothesis testing steps 3- 5. 

9-11 Consider a sample of size n = 100 taken at random from a small population of size 
N = 500. The null hypothesis is that µ ::5 5,000. Suppose the population standard 

, _ ~ : deviation is known to be. u = L.50 _and tha,t X will serve as the test statistic . ._, ~ • • + 
- , - --(a) Assumin·g that a significance level of a.~ ~91_ Js desired, find the critical value 

for the sample mean and determine the decision rule. 
(b) Sho~ld H 0 be accepted or rejected if the computed sample mean turns out to 

be X = 5,060? 
9-12 A sample of size n = 100 is taken from a large population where u is unknown. 

The null hypothesis is that µ ::5 5,000. 
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where u is unknown. 

9-3 TWO-SIDED HYPOTHESIS TESTS OF THE MEAN 

(a) Assuming a 1 % significance level and that the normal deviate will serve as the 
test statistic, determine the decisio!!_ rule. 

(b) Suppose that the sample provides X = 5,011 ands= 75.3. For this outcome 
should H0 be accepted or rejected? 

9-13 A biological reduction process is being evaluated as an alternative to a conven­
tional technique for which the mean yield of active ingredients isµ.= 10 grams/ 
liter with a standard deviation of u = .5 gram/liter. The biological method will be 
an effective replacement for the present procedure if it can be assumed to provide a 
yield of more than 12 grams/liter. A total of 100 batches will be pilot-tested under 
bacterial reduction. 
(a) If test results indicate that significant improvement in yield might be made, 

the biological procedure will be adopted . There should be only a 5% chance 
that this will be done when the new technique's yield is not high enough to be 
effective as a replacement. Assuming the same standard deviation in yield 
applies whichever procedure is used, perform hypothesis testing steps 1-3 . 

(b) The test results provide a yield of 13.3 grams/liter. What action should 
be taken? 

9-14 A new test stand might be acquired by the inspection department of GizMo, an in­
strumentation fabricator, if the mean time to check out a standard "black box" is 
significantly less than that for the present unit. The new test stand will save enough 
operating costs to pay for itself only if it can "burn in" all new instrument boxes in 
15 hours or less, on the average. The equipment vendor allows GizMo to time-test 
a sample of 50 boxes. No educated guesses have been made regarding the target 
population's characteristics . 
(a) Assuming that GizMo wants no more than a 1 % chance of buying the new test 

stand when it will not save enough to justify its cost, perform hypothesis 
testing steps 1- 3. 

(b) The test results provide a mean burn-in time of 13.5 hours with a standard 
deviation of 3.4 hours. What action should be taken? 

TWO-SIDED HYPOTHESIS TESTS OF THE MEAN 

Statistical investigations sometimes involve hypotheses of the following form 

H o: µ = µo 

H, : µ-=I=~ 

Notice that the alternative hypothesis is true both when µ < µ 0 and when 
µ > µ0 • Since H 0 has two sides, investigations involving the preceding hypothe­
ses are called two-sided tests. These are frequently encountered in statistical 
quality control, where requirements are that the mean achieve some specified 
level exactly. 

The decision rule in testing hypotheses of the above form must involve two 
critical values, establishing a two-sided rejection region. The type I error of 
rejecting a true H 0 may be committed in two ways, depending on whether the 
test statistic is untypically large or small . Each case is therefore assigned half of 
the total type I error probability. 

When testing the mean with large samples or with a known ~andard devi­
ation, a normal curve serves as the sampling distribution for X . Figure 9-8 
illustrates the procedure. As with one-sided tests, the computed normal deviate 
z serves as the test statistic when u is unknown. The critical normal deviate is 

, ' • • -: .. ~ _ .... :PJ.',. , •• 
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HYPOTHESIS TESTING 

Reject H0 

x• 
I 
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Ho: µ =~ 

~ 

Accept H0 

Accept H0 

0 

Reject H0 

Mean 
x• 
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Reject H0 
z 

z o/ 2 

denoted by z a/i· Above this point the upper tail of the standard norm!_! curve 
includes an area equal to a/2; the same area lies below -za/i· When X serves 
directly as the test statistic, the following expressions provide the 

CRITICAL VALUES FOR 
THE SAMPLE MEAN (a KNOWN) 

Conducting the Test 

Two-Sided Test: 

xr = µ O - Za/2 Ux 

Xt = µ O + Za/ 2Ux 

The superintendent of a new chemical plant is establishing operational policies, 
such as when to perform critical maintenance. When practical, those actions 
will be based on sample data. This is the case for a process in which the pH of 
an intermediate stage must be maintained at a neutral level. A control valve 
keeps the mean batch pH at 7.0. Owing to the caustic nature of the fluids 
flowing through it, the valve must occasionally be replaced. This action will be 
based on the mean pH of 100 sample vials taken at r:1ndom times from the 
separation tank containing the output from that stage. 

· Hypothesis steps 1- 3 show how the policy for valve replacement was estab­
lished. Steps 4 and 5 apply to a particular sample outcome. 

STEP 1. Formulate the hypotheses. The following hypotheses apply: 

H0 : µ = 1.0 (Process is neutral) 

H 1 : µ * 7 .0 (Process is not neutral) 
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9-3 TWO-SIDED HYPOTHESIS TESTS OF THE MEAN 

STEP 2. Select the test statistic. The computed mean pH for the sample vials 
serves as the test statistic. The standard deviation for individual test vials has 
long been established at .50 on the pH scale. This establishes the standard error 
for X: ux = .50/ .Jtoo = .05. 

STEP 3. Establish the significance level and the acceptance and rejection re­
gions for the decision rule. It is very expensive to shut down the process to 
replace the control valve, so plant policy permits just a 1 % chance of doing this 
unnecessarily. The significance level for each sample test is therefore a = .01. 
The critical normal deviate is z_005 = 2.57, and the critical values for the sample 
mean are 

Xf = 7.0 - 2.57(.05) = 6.87 pH 

Xt = 7.0 + 2.57(.05) = 7.13 pH 

The acceptance and rejection regions are shown in Figure 9-9. 

Computed 
Value 

a/2 = .005 

Reject H0 

(Replace valve.) 

7.0 
µ o 

Accept H0 

(Continue process.) 

a/2 = .005 

Reject H0 

(Replace valve.) 
----.----~---------~--------x 

6.73 
X 

6.87 
x• 

I 

7.13 
x• 

2 

STEP 4. Collect the sample data and compute the value of th!!_ test statistic. 
The computed mean pH for a particular test turned out to be X = 6.13. 

STEP 5. Make the decision. Since this value falls in one of the two rejection 
regions, H0 must be rejected. At the present time it must be concluded that the 
process mean pH is not neutral (and is too acidic) . The process will be shut 
down to replace the control valve. 

Hypothesis Testing and Confidence Intervals 
A two-sided hypothesis test may be explained in terms of statistical estimation. 
An equivalent procedure for conducting such a test would be to construct a 
100(1 - a)% confidence interval from the sample results. Then if JJ.o falls inside 
the interval, H 0 must be accepted; otherwise it must be rejected. a is the propor­
tion of such intervals that will fail to bracket JJ.o when it is the true mean. In 
other words, when this procedure is used, the type I error of rejecting H 0 when 
it is true will occur at frequency a. 

For the pH regulator decision, 1 - a= 1 - .01 = .99. Using the same 

297 

Figure 9-9 



298 HYPOTHESIS TESTING 

sample results from before, we construct the 99% confidence interval esti­
mate forµ: 

or 

(T 

µ = X ± z.oo5 'in 

= 6 .73 ± 2.57 ~ = 6.73 ± .13 
vlOO 

6.60 < µ < 6.86 

Because this interval does not contain µ0 = 7 .0, H 0 must be rejected. This is 
the same conclusion reached earlier. If the plant superintendent were to com­
pute a similar 99% confidence interval for each sample outcome, then µ,0 would 
fall inside of 99% of those computed when the true mean was in fact equal to 
µ 0 = 7 .O; in each case H0 would be accepted. But 1 % of the intervals would lie 
either totally above or totally below 7.0 when that is the true mean, resulting in 
incorrect rejection (unnecessary valve replacement) . 

When u is unknown, the computed sample standard deviation s is used 
instead of u in computing the confidence interval. 

Problems 
9-15 Answer the following for each of the hypothesis testing situations given below: 

(a) Find the critical values for the sample mean. 
(b) For the given computed sample mean, indicate in each case whether the null 

hypothesis should be accepted or rejected . 

(I ) (2) (3) (4) 

n 100 150 200 50 
(1 15 14 20 5 

Ho µ = 45 µ = 60 µ = 150 µ = 90 

~ .01 .05 .01 .05 
X 46.5 57.3 154.1 90.4 

9-16 The plant superintendent in the pH regulator illustration found that too much 
supplemental processing was required because faulty control valves were not re­
placed often enough. He raised the significance level to a = .05. 
(a) Perform hypothesis testing step 3. 
(b) What action should be taken for each of the following sample results? 

(I) x = 6.85 (2) x = 1.24 (3) x = 6.59 (4) x = 1.01 
9-17 A plant produces rods with a specified I cm mean diameter. The standard devi­

ation is .01 cm. A decision rule must be established for determining when to 
·correct for over- or undersized output. That choice will be based on a sample of 
100 rods, under the stipulation that there be only a 1 % chance of t~king corrective 
action when the mean diameter is exactly on target. 
(a) Perform hypothesis testing st:Es 1- 3. 
(b) What act should be taken if X = .993 cm? 
(c) Suppose that .X = 1.0023 cm. Construct a 99% confidence interval estimate 

for the mean diameter. Does this contain ~ ? What action should be taken? 
9-18 The above plant will soon be producing a .5 cm rod . The standard deviation is un­

known. Again, corrective action will be based on a sample of 100 rods, with the 
same error goal. 
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9-4 TESTING THE MEAN USING SMALL SAMPLES 

(a) Perform hypothesis testing ste_Es 1-3. 
(b) What act should be taken if X = .497 cm ands= .0075 cm? 
(c) Construct a 99% confidence interval for the mean diameter when .X = .508 

cm ands= .013 cm. Does this contain 1,1,o? What action should be taken? 
9-19 A quality-control inspector for a microwave transmitter manufacturer is assessing 

a shipment of 400 crystal controls. The actual broadcast frequency will depend on 
the resonant frequency, which will vary slightly from crystal to crystal, but the 
mean level should achieve the rated target of .55 mHz. The exact standard devi­
ation for the individual crystal frequencies is unknown. A random sample of 50 
crystals from the shipment will be tested and the resonant frequency determined 
for each. The entire shipment will be rejected if the observed mean is significantly 
above or below the rated level and accepted otherwise. The inspector wants just a 
I% chance of rejecting a shipment in which the mean frequency exactly matches 
the rated level. 
(a) Formulate the inspector's hypotheses. 
(b) Sample results provide X = .5503 mHz and s = 485 Hz. Construct a 99% 

confidence interval estimate of the mean resonant frequency for the entire 
shipment. What action should the inspector take? 

9-20 The final stage of a chemical process is sampled and the level of impurities deter­
mined. The final product is recycled if there are too many impurities and the 
controls are readjusted if there are too few (which is an indication that too much 
catalyst is being added). If it is concluded that the mean impurity level is the 
nominal level ofµ. = .01 gram/liter, the process is continued_ without interruption . 
The standard deviation of impurities has been established to be 11 = .005 gram/ 
liter. A sample of n = 100 specimens is measured every 24 hours and the level of 
impurities is determined for each. 
(a) Perform hypothesis testing steps 1-3, assuming a significance level of 5%. 
(b) What action should be taken for each of the following sample results for the 

mean level of impurities? 
(1) .X = .0095. (2) .X = .0088 . (3) X = .0112. (4) X = .0104. 

(c) Find the type II error probability when the true mean impurity level is: 
(I) µ. = .009. (2) µ. = .012. (3) µ. = .008. (4) µ. = .014. 

TESTING THE MEAN USING SMALL SAMPLES 

Although it is generally desirable to base statistical evaluations on large sample 
sizes, this is not always possible. Almost universally, budgetary constraints 
place limitations on n. And we have seen that investigations of rare phenomena 
or those involving human subjects must often be made with an arbitrarily small 
number of observations. 

Using the Student I Test Statistic 
Similar procedures apply when small samples are used in testing the mean. 
Invoking the central limit theorem, we may still ordinarily assume a normal 
sampling distribution for X. But the population standard deviation must be 
known to specify the normal curve completely. (And even then-except when 
the population itself is normal-the resulting sampling distribution is only ap­
proximate.) When u is unknown, as we have seen, inferences regarding µ may 
be based instead on the Student t distribution. 
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To test the mean when u is unknown and n is small, the sal!!_e basic 5 steps 
are employed. But rather than basing the decision directly on X we use the 

STUDENT f TEST STATISTIC 
(uUNKNOWN) 

X -µo 
t=---

s//n 

The above may be employed in exactly the same manner as when z is the 
test statistic. For a prescribed significance level a, the one-sided test critical 
value is denoted by ta. Using n - 1 degrees of freedom, this quantity may be 
read from Appendix Table G. The following decision rules apply. 

Lower-Tailed Test (H0 : µ > ~) : 

Accept H0 if t > - ta 

Reject H 0 if t < - ta 

Upper-Tailed Test (H0 : µ < µ 0): 

Accept H0 if t < ta 

Reject H 0 if t > ta 

In the case of two-sided tests the type I error probability is shared equally by 
the two tails of the t curve, and the two-sided rejection region involves the 
critical value ta/i · 

Two-Sided Test (H0: µ = µ 0): 

Accept H0 if - tati < t < ta12 

Reject H0 if t < - tati or if t > ta12 

A common complaint of air traffic controllers is fatigue arising from watching 
CRT (cathode-ray tube) displays over extended periods of time. As part of a 
summer job, one student working in a human-engineering section at the FAA 
considered modification of the CRT itself. He noted that the scopes show the 
"noise" from periodic scans of the search sector; this backscattering appears as 
a flash that gradually disappears until the next scan. This phenomenon gives 
controller display screens an annoying pulsation that is not only distracting but 
might also contribute to eye fatigue. The student proposed using a filter to 
eliminate most of this pulsating illumination. 

Test modifications to existing hardware were expensive, and a crude appa­
ratus was devised for three terminals in a nearby control center. With these, it 
was possible to monitor a random sample of 12 controllers. Although fatigue is 
hard to measure, the student devised an ingenious yardstick. At the midmorn­
ing and midafternoon breaks, each test subject was given a stack of quarters 
and directed to play the then wildly popular video arcade game "ZapMan," 
placed there especially for the test. Recorded game scores would be used to 
represent cumulative on-job fatigue. Getti~g these data would be simple, and 
any impairment of game-playing ski~! would likely reflect on-job alertness, be-
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9-4 TESTING THE MEAN USING SMALL SAMPLES 

cause this particular game simulates concentration and reactivity levels needed 
in controlling aircraft. 

A subject's afternoon score was expected to be lower than the morning's. 
During a week's trial, the test subjects would work at their regular terminals. 
Their individual aggregate scores (per minute played) would be recorded and 
the drop computed. During the following week, the same persons would use the 
experimental CR Ts, and an analogous "drop" figure would be subtracted from 
the earlier one to find a mean difference in diurnal score-drop. The presumption 
is that if the experimental CRT is less fatiguing, this should be reflected in 
smaller afternoon drops in ZapMan scores, yielding a positive mean difference 
µ. The following steps apply. 

STEP 1. Formulate the hypotheses. The student chose the following: 

H 0 : µ < 0 (Diurnal score drops off at least as much using 
experimental CRTs, so they don't reduce fatigue.) 

H 1 : µ > 0 (Diurnal score drops off less using experimental 
CRTs, so they do reduce fatigue.) 

STEP 2. Select the test statistic. The target population standard deviation is an 
unknowable quantity. Because of the small sample size, the Student t serves as 
the test statistic. 

STEP 3. Establish the significance level and the acceptance and rejection re­
gions for the decision rule. The student plans to recommend further detailed 
study of CRT modification if the evidence is strong that it would reduce fa­
tigue. To protect himself from the embarrassment of making that recommenda­
tion only to have the CRT modification actually found to be ineffectual, he has 
chosen a = .05 as the significance level. The resulting test is upper-tailed, as 
portrayed in Figure 9-10. 

Accept H0 

(Don't recommend 
further stud y. ) 

0 

0 

0 1.796 
r. 

Computed 
Values 

8.33 
X 

I 
Reject H0 

(Recommend 
further study.) 

2.51 

Mean Difference 
in Diurnal 

Score Drop 
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STEP 4. Collect the sample data and compute the value of the test statistic. 
The following results were obtained: 

ZapMan Score (per minute of play) 

Regular CRT Experimental CRT 

Controller A.M. P.M. Drop A.M. P.M. Drop Difference 

A 150 125 25 155 140 15 10 
B 185 189 -4 222 220 2 -6 
C 299 302 -3 344 350 -6 3 
D 25 13 12 47 35 12 0 
E 123 115 8 134 129 5 3 
F 87 89 -2 94 93 I -3 
G 535 488 47 624 615 9 38 
H 406 395 11 521 514 7 4 
I 212 190 22 249 242 7 15 
J 99 81 18 98 92 6 12 
K 111 97 14 96 92 4 10 
L 253 206 47 382 349 33 14 

100 

The above data provide 

X= 8.33 

s = 11.50 

The computed value for the test statistic is 

t = 833 - O = 2.51 
11.50/v'Ti 

STEPS. Make the decision. The computed t exceeds the critical value and falls 
into the rejection region. The student should therefore reject the null hypothe­
sis. He will conclude that controllers experience greater drop-off in videogame 
scores after spending most of their working days at the regular CRT and that 
this might be attributable to greater fatigue than results from the experimental 
CRT. He will therefore recommend further study be made of possible CRT 
improvements. 

Problems 
9-21 Answer the following for each of the hypothesis testing situations given below: 

(a) Find the critical value for the Student t statistic and indicate the acceptance 
and rejection regions. 

(b) For the given sample results in each case indicate whether the null hypothesis 
should be accepted or rejected. 

(1) (2) (3) 

Ho: Ho: Ho: 
'- -' ~ . 

• . •• ~, , V!µ'-!f;• 100 ffi ' ' " µ 15 i4~ J • ', ,µ _~ ;.45 g 
• i·;r ··.• , ,: !·· -• -' ;,4 20 t".,' :·ra --r:n'=25 ·.-p .. ·r,· P a. 13 

.f! = .05 .f! = .01 .f! = .10 
X = 125.3 m X = 13.55" X = .52 g 

s = 8.1 s = .97 s = .14 

(4) 

Ho: 
µ ~ 2,250 psi 
n = 18 

.f! = .05 
X = 2,156 psi 

s = 171.4 

l 
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9-5 TESTING THE PROPORTION 

9-22 Refer to the data in the physical therapy apparatus example on page 263. Should 
the mechanical engineer accept or reject the null hypothesis that µ. ~ 20 days? 
Use a= .05. 

9-23 Refer to the data in the logic circuit wafer example on page 253. Should the 
industrial engineer accept or reject the null hypothesis that µ. 2:: .20 oz? Use 
a= .01. 

9-24 An engineering department manager wants to decide whether or not to include a 
computer-aided design (CAD) software package in his budget. He is skeptical 
about the vendor's time-savings claims. A test has been conducted using pairs of 
nearly equally skillful engineers who independently design the same item-one 
using CAD and the other unassisted. For n = 8 parts the following percentage 
time-savings by CAD over the unassisted design were obtained: 

80 
45 

10 
29 

37 
44 

26 
5 

At the 5% significance level, can the manager conclude that CAD wiJI indeed yield 
savings in time over present design methods? 

9-25 The following sample-failure data (thousands of miles) were obtained for a type of 
catalytic converter: 

62.3 
37.4 

44.4 
55.8 

49.2 
57.5 

63.3 
58.3 

47.6 
56.2 

60.l 
54.3 

(a) Construct a 95% confidence interval estimate for the mean distance to failure. 
(b) At the 5% significance level, must you accept or reject the null hypothesis that 

the catalytic converter will last, on the average, 50 thousand miles? 
9-26 The makers of ZapMan have expressed an interest in the student's data from the 

CRT experiment. They wish to determine the effect a week's steady play will have 
on score levels. After subtracting the first week's A .M . score (regular) from the 
second week's A .M . score (experimental), the sample mean increase may be com­
puted. The null hypothesis is that one week's practice wiJI improve a person's 
ZapMan score by at most 10 points/minute. At the 1 % significance level, what 
conclusion should be reached? 

TESTING THE PROPORTION 

Tests of the proportion are next in importance to those for the mean. The 
proportion is especially important in statistical quality control, where a major 
concern is whether the level of defectives in a shipment is high or low; similarly, 
the overall quality of a production process might be measured by the proportion 
of defective output. Proportions are also fundamental in work measurement, 
where work sampling is often used instead of stopwatch procedures. The pro­
portion is also a key parameter in specifying a Bernoulli process, and a consid­
erable amount of probability analysis might be based upon an assumed level. 

The testing procedures established for the mean are easily extended to the 
proportion. The sample proportion Pis a natural test statistic for experiments 
regarding 1r, but sometimes the number of successes R is employed equiva­
lently. The appropriate sampling distribution for P or R is either the binomial 
or the hypergeometric-the latter applying when sampling without replacement 
from small populations. A normal curve closely approximates these underlying 
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HYPOTHESIS TESTING 

distributions over a wide range of 1r's and n's, and tests of the proportion are 
most often based on that approximation. 

The Sample Proportion Test Statistic 
The sample proportion is a convenient test statistic for testing the value of the 
population proportion. Tests fall into one of the same three categories as in 
testing the mean. The following respective decision rules apply: 

Upper-Tailed Test (H0 : 1r < 1r0) : 

Accept H 0 if P < P* 

Reject H 0 if P > P* 

Lower-Tailed Test (H0 : 1r > 1r0): 

Accept H 0 if P > P* 

Reject H 0 if P < P* 

Two-Sided Test (H0 : 1r = 1r0): 

Accept H0 if Fr < P < Pf 

Reject H 0 if P < P~ or if P > Pf 
The sampling distribution of P is approximated by a normal curve having mean 
E(P) = 1r and standard error up= ✓ 1r(l - 1r)/n (which must be multiplied 
by the finite population correction factor when N is small). Critical normal 
deviates are used in the same manner as in testing the mean. The following 
expressions are used to find the 

CRITICAL VALUES OF THE PROPORTION 

Upper-Tailed Tests: 

p• = 7ro -~ + zaJ1ro(l - 11"o) 
n n 

Lower-Tailed Tests: 

P• _ + .5 J1ro(l - 7ro) - 7ro - - Za 
n n 

Two-Sided Tests: 

P• _ + .5 _ J1ro(l - 7ro) 
I - 7ro - Za/ 2 

n n 

and 

(Notice that a continuity correction of size .5/n is subtracted in computing 
critical values in the upper tail and added for those in the lower tail.) 
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9-5 TESTING THE PROPORTION 

A computer systems analyst for a large electric utility wondered if it might be 
practical to cut the tremendous expense of the data processing staff. Hundreds 
of data clerks presently encode meter-reader tags for entry into the customer­
billing data base. To minimize billing errors, two clerks independently enter the 
data from each tag, and if the entries do not coincide, the tag is reprocessed. 
Although the possibility that errors will occur is extremely remote when tags 
are processed in this manner, the number of clerks required is twice that of a 
single data entry system. Furthermore, extra data processing is required to 
make the verification comparisons. 

The analyst wonders if significant cost savings might be achieved by aban­
doning double-entry processing in favor of entering the data just once-obvi­
ously a much more error-prone procedure. Under the proposed scheme, large 
errors would be filtered out by comparing usage with the average of previous 
months; only those customer tags on which usage is above or below average by a 
factor of 3 would be recycled once for verification. Any subsequent over- or un­
derbilling would ultimately be rectified by the cumulative readings obtained for 
a customer in future months. 

Because of the expenses that would arise in handling customer complaints 
for overbilling and owing to the cost of uncollected funds from underbilled 
accounts, the efficacy of this procedure depends on a fairly low single-entry 
error rate. Management consensus was that any new-procedure error rate not 
exceeding .5% would result in savings for the company. The pivotal value for 
the proportion 1r of all erroneous entries was therefore set at 1r0 = .005 . 

A sampling experiment was initiated and performed under conditions that 
duplicated very closely those anticipated under the new procedure. For the test 
period the clerks were asked to be especially careful, as their work was not 
going to be totally verified. To preclude lackadaisical performance, each clerk's 
work would still be checked on a random basis for accuracy-and the test 
subjects were so informed. The following steps were performed using a sample 
of n = 2,000 meter tags: 

STEP 1. Formulate the hypotheses. The following hypotheses were selected by 
the analyst: 

H 0 : 1r > .005 (1r0) (New procedure is imprae:ticable) 

H,: 1r < .005 (New procedure may be an improvement) 

STEP 2. Select the test statistic. The sample proportion of errors P serves as the 
test statistic. 

STEP 3. Establish the significance level and the acceptance and rejection re­
gions for the decision rule. The analyst plans to recommend adoption of the 
new procedure if the observed error rate is sufficiently small . A significance 
level of a = .05 was selected, so the critical normal deviate is za = 1.64. The 
hypotheses provide a lower-tailed test, and the critical value of the error pro­
portion is 

p• = .005 + -·5- - 1.64 
2,000 

.005(.995) = .003 
2,000 
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Computed 
Value 

Reject H0 

(Recommend new 
procedure.) 

.005 
,ro 

Accept H0 

(Don't recommend 
new procedure.) 

Error 
Proportion 

_ ______ ..._ __ ......_ ________________ p 

.0015 
p 

.003 
p• 

The decision rule is summarized in Figure 9-11 . 

STEP 4. Collect the sample data and compute the value of the test statistic. 
Only 3 of the sample tags were in error, so that the computed error proportion 
was only P = 3/2,000 = .0015. 

STEP 5. Make the decision. The computed value falls below the critical value, 
and the analyst must reject the null hypothesis and conclude that the new 
procedure might provide savings in operational costs. The analyst therefore 
recommends the new procedure. 

Further Remarks 
The foregoing procedure need be modified only slightly when the number of 
successes R serves as the test statistic, multiplying the right-hand side of each 
critical value expression by n. It is also possible to use the binomial distribution 
directly in finding the decision rule, although our capability for doing this will 
be constrained by the limitations of tables (or computer time). Both of these 
complications, and the case of the small population, are left as exercises. 

The type II error plays an analogous role in testing the proportion. Prob­
abilities for this outcome may be computed for any level of 1r where H0 is false. 
But the value of up will change for each case. 

Problems 
9-27 Suppose that the systems analyst described in the text used instead 1r0 = .0035 and 

a 1 % significance level. Assuming the same sample results, what action should the 
analyst take? 

9-28 In testing the null hypothesis that 1r = .05 at a significance level of a= .01, 
indicate for each of the following possible results whether it should be accepted or 
rejected when n = 500. 
(a) P = .03 (b) P = .06 (c) P = .025 (d) P = .055 

9-29 For the data-entry illustration in the text, suppose that 1r0 = .007 had been used 
with a 10% significance level. The test statistic is the number of errors R in a 
sample of size 4,000. 

9-30 

9-31 

9-32 

9-33 

9-34 
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9-5 TESTING THE PROPORTION 

(a) Determine the critical value and resulting decision rule. 
(b) What decision will be reached if the number of sample defectives were 

(I) 25? (2) 6? (3) 10? (4) 31? 
9-30 Consider again the data-entry decision as described in Section 9-5 and assume that 

the given decision rule will be used. Using the normal approximation, determine 
the type II error probability for incorrectly accepting H0 (not recommending the 
new procedure when it might be an improvement) when single entry of data in­
volves a true error rate of only 
(a) .0040. (b) .0030. (c) .0025. (d) .0015. 

9-31 A quality-control inspector must decide about a very large shipment of 10 ohm 
amplifier resistors. A sample of n = 100 resistors will be tested and the number of 
defectives determined. Depending on that result, the entire shipment will be pur­
chased or returned. The inspector wants at most a 5% chance of purchasing a poor­
quality batch (having 10% or more defectives) . 
(a) Using the number of defectives in the sample as the test statistic, perform 

hypothesis testing steps 1 and 3. Use the binomial distribution directly instead 
of the normal approximation. 

(b) What ·action should be taken when the number of sample defectives is 
(1) 4? (2) 6? (3) 5? (4) 7? 

9-32 A statistician is testing the null hypothesis that exactly half of all engineers will 
have remained in the profession 10 years after receiving their bachelor's. He took a 
random sample of 200 graduates from the class of 1974 and determined their 
occupations in 1984. He found that 111 persons were still employed primarily as 
engineers. 
(a) Construct a 95% confidence interval estimate for the proportion of engineers 

remaining in the profession. (Ignore the continuity correction.) 
(b) At the 5% significance level, should the statistician accept or reject his 

hypothesis? 
9-33 Consider fuses of a particular type that are inspected by both the producer and 

the consumer. 
(a) The manufacturer defines as marketable any batch of fuses in which the pro­

portion of defectives does not exceed .07. The inspection rules are based on the 
requirement that there should be no more than a 1 % chance of scrapping any 
marketable batch. This outcome is referred to as the producer's risk. A sample 
of 500 fuses will be tested from a production run of 4,000. Perform hypothesis 
testing steps 1-3. What action should be taken if the sample is found to con­
tain 8% defectives? 

(b) One of the users of the fuses is a laboratory, where the policy is that any batch 
of fuses of a particular type is satisfactory if it contains less than 5% defec­
tives. The inspection rules stipulate that there should be only a 5% chance of 
accepting an unsatisfactory batch. This outcome is referred to as the consum­
er's risk. A sample of 100 fuses is to be tested from a shipment of 500. Perform 
hypothesis testing steps 1-3. What action should be taken if the sample is 
found to contain 2 defectives? 

9-34 The number of switches placed on line in a communications system depends on the 
level of traffic. At 20 random times over a brief interval it is determined what 
proportion of the time all switches are busy. An additional switch is then placed on 
line if this quantity exceeds a critical level. A similar rule is applied to determine 
when to remove one of the switches, which is done whenever the sample proportion 
falls below a smaller critical value . 
(a) Assume that there should be only a 5% chance of unnecessarily adding a 

switch when all the switches are busy no more than 50% of the time. 
(1) Perform hypothesis testing steps 1-3. 
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(2) What action should be taken if all switches were busy in 65% of the 
observed sample times? 

(b) Assume that there should be only a 10% chance of incorrectly removing a 
switch when all the switches are busy at least 30% of the time. 
(1) Perform hypothesis testing steps 1-3. 
(2) What action should be taken if all switches were busy in 25% of the 

observed sample times? 

TESTING THE VARIANCE 

Although far less frequently encountered than tests of the mean or proportion, 
similar procedures may be applied to the variance. Recall that this parameter is 
important to situations where consistency, or the lack of it, is crucial. For 
example, although the mean queueing time is important to waiting persons, 
they feel more comfortable when they can closely predict how much time must 
be sacrificed. People are more tolerant of long lines that move at a fairly pre­
dictable pace-lines in which the variability in waiting time is small and the 
length of wait may be gauged by the number of persons in line. 

Testing with the Chi-Square Statistic 
Testing procedures for the variance are analogous to those for the parameters 
already discussed. As in those tests, the analogous sample statistic-in this case 
the sample variance s 2- will be the basis for accepting or rejecting a null hy­
pothesis regarding <,2. As we have seen, the chi-square distribution may be used 
to find probabilities for level of s. But it is more convenient instead to make the 
following transformation in getting the 

CHI-SQUARE TEST STATISTIC 
FOR THE VARIANCE 

2 (n - l)s2 

X = 
~ 

The above random variable has the standard chi-square sampling distribution. 
Hypotheses regarding a2 take the same form as those for µ. A pivotal 

level u~ is specified for the population variance. The following testing situa­
tions apply. 

, .., f ' !'. V /> .t I J 

Lower-Tailed Test (H0 : u2 > u~) : 

Accept H 0 if x2 > xL, 
Reject H 0 if X2 < xf-a 

Upper-Tailed Test (H0 : a2 < ~) : 

_A~cept H 0 if x2 < x.; 
, , . R~jyct Half x2 _>. x! ,, ;, 
Two-Sided Test (H0 : a2 = u~): 

Accept Ho if xLa/2 < X2 < x!12 
Reject H0 if X2 < x f- a12 or if X2 > x!12 
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9-6 TESTING THE VARIANCE 

Recall that the chi-square density is asymmetrical, and that the table entries all 
involve the > orientation. For this reason the one-sided critical values are 
designated by the subscript 1 - a in the lower tail and a in the upper tail, with 
analogous values for two-sided tests. The quantities may be read from Appen­
dix Table H using n - 1 for the number of degrees of freedom. 

A chemical engineer wants to determine if a low-pressure purification proce­
dure for a synthetic fiber will result in an improvement over the present high­
pressure process. Although the latter is believed considerably faster and has a 
low mean processing time, the time needed to complete a batch varies consider­
ably-creating difficulties in scheduling plant facilities . The high-pressure pro­
cess has taken as long as 112 hours to complete but has terminated as quickly as 
33 hours, and the standard deviation has been established at u = 15 hours. The 
chi-square procedure is based on the variance, which for the present process is 
u2 = (15) 2 = 225 . It will be worthwhile to change to low-pressure processing if 
the new procedure provides a u2 half as large. 

Using ~ = 112.5, the following hypothesis testing steps were taken. 

STEP 1. Formulate the hypotheses. Wanting to protect most against the error 
of selecting the low-pressure process when in fact its processing times are not 
sufficiently consistent, the following apply: 

H 0 : u2 > 112.5 (The low-pressure process is too varied 
to justify a switch.) 

H 1 : u2 < 112.5 (The low-pressure process times are 
consistent enough to warrant switching.) 

The above indicate that the test will be a lower-tailed one. 

STEP 2. Select the test statistic. The chi-square statistic is used. 

STEP 3. Establish the significance level and the acceptance and rejection re­
gions for the decision rule. The engineer chooses a significance level of .01. A 
small value for s2, and hence x2

, will tend to refute the null hypothesis. The 
decision rule in Figure 9-12 was determined on the basis of a sample of 10 pilot 
batches processed at the lower pressure. 

STEP 4. Collect the sample data and compute the value of the test statistic. 
The following processing times in hours were obtained: 

35.4 .44.7 
49.1 52.6 

58.9 
55.3 

28.6 
36.2 

37.5 
50.0 

From the above, the sample mean is X = 44.8 hours and the sample variance is 
s2 = 99.28. The computed value for the chi-square test statistic is 

2 = (IO - 1)(99.28) = 7_94 
X 112.5 

STEPS. Make the decision. The computed test statistic falls in the acceptance 
region. Although the computed variance is smaller than ~. it is not significantly 
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a = .01 

Computed 
Values 

7.94 
x2 

----------4---- -------------Variancc 
99 -28 112.5 

S l 
(T~ 

I 
Accept H0 

(Keep process at 
high-pressure.) 

2.088 7 .94 

xi-o X l 

low enough to reject the null hypothesis. The engineer must therefore accept H0 

that the low-pressure process is not sufficiently consistent to warrant changes. 
The high-pressure procedure will be retained. 

Testing with the Normal Approximation 
Recall that the chi-square density becomes symmetrical for large sample sizes, 
approaching the shape of the normal curve. A rule of thumb is that the normal 
approximation may be used whenever n > 30. {Table H stops at 30 degrees of 
freedom.) In those cases the chi-square test statistic is transformed into the 

NORMAL DEVIATE TEST STATISTIC 
FOR VARIANCE (LARGE n) 

x2 - (n - 1) (n - l)(s2 
- iro) 

z==--;===--=--:----;::::==-
✓2n - 1 iro ✓2n - 1 

The critical normal deviate z,, applies in one-sided tests, and z,,12 is used in two­
sided tests. 

As an illustration, suppose that an industrial engineer wishes to test the null 
hypothesis that the standard deviation or variance in waiting times by partially 
completed assemblies at a particular station is the same as at another one where 
the standard deviation is known to be 10 minutes {o-0). His null hypothesis is 

··tha·t ·tr2 
.,. ( I-0)2 ~ 100. For this- tw~sidelt test he chooses * significance level of 

· a ~ .05. A random sample of 100 assemblies are tagged·and timed as they flow 
through the work station. The following decision rule applies. 

The computed value of the sample standard deviation is s = 12.5, so that 
s2 = {12.5)2 = 156.25, and 

z = 99(156.25 - 100) = 3.95 
100 ✓199 

whic 
cone 
at t 

Pro 
9-3 

9-3 

9-3 

9-

9-3 
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9-6 TESTING THE VARIANCE 

which falls in the upper rejection region shown in Figure 9-13. The engineer 
concludes that waiting times at the test station involve greater variability than 
at the reference location. 

0 

100 
<T6 

Reject H0 Accept H0 

(Conclude waiting (Conclude waiting 
ti.me variability time va riability 

is lower.) is identical. ) 

- l.96 0 
-Za/ 2 

Problems 

l.96 
z a/2 

Computed 
Values 

3.95 
z 

156.25 
s' .. 

Reject H0 

(Conclude waiting 
time variability 

is greater.) 

3.95 
z 

z 

Variance 

z 

9-35 Determine for each of the following whether H 0 should be accepted or rejected. In 
each the sample size is n = 20. 

(a) (b) (c) (d) 

Ho: u2 2:: 100 Ho: u2 s 200 Ho: u2 = 150 Ho: a2 S 15 
s' = 50 s2 = 150 s2 = 120 s' = 25 
a= .05 a= .01 a= .04 a= .05 

9-36 An educational researcher believes that even though foreign engineering students 
on the average score lower than all students on a particular graduate achievement 
examination, their drastically different backgrounds should account for greater 
variability. As her null hypothesis she assumes that this is not so, and that the 
variance in foreign students' scores is S 2,000 (a2

), the variance of all test scores. 
Using a random sample of 25 foreign-student scores, the computed variance is 
s2 = 2,749. At a 5% significance level, can she conclude that foreign students' test 
scores are more varied than those of all students? 

9-37 Refer to the physical-therapy-apparatus example on page 263. Should the mechan­
ical engineer accept or reject the null hypothesis that a2 = 100? Use a = . 10. 

9-38 Refer to the logic circuit wafer example on page 253. Should the industrial e_ngi­
neer accept or reject the null hypothesis that u2 s .0015? Use a= .01. 

9-39 An industrial engineer wishes to test the null hypothesis that the variance in wait­
ing time by machinists at a tool cage is less than or equal to 25 . A random sample 
of JOO machinist times were logged, and the sample variance was computed to 
be 41.4. At the 5% significance level, should the null hypothesis be accepted or 
rejected? 
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9-7 

HYPOTHESIS TESTING 

SELECTING THE TEST PROCEDURE 

Our introduction to hypothesis testing would not be complete without discuss­
ing some of the considerations involved in selecting the procedure itself. One 
major concern is how efficiently the selected test makes use of available sample 
data. This is partly determined by the form of the hypotheses and the particular 
test statistic employed. In comparing procedures, the better test is the one 
providing lower probabilities for the two types of errors. Ordinarily, this aspect 
may be improved by increasing the sample size, but investigators usually are 
required to keep sampling expenses within budgetary limitations. 

Some Important Questions 
Several fundamental questions must be resolved in planning a statistical testing 
experiment. 

What particular test should be used? The choice of test depends partly on 
the kind of decision to be made. Often this involves comparing a new procedure 
with an existing method, and the objective is to select the better way. Often 
quality may be expressed in terms of a mean µ , the better method involving 
the larger or smaller level. But there may be other ways to measure the same 
things. For example, instead of using the mean copper yield as the basis for 
evaluating the bacterial leaching decision at the outset of the chapter, the min­
ing engineer could conceivably use the metabolizing rate or some other biologi­
cal yardstick. A queueing evaluation might be based on the mean waiting time, 
but the determining factor might instead be the proportion of time the service 
facility is busy. In many applications-for instance, work measurement-either 
the propo2:_tion or the mean might serve as the measure of effectiveness; the test 
statistic X or P coincides. The better test-the more efficient one-will be the 
one that provides lower error probabilities for the same cost. Often, two or more 
populations must be compared when the parameters of each are unknown. 
More complex controlled experiments are then necessary; we will encounter 
procedures for evaluating some of these in later chapters. In some cases the 
populations are better represented by nonparametric tests. 

How do we evaluate a test in terms of its protection against erroneous 
decisions? Both the type I error (rejecting H0 when it is true) and the type II 
error (accepting H 0 when it is false) are undesirable. But we must tolerate some 
probability for each as the unavoidable price of basing our choice on a sample. 
Ordinarily the probability (a) of the more serious type I error is specified in 
advance, and the decision rule is selected to match. But if the resulting rule 
provides unacceptably large chances (fJ's) for the type II error, an investigator 
may choose to revise it. One useful tool employed by statisticians for this pur­
pose is the operating characteristic curve. 

Are there any underlying assumptions that might limit the scope of a 
testing procedure? t\ test statistic may have limited validity arising from the 
probability theory an~ assunlPt~ons used to derive its sampling distribution. F~ 
instance, we have been-using the normal curve to find error probabilities for X 
and to set decision rules. But doing so is nearly always an approximation. The 
quality of that approximation may be very poor for small sample sizes (and it 
may be totally inappropriate for certain unusual populations). When n is small 
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9-7 SELECTING THE TEST PROCEDURE 

and <1 is unknown, more accurate procedures might be based on the Student t 
distribution. But even then, the population itself is theoretically assumed to be 
normal (which is usually not the case) . Similar problems arise with the chi­
square distribution. When the theoretical underpinnings of a traditional pro­
cedure are seriously violated by circumstances, statisticians may substitute a 
nonparametric test that presupposes very little about the sampled population. 
Fortunately, such violations often are not serious; a procedure that is workable 
anyway is robust with respect to a violation of that assumption. 

The Operating Characteristic Curve 
In all the testing situations encountered so far, there is a range of possible 
values for the decision parameter. When sufficient information is known about 
the underlying population, it is possible to compute the conditional probability 
for accepting H 0 (or rejecting H 0) for any given value in that range. It may 
be useful to plot several of these probabilities on a graph, as in Figure 9-14, 
which provides the operating characteristic curve (or OC curve) for the bacte­
rial leaching decision from the beginning of the chapter. 

The ordinate provides Pr [accept H0 Iµ) for levels of the population mean 
copper yield µ on the abscissa. For any population mean > 36 ( = µ0) pounds 
per ton, the null hypothesis is false and the process is economical. . The corre­
sponding points on the curve are the type II error probabilities {3 . Whenµ = µ0 , 

the probability of accepting H0 is exactly 1 - a. Below 36, the probability of 
accepting H0 (then a correct action) approaches l. Notice that the f3's are quite 
large, even whenµ considerably exceeds the break-even level of 36. These indi­
cate that the mining engineer faces a high probability of incorrectly accepting a 

Pr[accept H0 I µ] 

1.00 
I-a-+---_,.~ 

.80 

.60 

.40 

.20 

{3 = .0228 
0 

30 35 40 45 50 
x• 

H0 False 

µ 0 = 36 
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Figure 9·14 Operating 
characteristic curve 
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leaching decision. 
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false null hypothesis-not recommending an economical bacterial leaching pro­
~ure. This stems from the choice of decision rule, with the critical value of 
x• = 40. 

If the mining engineer finds these error probabilities too high, he has two 
choices. (I) He may drop the critical value to a lower level. The effect of this 
would be to shift the OC curve to the left, but that results in a lower "accept" 
probability when µ, = 36, reducing 1 - a and raising a . This increase in the 
type I error probability may be even more unappealing than the original {J's . 
(2) A second remedy would be to increase the sample size. Although this in­
creases the cost of the experiment, the reduction in error probabilities may be 
worthwhile. 

Figure 9-15 shows the original OC curve for n = 100 and the OC curve 
when the sample size is raised ton = 200. Notice that except where the curves 
cross, n = 200 provides higher probabilities for accepting H0 for low levels ofµ 
and lower probabilities _for high µ's . Both curves achieve the same .50 accept 
probability when µ = X* . The limiting case is provided by the rectangular 
portion, where!!. is infinite and there is no uncertainty. (When the decision rule 
is shifted and X* = µ,0 , no error can occur in that limiting case.) 

Figure 9-16 shows the shape ofOC curves for the three types of test orien­
tations encountered in this chapter. Some statisticians prefer to place the prob­
ability of rejecting on the ordinate, which provides the power cune. That dis­
play provides exactly the same information as the OC curve. 

The OC curve may prove to be a valuable tool for evaluating a proposed 
test and decision rule. But as a practical matter, it is not always possible to 
construct such a curve. There may be many unspecified ways for the type II 
error to occur, and it may be difficult or impossible to compute fJ for each. For 
instance, unless u is known, the fJ probabilities in testing µ, are indeterminate. 

Pr [accept H0 I µ) 
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Pr[accept H0 Iµ) Pr [accept H0 I µ] 

I 

0 

I¼ 

Upper-Tailed Test 
(Ho:µ~ /Lo) 

Pr [accept H0 Iµ) 

I 

I¼ 

Lower-Tailed Test 
(Ho: µ~ /Lo) 

1.0 r-_____ ....._ _____ _ 

0 

I¼ 

Two-Sided Test 
(Ho: µ = /Lo) 

Some procedures, such as the nonparametric ones, do not even have abscissa 
units for constructing a graph. 

Umltatlons of Hypothesis Testing 
Hypothesis testing as described in this chapter was originally designed for ap­
plications in biology and medicine. Within budgetary limitations, avoidance of 
error is an overriding consideration in those fields. Thus, choosing a procedure 
that limits the incidence .of the more serious error is perhaps the best decision­
making criterion. But that criterion may not be best for decision-making in 
other areas. 

Later in this book we will encounter Bayesian decision-making procedures 
where a wider focus is made. Error is just one aspect of Bayesian evaluations, 
which are based on a broader statistical decision theory. These more general 
procedures allow us to establish probabilities for the level of µ. (or 1r) . It is 
possible to expand the dimensions of the statistical evaluation to consider a pay­
off measure that quantifies each outcome. Within that analytical framework it 
is even possible to consider such fundamental questions as whether or not to 
sample at all. (It may be better to decide without the bother and benefit of 
sampling!) 
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Problems 
9-40 Suppose that the mining engineer in the bacterial-leaching illustration changes 

his significance level to a = .01 and uses a sample size of 150 batches. 
(a) Determine his new decision rule when X is the test statistic. 
(b) Construct an operating-characteristic curve using the decision rule from (a). 

9-41 Construct the OC curve for the biological reduction process decision in Prob­
lem 9-13 . 

9-42 Construct the OC curve for the rod decision in Problem 9-17. 
9-43 Construct the OC curve for the data processing decision illustrated on page 305. 

Review Problems 
9-44 For each of the following situations, (1) specify the test statistic, (2) give its 

critical value, and (3) indicate whether the test is lower-tailed, upper-tailed, or 
two-sided. In each case use a = .05 and assume a large population unless other­
wise indicated. 
(a) H 0 : µ ::S 50, u = 10, n = 100 
(b) H 0 : µ 2:: 100, u = ?, n = 100 
(c) H0 : µ = 75, u = ?, n = 20 
(d) H0 : ,r ::S .20, n = 100 
(e) H0 : ,r 2::: .40, n = 50, N = 200 
(f) H0 : µ ::S .50, u = .15, n = 25, N = 150 
(g) H0 : µ 2:: 1.46, u = ? , n = 25 
(h) H 0 : µ = 25, u = 2, n = 200, N = 1,000 

9-45 The following data (minutes) apply for a random sample of processing times for a 
chemical reaction: 

2.3 
4.4 
5.3 

6.7 
5.2 
4.7 

3.8 
3.9 
4.2 

5.0 
4.8 
4.7 

4.9 
4.6 
5.7 

6.1 
5.7 
4.8 

Can you conclude that the mean of all processing times exceeds 4 minutes? Use 
a= .05 . 

9-46 The following data were obtained for the amount of time (seconds) taken by a 
proposed computer system to compile a sample of short FORTRAN programs: 

.6 
4.4 
4.7 

1.0 
2.4 
3.0 

1.8 
3.5 
2.3 

4.8 
3.9 
2.9 

4.2 
3.9 
1.0 

(a) At the 5% significance level, test the null hypothesis that the mean compila­
tion time for all short FORTRAN programs run on .the system is at least 4 
seconds. Should it be accepted or rejected? 

(b) At the 5% significance level, test the null hypothesis that the standard devi­
ation in compilation time is less than or equal to .9 second (u2 ::s .81). Should 
it be accepted or rejected? 

9-47 A pharmaceutical loader has been set to insert exactly 5 milligrams into each 
capsule of a particular drug. Periodically a sample of 100 capsules is taken and the 
c6ntents of each are measured. The standard deviation has been established at .2 
milligram per capsule. ··corre¢tive actidn '-will be taken whenever the computed 
mean is significantly great or small. 
(a) Determine a decision rule when a 1 % chance is permitted for taking unneces· 

sary action. 

9 

9! 

9-
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(b) Applying the above, what is the probability of failing to take needed correction 
when the true mean is (1) 5.05 milligrams? (2) 4.97 milligrams? (3) 5.07 
milligrams? (4) 4.98 milligrams? 

9-48 A program director for a large computer maker is evaluating a circuit-designing 
software package. Not only is the program purported to ease the engineers' tasks, 
but its author also claims that the finished products will be more economical 
because fewer logic elements will be needed. To test this theory, the software was 
borrowed and used to redesign 20 prototype circuits already completed the tradi­
tional way. The resulting computer-generated designs all worked and involved a 
mean percentage reduction in components of 3.4% (s = 4.2%). 
(a) At the 1 % significance level, can the project manager reject the null hypoth­

esis that the software designs involve at least as many elements as do tradi­
tional ones? 

(b) What is the smallest significance level at which the null hypothesis can be 
rejected? 

9-49 Refer to the data in Problem 9-45. What is the lowest significance level at which 
you can conclude that the variance in processing time exceeds .25 minute2? 

9-50 Refer to the data in Problem 9-46. 
(a) Construct a 99% confidence interval estimate for the mean. Should the null 

hypothesis that µ. = 3.50 minutes be accepted or rejected at the 1 % signifi­
cance level? 

(b) Construct a 98% confidence interval estimate for the variance. Should the null 
hypothesis that u2 = 1.0 be accepted or rejected at the 2% significance level? 

9-51 Only 18 persons in a sample of 100 students indicated a desire for a full-scale 
summer program. Can it be concluded that the majority of students don't want 
such a program? Use a= .01 for incorrectly making that conclusion. Assume a 
large population and apply the normal approximation. 

9-52 Specifications for a component require that the MTBF exceed 100 hours. The 
actual MTBF of any shipment is unknown, although it is assumed for each that the 
lifetime standard deviation is 10 hours. There should be only a 5% chance of 
concluding that a shipment meets specifications when it does not. A statistician 
takes a random sample of 50 items from a particular shipment of 300 and com­
putes the MTBF to be 102 hours. What conclusion does he reach? 

9-53 The failure rate of jet engine fan blades subjected to a particular test condition has 
been specified to be less than .05. An entire production batch found to violate that 
requirement will be scrapped; otherwise they will be assembled into engines. As­
suming just a 10% chance of erroneously assembling with a poor-quality batch of 
fan blades, determine the maximum number of failed blades in a sample of 100 
that would still allow the batch to be used in assembly. (Use the binomial distribu­
tion directly, assuming the batch size is large.) 

9-54 It is sometimes possible to find a required sample size so that the targeted levels 
for both a and f3 may be specified. Consider a one-sided hypothesis test of the 
mean where u is known and N is large. 
(a) Letting µ. 1 represent the assumed level for µ. for which f3 is specified and z~ the 

corresponding normal deviate, derive an expression for finding the required 
sample size. 

(b) Find the level for n that should be used in each of the following: 

(1) IJ.o = 90, µ. l = 100, U = 25, a= .05, f3 = .10 
(2) 1J.o = 50, µ 1 = 30, u = 15, a= .01 , f3 = .05 
(3) 1J.o = 1.52, µ 1 = 1.55, u = .5, a = .05, f3 = .10 
(4) IJ.o = 1,100, µ 1 = 1,000, u = 100, a= .10, f3 = .20 
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9-55 In a similar fashion to Problem 9-54 the required sample size may be found for 
testing the proportion when N is large and the normal approximation applies. 
(a) Letting 1r1 denote the assumed level for the population proportion for which fJ 

is specified and z~ the corresponding normal deviate, derive an expression for 
finding the required sample size. (Ignore the continuity correction.) 

(b) Find the level for n that should be used in each of the following: 
(1) 1r0 = .15, 1r1 = .20, a= .05, fl= .10 
(2) 1r0 = .10, 11" 1 = .05, a= .01, fl= .05 
(3) 1r0 = .50, 1r1 = .60, a= .10, fl= .15 
(4) 1r0 = .51, 1r1 = .49, a= .05, fl= .10 r 




