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BICs to a previously settled column of U-Plant-2 or In-Farm-2 sim nts. None of the experiments
performed to examine the potential concentration mechanisms yielded evidence that a significantly
concentrated region of *’Cs had formed. The layering experiments yielded a settled solid that was
essentially homogeneous with respect to the concentration of **’Cs. The intercalation experiments
indicated the cesium will diffuse through the settled bed of simulant and sperse.
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calculated doses of one to two orders of magnitude greater than postulated in the DOE EIS.
Uncertainties regarding the safety envelope of the [anford Site ferrocyanide waste tanks led to the
declaration of the ferrocyanide unreviewed safety question (USQ) in October 1990.

Despite the fact that the measured temperatures in these tanks continue to drop from the continued
decrease in radioactive decay (Hanlc 1995), tl has been a good deal of speculation as to the possi-
bility of "hot spots" forming in the tanks from dlytic heating. In order to address these concerns, a
number of studies have been conducted by Westinghouse Hanford Company (WHC), Pacific rthwest
Laboratory (PNL),® and others in an effort to identify the reactions that occur, and to quantify the
magnitude of the energy r :ased during reactions (Burger 1984; Burger and Scheele 1988, 1990;
Scheele et al. 1991, 1992; Scheele and Cady 1989; Hallen et al. 1991; Dickinson et al. 1993; Epstein
et al. 1994; McLaren 1992).

This report focuses on the determination of cesium exchange and settling characteristics of ferro-
cyanide waste. Studies were conducted to examine the capability of solid nickel ferrocyanides present
in tank waste simulants to exc 1ge cesium fromr Hlution and to exan * e potential concentration
mechanisms for the '*’Cs exchanged by the solids. The exchange capacity and concentration mecha-
nisms are of interest because waste added to the tanks after the 1950s contained soluble cesium that
may have contacted the ferrocyanide layers and been exchanged by the nickel ferrocyanide precipitates.
This exchange process could allow the '*’Cs to become more concentrated, possibly ading to hotter
regions within the tank.

(@) Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle
Memorial Institute under Contract DE-AC06-76RLO 1830.

1.2





















™. "l"l, ' v x\'v:a g W y
a1 856,20

PO

3.0 Measuren nts ‘Cesium Dii but in Simulated
Ferrocyanide Waste: Batch Distribution (K,)
Measurements

The batch distrib'  on coefficient (K,) is a measure of the overall ability of the solid phase to
remove an ion from solution (Amphlett 19¢ . Batch distrii  on results are reported as distribution
coefficients in mL/g (mL of solution exchanged per n  ; of exchanger). The batch stribution value
represents a solid-liquid equilibrium dist1 ition for the exchange of cesium from the liquid phase into
the solid phase. The K; expression is defined as follows:

K, - CL ) €, - Cv _mL M
’s] C'm g
where C, = cesium concentration ins d, moles/g
[Cs] = cesium concentration inli id, moles/mL

C, = initial cesium concentration in solution

C; = final cesium concentration in solution

V = volume of solution

M = mass of exchanger.

Experimentally, the K, value is measured for specific solutions where the initial concentration of the
ion of interest is known (in this case, cesiw and the concentration of competing ions of interest is also
known (in this case, sodium). The K; value is significant because this value represents the total volume
of solution from which all cesium present could be removed. This value can be used only for com-

arison with solutions that have identical composition as the solution for which the K, was measured.
Since the K, value is determined by differer  as more and more of the ion of interest is removed, the
K, values become quite large.

Distribution coefficients were measured for U-Plant-2 and In-Farm-2 centrifuged solid waste
simulants. The cesium-to-nickel ferrocyanide ratio was varied from 200 to 0.0010 while the con-
centration of sodium was kept constant. This experiment allows for the measurement of K, values at
various cesium levels covering a range of conditic  representative of the ferrocyanide waste. The
results are reported in Tables 3.1 and 3.2.

The results listed in Tables 3.1 and 3.2 corroborate the expectation that U-Plant-2 and In-Farm-2
solids should behave si larly with respect to the exchange of cesium from solution. In these two
experiments, the sodium concentration was kept constant while the cesium concentration was varied.
To determine if sodium significantly affected the exchange of cesium, the experiments were repeated
maintaining a constant sodium-to-cesium ratio while varying the concentration of cesium. The ratio of
cesium to nickel ferrocyanide was varied from 200 to 0.0010 using serial dilutions of a stock solution.
The results for U-Plant-2 and In-Farm-2 simulants are reported in Tables 3.3 and 3.4, respectively.
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Figures 3.1 and 3.2 show that the maximum capacity of each exchanger can be determined from this
experiment. The U-Plant-2 simulant has a maximum capacity of 0.50 mole cesium per mole nickel
ferrocyanide, under the conditions of the experiment, and the In-Farm-2 simulant has a maximum
capacity of 0.80 mole cesium per mole nickel ferrocyanide. The simple theoretical cesium capacity of
a ferrocyanide solid is 2 mole cesium per mole ferrocyanide. This capacity is an upper limit for ion
exchange and is rarely realized in practice (Haas 93). The reported maximum exchange capacity of
cesium by nickel ferrocyanide ranges from 0.35 to 1.9 mole cesium per mole nickel ferrocyanide
(Loos-Neskovich and Federoff 1989).

Table 3.1. Effect of Cesium Concentration on the Cesium Distribution Coefficients for U lant-2
Simulant at pH 9

Cs/NiFeCN [Cs], K, Cs
Sample # Na/Cs Ratio Ratio moles mL/g Removed, %

1 4.50e+02 206 1.30e-02 0.45 1%
2 9.00e+02 100 6.47e-03 1.7 4%
3 1.80e+03 51 3.22e-03 1.3 3%
4 3.60e+03 25 1.61e-03 2.5 6%
5 9.00e+03 10 6.50e-04 2.1 5%
6 1.80e+04 5 3.24e-04 3.0 7%
7 4.50e+04 2 1.29e-04 4.6 10%
8 8.70e+04 1 6.69¢e-05 9.3 19%
9 1.80e+05 - 0.50 3.29e-05 17 ~ 30%
10 8.90e+05 0.10 6.57e-06 180 82%
11 1.70e+06 0.050 3.35e-06 620 94 %
12 8.70e+06 0.010 6.66e-07 6600 99%
13 1.80e+07 0.005 3.30e—07 6400 99%
14 3.40e+07 0.0027 1.70e-07 6500 99%
15 8.90e+07 0.0010 6.56e-08 6500 99%
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Table 3.2. Effect of Cesium Concentration on the Cesium Distribution Coefficients for In-Farm-2
Simulant at pH 9

Cs/NiFeCN [Cs], K., Cs
Sample # Na/Cs Ratio Ratio moles mL/g Removed, %

1 2.00e+02 195 1.16e-02 0.9 2%
2 4.00e+02 98 5.86e-03 1.4 3%
3 8.00e+02 49 2.92¢-03 1.0 3%
4 1.60e+03 24 1.46e-03 5.7 5%
5 4.00e+03 10 5.83e-04 24 6%
6 8.00e+03 5 2.92e-04 34 8%
7 2.00e+04 2 1.17e-04 6.8 15%
8 4.10e+04 1 5.73e-05 13 26%
9 8.10e+04 0.5 2.87e-05 24 37%
10 4.00e+05 0.1 5.76e-06 230 85%
11 8.10e+05 0.05 2.87e-06 580 94 %
12 4.30e+06 0.009 5.36e-07 5900 99 %
13 8.10e+06 0.005 2.86e-07 6600 99 %
14 1.60e+07 0.0024 1.43e-08 7600 99%
15 4.30e+07 0.0009 5.42¢-08 8700 99 %
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Table 3.3. Effect of Cesium Concentration on the Cesium Distribution Coefficients for U-Plant-2
Simulant with Constant Na/Cs Mole Ratio of 4.8

Cs/NiFeCN [Cs], K., Cs
Sample # ~  Ratio moles mL/g ~ Removed, %
1 o 200 1.28e-02 <DL <DL*
2 100 63703 021 1%
3 49 3.18e-03 0.38 1%
4 25 1.60e-03 0.7 2%
5 10 6.51e-04 1.3 3%
6 5 3.30e-04 3.2 7%
7 2 1.31e-04 6.7 14%
8 1 6.57e-05 12 23%
9 0.50 3.30e-05 26 40%
10 0.10 6.57e-06 1600 98 %
11 0.050 3.28e-06 8700 99 %
12 0.010 6.61e-07 30200 99 %
13 0.0050 3.28e-07 30000 99 %
14 0.0025 1.63e-07 14000 99%
15 0.0010 6.61e-08 16000 99%

* Less than detection limit.
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Table 3.4. Effect of Cesium Concentration on the Cesium Distribution Coefficients for In-Far; 2
Simulant with Constant Na/Cs Mole Ratio of 7.5

Cs/NiFeCN [Cs], K., Cs
Sample # Ratio moles mL/g Removed, %

1 200 1.17e02 3.0 - 7%
2 100 5.86e-03 3.0 8%
3 50 2.93e-03 0.7 2%
4 24 1.45¢-03 1.7 4%
5 10 5.90e-01 3.0 7%
6 5 2.8%e-04 6.7 15%
7 2 16e-04 17 30%
8 1 5.81e-05 41 51%
9 0.50 2.91e-05 170 81%
10 0.10 5.81e-06 31000 99%
11 0.050 2.91e-06 35000 99%
12 0.010 5.81e-07 20000 99%
13 0.005 2.91e-07 54000 99 %
14 0.0025 46e-08 28000 99 %
15 0.0010 5.82e-08 26000 99%
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The results from these four series of experiments indicate the In-Farm-2 simulant v better at
exchanging cesium from solution than was the U-Plant-2 simulant. Table 3.5 compares the In-Farm-2
and U-Plant-2 distribution coefficients corrected for the amount of Na,NiFe(CN), present in the solids,
as determined by fourier transform infrared s :troscopy (FTIR). However, the In-Farm-2 simulant
was prepared using a small amount of cesium; therefore, the simulant contains small amounts of either
Cs,NiFe(CN), or NaCsNiFe(CN),. The added mole quantity of cesium was one-twentieth of the total

rrocyanide; therefore, depending upon the form of the cesium nickel ferrocyanide [Cs,NiFe(CN), or
NaCsNiFe(( I, 2.5% to0 5.0% of the nic rrocyanide would already contain cesium and would be

unlikely to ¢  nge : litioo cesium froi tion. Thus, the concentration of nickel ferrocyanide
available for ion exchange would be less th: measured value calculated from the measured cya-
nide. After applying this correction, the d ce between the exchange capacity of the two materials

is even larger (0.86 mole of cesium per mole of nickel ferrocyanide present in In-Farm-2 simulant).

The effective capacity of nickel ferrocyanide to exchange cesium depends on the molar ratio of
cesium to ni el ferrocyanide, as illustrated by the K, values (see Figure 3.1). In the initial scavenging
campaign, the mole ratio of cesium to nickel ferrocyanide was quite small, approximately 0.006 to
0.003. Under these conditions and with lower ratios, the K, values were quite large, and cesium was
readily removed from solution. However, when the ratio of cesium to nickel ferrocyanide was
increased to 2 and eyond, the K, values were  nificantly decreased (see Tables 3.1 through 3.4).

The K, values for the U-Plant-2 and In  arm-2 waste simulant, based on the concentration of
Na,NiFe(CN), present, agree quite well with the literature values for solutions with similar con-
centrations of ions (Table 3.6). The experimer | K, values are lower than literature values because
the cesium-to-nickel ferrocyanide ratios in the experiments were higher than the cesium-to-nickel
ferrocyanide ratio in the literature studies (Can »dell et al. 1991). At the higher levels of cesium (thus
a higher ratio of cesium to nickel ferrocyanide), the K, values are low with respect to the results of
Campb et al. However, the lower concentrations of cesium, the results compare well with the
literature values.
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Table 3.5. Distribution Coefficients for U-Plant-2 and In-Farm-2 Simulants Based on the Total
Concentration of Na,NiFe(C ¢ Present in the Simulant

Cs-to- U-Plant-2
NiFeCN Simulant, In-Farm-2 Simulant,
Sample # Ratio K;mL/g K; mL/g
' 1 T “<DL¥* ' <DL
2 100 5.0 <DL
3 50 9.0 17
4 25 ‘ 20 43
5 10 30 72
6 5 80 170
7 2 170 420
8 1 300 1000
9 0.50 650 4200
10 0.10 39000 770000
11 0.050 220000 880000
12 0.0010 750000 500000
13 0.0050 740000 1300000
14 0.0025 340000 700000
15 0.0010 390000 650000

* Less than detection limit.
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Table 3.6. Summary of Experimental and Literature K, Values for U-Plant-2 and In-Farm-2
Simulated Ferrocyanide Waste and Pure Na,NiFe(CN),

Material K, Conditions

U-Plant-2 6.5x 10°-7.5x 10° [Na]= 3.66 M
[C 3.3: '-6.6x 108 2
2 NiFe( +0.50 - 0.C M

In-Farm-2 42x »P-13x ° [Na]= 5.82 M
: [Cs]=2.9x10°-5.8x10° M
[C [NiFeCN 0.50-0.0010 M

Na,NiFe(CN), 6.0x 10°-1.0x 10° [NaJ=45M®
[K] = 025 M
[Cs]= 1.0x 10°-2.5x 10" M
[Cs)/[NiFeCN]= 0.30 - 7.9 x 10* **

(2) Campbell et al. (1991),
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Table 4.1. Layering of U-Plant-2 Wi Simulant Containing 0.50:1 Ratio of Cesium to
Nickel Ferrocyanide and : Solids

Distance from Bottom Relative *’Cs

Layer of Column, cm Concentration, Counts  Total Cesium, %
Liquid 22 5380 3.7
Liquid 21 5320 3.6
Liquid 20 5450 3.7
Solid-Liquid Interface 19 8000 54
Solid 18 10300 7.0
Solid 17 10800 7.4
Solid : 16 11300 7.7
Solid 15 11000 7.5
Solid 13 11300 7.7
Solid 11 11200 7.6
Solid 9 11400 7.8
Solid 7 11600 7.9
Solid 5 11500 1.8
Solid 3 11300 7.7
Solid 1 11100 7.6
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Table 2. Layering of U-Plant-2 Waste Simulant Containing 0.50:1 Ratio of Cesium to
Nickel Ferrocyanide and 15% Solids

Distance from Bottom Relative Cs

Layer of Column, ¢cm Concentrar 1, Counts  Total Cesium, %

quid 13 2890 3.6 B
L id | 3030 3.8
Li id 10 30 3.8
Li id 9 3400 4.2
Solid-Liquid Interface 8 6320 7.8
Solid 7 74 9.2
Solid 6 7390 9.2
Solid 5 7560 94
Solid 4 7650 9.5
Solid 3 7920 9.9
Solid 2 7960 9.9
Solid 1 7790 9.7
Solid 0 8240 10.2
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Table 4.3. Layering of U-Plant-2 Wi
Nickel Ferrocyanide and :

Layer

of Column, cm

Distance from Bottom

Liquid

Liquid
Solid-Liquid Interface

Solid

Solid

Solid

Table 4.4. Remeasurement of Layeri

10

(S0 IR VS RS |

Relative *’Cs
Concentration, Counts

840

880
2100
10200
11200
12400

. Simulant Containing 0.50:1 Ratio of Cesium to
Solids

Total Cesium, %
2.2 B
23
5.6
27.1
29.7
33.0

of U-Plant-2 Waste Simulant Containing 0.50:1

Ratio of Cesium to Nickel Ferrocyanide and 5% Solids Using the Thin
Collimated Slit

Distance from ottom

Relative *'Cs

Layer of Column, cm Concentration, Counts  Total Cesium, %
Liquid 6 4020 11.4
Liquid 5 4110 11.7
Liquid 4 4340 12.4
Solid-Liquid Interface 3 5330 15.2
Solid 2 5860 16.7
Solid 1 5930 .9
Solid 0 5540 15.8
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Table 4.5. Layering of U-Plant-2 Waste Simulant Containing 0 0033:1 Ratio of Cesium to
Nickel Ferrocyanide and 30% Solids

ﬁw&ﬂ;» - ﬁg.

Distance from ottom

Relative ¥’Cs

Layer of Column, ¢cm Concentration, Counts  Total Cesium, %
] Lig | 17 420 0.6
Liquid 16 730 1.1
Li id 15 870 1.3
Liquid 13 1380 2.0
Solid-Liquid Interface 12 4340 6.3
Solid 11 5400 7.8
Solid 10 5200 7.5
Solid 9 5300 7.7
Solid 7 5390 7.8
Solid 6 5570 8.1
Solid 5 5760 8.3
Solid 4 5770 84
Solid 3 5800 8.4
Solid 2 5840 8.5
Solid | 5780 8.4
Solid 0 5490 7.9
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Table 4.6. Layering of U-Plant-2 Waste Simulant Containing 0.0033:1 Ratio of Cesium to
Nickel Ferrocyanide and 15% Solids

Distance from ttom Relative '*'Cs _
Layer of Column, cm Concentration, Counts  Total Cesium, %
Liquid 11 1690 , 3.0
Liquid 9 1730 3.1
Liquid 8 1630 29
Liquid 7 2220 3.9
Solid-Liquid Interface 6 5730 10.2
Solid 5 6520 11.6
Solid 4 6980 12.4
Solid 3 71 ) 12.7
Solid 2 7350 13.1
Solid 1 7640 13.6
Solid 0 7670 13.6

Table 4.7. Layering of U-Plant-2 Waste Simulant Containing 0.0033:1 Ratio of Cesium to
Nickel Ferrocyanide and 5% So s

Distance from Bottom Relative *'Cs
Layer of Column, cm Concentration, Counts  Total Cesium, %
Liquid 7 4850 9.3
Liquid 6 5390 10.3
" "quid 5 5960 11.4
Solid-Liquid Interface 4 6500 12.
Solid 3 7190 13.8
Solid 2 7480 14.3
Solid 1 7540 14.4
Solid 0 7310 14.0
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Table 4.8. Layering of In-Farm-2 Waste Simulant Containing 0.{ 1 Ratio of Cesium to
Nickel Ferrocyanide and 30% Solids

Distance from Bott 1 Relative *'Cs

Layer of Column, cm Concentration, Counts  Total Cesium, %
Liquid 22 5180 2.9
Liquid 21 5380 3.1
Liquid 19 5650 3.2
Liquid 18 5940 34
Liquid 17 6610 3.8
Solid-Liquid Interface 16 6610 3.8
Solid 15 14200 8.0
Solid ‘ 14 14900 8.5
Solid 12 16000 9.1
Solid 10 16300 9.3
Solid 8 16700 | 9.5
Solid 6 16300 9.3
Solid 4 16400 9.3
Solid 2 15600 8.9
Solid 0 14300 8.1



Table 4.9. Layer  of In-Farm-2 Wa  Simulant Containing 0.80:1 Ratio of Cesium to
Nickel errocyanide and 15% Solids '

Distance from Bottom Relative *'Cs
Layer of Column, cm Concentration, Counts  Total Cesium, %
Liquid 22 3610 4.1
Liquid 20 3610 4
Liquid 18 3810 4.3
Liquid - 17 3970 4.5
Solid-Liquid Interface 16 5810 6.5
S d 14 7600 8.5
Solid 12 7660 8.6
Solid 10 8160 9.2
S d | 8 8190 9.2
Solid 6 8790 9.9
Solid 4 - 9140 10.3
Solid 2 9500 | 10.7
Solid 0 9250 10.4

Tal 4.10. Layering of In-Farm-2 W; : Simulant Containing 0.80:1 Cs Ratio of Cesium
to Nickel Ferrocyanide an % S ds

Distance fr 1 Bottom R tive ¥'Cs

Layer of Column, cm Concentration, Counts  Total Cesium. %

Liquid 11 1100 7.2 )

Liquid 9 1000 6.7

Li id 7 1200 7.8

Solid 5 1600 10.1
Solid-Liquid Interface 4 2500 16.0

Solid 2 4100 27.0

Solid 0 3800 25.0
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bed of settled solids containing Na,NiFe(CN),, v en the concentration of cesium exceeded the experi-
mentally determined capacity of the simulant. The conditions of this experiment were more rig >us
than those expected to exist within the tanks, ce convectic and other forms of jostling of tank waste
occurred within the tanks, especially after ad g additional solution to the settled solids of the tank.
With such jostling, it is expected that any layers that did form would be mixed to some degree with the
contents of the tank.
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Table 5.1. Intercalation of Cesium Solution with a 0.50:1 Cesium-to-Nickel Ferrocyanide Ratio
into a Settled Column of U-Plant-2 Simulant ©

1 Day 2 Days 5 Days
Distance from Relative Perct  of Relative Percent of Relative Percent of
Top of ¥iCs Total ¥iCs Total BiCs Total

Column, cm Layer Concen. Ce: Concen. Cesium Concen. Cesium

0 Liquid 1530 1.5 -NA NA NA NA

1 Liquid 44900 435 40300 355 20400 19.7

2 Solid 41200 40 37500 33.1 23500 22.8

3 Solid 8580 8.3 21800 19.2 24100 233

4 Solid 2850 2.8 7000 6.2 17300 16.8

5 Solid 1850 1.8 2620 23 10800 10.4

6 Solid 1330 13 1880 1.7 6170 6.0

7 Solid 880 0.9 1460 1.3 2570 2.5

8 Solid NA NA 980 0.9 1150 1.0

(a) The maximum cesium capacity of U-Plant-2 simulant is 0.50 mole of cesium per mole of NiFeCN

Table 5.2. Intercalation of Cesium Solution with a 0.01:1 Cesium-to-Nickel Ferrocyanide atio
into a Settled Column of U-Plant-2 Simulant ®

1 Day 2 Days 5 Days
Distance from Relative Percent of Relative Percent of Relative Percent of
Top of BICs Total 1¥1Cs Total Cs Total
Column, cm Layer Concen. Cesium Concen. Cesium Concen. Cesium

0 Liquid 9400 10.8 10700 10.1 2780 29

1 Liquid 44500 512 33600 31.7 10000 10.6

2 Solid 24100 277 24300 229 13500 14.3

3 Solid 4330 5.0 30200 28.5 50900 53.7

4 Solid 2130 y 3400 3.2 13800 14.5

5 ~ Solid 1530 1.8 2200 2.1 2320 2.4

6 Solid 1000 1.1 1580 1.5 1470 1.5

(a) The maximum cesium capacity of U-Plant-2 simulant is 0.50 mole of cesium per mole of NiFeCN
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Table 5.5. Intercalation of Cesium Solution with a 0.01:1 Cesium-to-Nickel Ferrocyanide Ratio
into a Settled Column of In-Farm  Simulant ©

1 Day 2 Days 5 Days
Distance Relative Percent of Relative Percent of Relative Percent of

from Top of ¥1Cs Total B1Cs Total BIcs Total
Column, cm Layer Concen. Cesium Concen. Cesium Concen. Cesium

0 Solid 72200 73.9 46 513 18600 20.0

1 Solid 16700 17.1 32800 36.0 62900 67.7

2 Solid 3340 3.4 4690 5.1 5290 5.7

3 Solid 2370 2.4 2710 3.0 2370 2.6

4 Solid 1810 1.8 1880 2.1 1650 1.8

5 Solid 1300 1.3 _ 1360 1.5 1210 1.3

6 Solid NA NA 900 1.0 910 1.0

(a) The maximum cesium capacity of In-Farm-2 simulant is 0.80 mole of cesium per mole of NiFeCN

Table 5.6. Intercalation of Cesium Solution th a 0.0033:1 Cesium-to-Nickel Ferrocyanide atio
into a Settled Column of In-Farm-2 Simulant ©

1 Day 2 Days 5 Days
Distance from Relative Perct  of Relative Percent of Relative Percent of
Top of ¥cs Total - Wcs Total ¥Cs Total
Column, cm Layer Concen. Cesium Concen. Cesium Concen. Cesium
0 Solid 69100 60.3 31500 25.4 12500 10.5
1 Solid 32700 28.5 78500 63.3 92200 718
2 Solid 6190 5.4 6910 5.6 7180 6.1 |
3 Solid 2900 2.5 3300 2.7 2940 2.5
4 Solid 2090 1.8 2160 1.7 2120 1.8
5 Solid 1590 1.4 1600 13 1520 1.3

(a) The maximum cesium capacity of In-Farm-2 simulant is 0.80 mole of cesium per mole of NiFeCN
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resolution of a radiocesium-enriched layer. T. settling experiments were performed using 30%, 15%
and 5% total simulant solids suspended in the simulant supernate. This allowed for the settling to
occur at various rates. Examination of U-Plant-2 and In-Farm-2 simulants after several weeks of
settling indicated no evidence of concentratior fthe ®’Cs tracer within the column.

In addition to the layering concentration mechanisms, it is possible that radiocesium could be
selectively adsorbed into a layer of previousl  tl¢ nickel ferrocyanide waste with the addition of
cesium-enriched supernate to the waste tank wing the initial processing of the ferrocyanide tanks.
A concentrated region of *’Cs-enriched nick  rrocyanide could then be formed if the cesium d not
evenly d 1se through the solids. This possi y was examined by allowing several columns of
U-Plant-2 and In-Farm-2 simulants to settle for sev I weeks, then adding simulant supernate spiked
with cesium. The '*’Cs concentration was then monitored using a gamma detector equipped with a
collimated slit to allow the spatial resolution of the radiocesium tracer.

Several concentrations of cesium were an: red ) determine the extent of intercalation into the

- simulants. The intercalation experiments performed with both U-Plant-2 and In-Farm-2 simulants

indicated that the cesium solution diffused rea ' through a bed of settled solids containing
Na,NiFe(CN),. When an excess of cesium was available (Cs:NiFeCN ratio of 0.80 or 0.50) the
cesium quickly intercalated through the solids and dispersed. When only a slight amount of cesium
was available, the cesium did not diffuse throu an appreciable amount of the solids because all of the
available cesium was bound by the nickel ferrocyanide present in the first several centimeters of the
simulant,

The distribution coefficients and maximum capacity measurements indicated the U-Plant-2 and

In-Farm-2 simulants were capable of exchang: rificant amounts of cesium from solution even in
the presence of extreme excesses of sodium. ar, the layering and intercalation experiments -
indicated there is no discernable formation of ed concentrations of radioactive cesium resulting
from the exchange of cesium from solution. . nally, the intercalation experiments showed that
when excess cesium is added to the solid was lant, it readily diffuses through the solids, even in

a static environment,
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