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gravel sequence iA interpreted to belonging to the gravel-dominated facies of the Hanford 
formation. Lenticular and discontinuous units of sand-dominated facies are sometimes 
interbedded with the gravel-dominated facies. 

The H3 unit is not continuous beneath the B-BX-BY WMA; it generally is missing from 
the central portion of the waste site, where, in its place, lies the Hf7PPu(?). Where the HtlPPu(?) 
silt Jayer is missing, the H3 and Hf71>Pu(?) cannot be differentiated; these units are ref erred to 
collectively as the H3/Plio-Pleiatocene unit (undifferentiated). A structure-contour map of the 
top of the Hanford formation lower gravel sequence (113 unit) is shown in Appendix B, 
Figure B-12. The map shows approximately 20 m (70 ft) of relief on this surface beneath the 
WMA. The H3/Plio-Pleistocene unit (undifferentiated) averages about IS m (50 ft) thick over 
most of the ·waste site (Figure B-13), ex~ept to the northwest, where it is up to 30 m (100 ft) 
thick, and to the northeast. where it thins to about l O m (3 0 ft). 

lll.2 Sand Sequence (Hl Unit). The Hanford formation sand sequence overlies the lower 
gravel sequence (ID unit) and directly overli~ the Hf7PPu(?) silt layer locally. The H2 unit is 
equivalent to the sandy sequence of the Hanford formation discussed in Last et al. (1989) and 
Lindsey et al. (1992), to the Hanford formation H2 sequence discussed in Lindsey et al. (1994}, 
and to Qfs (Quaternary flood sands) documented in Reidel and Fecht (1994). 

The H2 unit consists predominantly of the sand-dominated facies of the Hanford formation. 
lntemally, this sequence probably oonta.ina multiple graded beds of plane- to foresd-bedded sand 
or gravelly sand several meters (feet) or more thick, which sometimes grade upward into silty sand 
or silt similar to that observed at the 218-E• l 28 Burial Ground ( see Figure 2-8). Many more silt 
layers probably are present in the subsurface than are reported in driller's and geologist's logs and 
appear in the cross sections and fence diagram in Appendix A Thia is because the drill method 
and/or the sampling interval (nonnally every l .S m [S ftD often cannot distinguish layers less than 
a few meters (feet) thick. Cernentation is vr:ry minor or absent, and total calcium carbonate content 
generally is only a few weight percent or less. 

The Hanford fonnation sand sequence (H2 unit) is ubiquitous beneath the 
B-BX-BY WMA The base of the Hanford sand sequence lies at the top of the gravel-dominated 
sequence toward the bottom of the hole or at the top of the fine-grained Plio-PJeistocene unit. 
whichever is higher. 

A structure-contour map of the top of the Hanford formation sand sequence is shown in 
Appendix B, Figure B-14. The map shows approximately 20 m (60 ft) of relief on the surface of 
the sand sequence beneath the B-BX-BY WMA This sand sequence is thickest (60 m [200 ft]) 
in the central and southern portioM oftbe WMA and thins to u little as 30 m (110 ft) to the 
north (Figure B-15). 

2.l.8.3 Upper Gravel Seq• eace (Bl Unit). The Hanford formation upper gravel sequence 
overlies the Hanford formation sand sequence. This unit is equivalent to the upper gravel 
sequence of the Hanford formation diaculled in Lut et al. (1989) and Lindsey et al. (1992), to 
the Hanford formation HI sequence discuaed in Lindsey et al. (1994), and to Qfg documented 
in Reidel and Fecht (1994). 

Sued on obaervations of outcrop and intact core samplea. the Hanford formation upper· 
gravel sequence is interpreted to consist of the high-energy, gravel-dominated faciea interbeddod 
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with lenticular and discontinuous layers of the sand-dominated facies . Silt-dominated facies may 
also be present, though they probably constitute a relatively small percentage of the total. 

The maximum thickness of the Hl unit reflects a north-south-trending trough 
(i .e. , channel) that lies beneath the BX and BY tank farms . The maximum thickness of the 
HI unit in this trough is about 20 m (60 ft) (Figure B-16). 

2.2.8.4 Holocene Deposits. Locally up to 10 m (35 ft) of backfill material is present above the 
Hanford formation in many of the boreholes drilled in the 8-BX-BY WMA. 

2.2.9 Clastic Dikes 

Clastic dikes are vertical to subvertical sedimentary structures that crosscut normal 
sedimentary layering. Clastic dikes are a common geologic feature of the Hanford formation in 
the 200 Areas, especially in the sand- and silt-dominated facies . Clastic dikes are much less 
common in the gravel-dominated facies of the Hanford formation. No elastic dikes were 
observed in the excavated walls of trench 94 in the 218-E-12B Burial Ground (see Figure 2-8), 
located about 1000 m (3 ,000 ft) east of the B-BX-BY WMA. However, they are occasionally 
observed elsewhere within the gravel-dominated facies of the Hanford formation . 

Clastic dikes occur in swarms and form the following four types of networks (Fecht et al. 
1999) : 

• Regular-shaped polygonal patterns 

• Irregular-shaped polygonal patterns 

• Preexisting fissure fillings 

• Random occurrences. 

Clastic dikes near the WMA probably occur randomly in the gravel-dominated facies (Hanford 
formation Units HI and H3) and as regular-shaped polygons in the sand facies (Hanford 
formation unit H2). Regular-shaped polygonal networks resemble 4- to 8-sided polygons and 
typically range from 3 cm to 1 m (1 in. to 3 ft) wide, from 2 m to more than 20 m (6 to more than 
65 ft) deep, and from 1.5 m to 100 m (5 to 325 ft) along their strike. Smaller dikelets, sills, and 
small-scale faults and shears are commonly associated with master dikes that form the polygons. 

In general, a elastic dike has an outer skin of clay, with coarser in-filling material. Clay 
linings are commonly 0.03 mm to 1.0 mm (0.001 to 0.04 in.) thick, but linings up to about 
10 mm (0.4 in.) thick are known. The width of individual in-filling layers ranges from as little as 
0 .01 cm to more than 30 cm (0 .0004 to more than 12 in.) and their length can vary from about 
0.2 m to more than 20 m (8 in. to more than 65 ft) . In-filling sediments are typically poorly to 
well-sorted sand, but may contain clay, silt, and gravel (Johnson et al. 1999). 
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2.3 RECHARGE SOURCES AND EVENTS 

The facility infrastructure, infiltration of water from natural and tank farm operation 
sources, and hydrologic properties of the stratigraphic units beneath the study area control the 
moisture and waste movement through the vadose zone to groundwater. This section 
summarizes available information on infiltration from natural resources, discharges caused by 
tank farm operations and observed spatial and temporal effects on subsurface hydrologic 
properties. Appendix C contains supporting data tables and figures. 

Fluid infiltration into the soil column from the natural and tank operation sources, which 
are discussed in Sections 2.3.1 and 2.3 .2, respectively, had a substantial effect on current 
environmental contamination conditions in the 8-BX-BY WMA. Temporal changes in vadose 
zone moisture distribution and water table elevation in response to historical variations in natural 
and artificial recharge (Section 2.3 .3), combined with aquifer properties, account for the rate and 
direction of contaminant dispersal in the aquifer. 

2.3.1 Infiltration from Natural Sources 

The tank farm surface characteristics and infrastructure create an environment conducive 
to enhanced general recharge and transient, high-intensity events. Natural infiltration, runoff 
events, and rapid snowmelt are discussed in Sections 2.3.1.l through 2.3 .1.3. 

2.3.1.1 Infiltration. No direct measurements of the natural infiltration rate under the 
8-BX-BY WMA have been made. However, observations from similar, disturbed, gravel­
covered areas at the Hanford Site indicate that as much as IO cm/year (3 . 9 in./year) can infiltrate 
a vegetation-free coarse-gravel surface (Gee et al. 1992; Fayer and Walters 1995; Fayer et al. 
1996). This represents about 60 percent of the average annual precipitation (rainfall plus 
snowmelt). Fayer and Walters (1995) indicate that the 8-BX-BY WMA is in an area estimated 
to have about 2 cm/year to 5 cm/year (0 . 8 to 1. 97 in./year) of infiltration based on soil type, 
vegetation, and land use and inti ltration rates of 5 cm/year to l O cm/year ( 1. 97 to 3. 9 in./year) 
immediately south of the tanks . Actual recharge is significantly different and not uniform 
because of the presence of the tanks and the disturbed soil surrounding the tanks. Recharge is 
blocked and "shed" by the tank domes and flows into the disturbed soil near the tanks. Thus, 
infiltration rates near tank edges and between rows of tanks are likely manifold higher than 
average areal infiltration rates. 

2.3.1.2 Runoff Events. Transient saturation from collection of runoff in low spots may be 
more significant as a driving force than average annual infiltration. For example, rapidly melting 
snow is one natural event that can lead to surf ace flooding. This type of occurrence has been 
documented at other tank farms (e .g., T Tank Farm [Hodges 1998]), but no similar record is 
available for the B-BX-BY WMA. One topographical low at this WMA is located at the 
junction of the northwestern corner of the BY tank farm and the elevated soil barrier over 
crib 216-B-57. Within the boundaries of the tank farms, ponding can be controlled by the berms 
constructed over electrical lines. These barriers provide potential locations for water to collect 
during unusual runoff events. 

2.3.1.3 Rapid Snowmelt. Records of snowmelt have been made since 1981 at the Hanford 
Meteorology Station, located between the 200 West and 200 East Areas. Figure 2-9 summarizes 
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the total snow melt per month for a 24-hour period . These records indicate likely periods when 
unusual accumulations or ponding of water may have resulted in transient saturation events, 
possibly leading to transport of contaminants through the vadose zone to groundwater. The 
snowmelt events, as well as maximum monthly precipitation since 1946 (Appendix B, 
Table B-1 ), are correlated with groundwater contamination occurrences in Figure 2-10. 
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Figure 2-9. Monthly Summaries of Rapid Snowmelt Events, 198 I Through 1997. 
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2.3.2 Fluid Discharges from Tank Farm Operations 

Throughout the operational history of the B-BX-BY tank farms, fluids were discharged, 
both deliberately and inadvertently. To a large extent, the current state of environmental 
contamination has been caused by these discharges. Key characteristics include the location and 
time, volume, and contaminant inventory of these discharges. Where available, contaminant 
inventory information is summarized in Chapter 3. A more detailed discussion of these events is 
provided by Williams (1999). Data and narrative from Williams (1999) are provided in 
Appendix A. 

Fluid discharge from the B-BX-B Y tank farm complex occurred outside and inside the 
B-BX-BY WMA. Substantially greater volumes of waste fluids were deliberately discharged 
outside the B-BX-BY WMA. These releases occurred in four primary locations to support the 
major operations involving the B-BX-BY tank fann complex. 
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First, during the early stages of the bismuth phosphate operations, tank waste fluids were 
deliberately released to cribs and wells just north of the B tank farm. Cribs 216-B-7 A and 
216-B-7B received 4.3 x 107 Land Crib 216-B-8 received 2.7 x 107 L of waste fluids from 1946 
to 1957. The majority of fluids were disposed ofby 1953 . Reverse wells 1 lA and 11B, which 
released fluids directly to the unconfined aquifer, received 2. 96 x 10 7 L of waste from 1951 to 
1954. 

Second, in the final stages of the bismuth phosphate operations, waste was discharged to 
the BX trenches (216-B-35, -36, -37, -38, -39, -40, and -41). A total of 1.33 x 107 L of waste 
were discharged from February through November 1954. 

Third, triutyl phosphate (TBP) waste from the uranium recovery program was discharged 
to the 216-B-42 BX trench (1.5 x I 06 L) and the BY cribs (3.4 x 107 L) in 1954 and 1955. 

Fourth, as part of tank stabilization, condensates from tank liquids were discharged into 
BY crib 216-B-50 (5.9 x 107 L) and 216-B-57 (8 .4 x 107 L), just southwest of the BY cribs. 

Discharges within the B-BX-BY WMA were unplanned releases. These are listed in 
Appendix A in the table captioned "Appendix 2: Unplanned Release Quantities." Quantities are 
not known for many of the identified releases . Reported releases are primarily leaks from 
transfer pipelines, diversion boxes, and tanks. The most significant release, in terms of quantity 
and degree of contamination is the loss of metal waste (MW) from BX-102 in 1951 . MW was 
the initial waste stream produced in the plutonium extraction process and contained the highest 
concentrations of radionuclide constituents. Approximately 346,700 L of waste were released . 
The second largest reported release (265,000 L) is a tank leak from BX-102. However, evidence 
documenting this release is questionable. Smaller leaks from an above-ground pipe (87,000 L of 
first cycle bismuth phosphate waste), a flush tank overflow (41 ,600 L ofTBP waste), another 
pipe leak (20,441 L), and leaks from various single shell and auxillary tanks (31 ,500 Lor less) 
also are listed. 

The following occurrence reports and tank farm operations information are listed and briefly 
described for use in Figure 2-10, which describes the time line of hydrologic and tank farm 
operational events . These reports document that artificial water sources that existed in the past 
could have remobilized waste in the vadose zone associated with the 241-BX-102-tank leak. 
Furthermore, flooding occurred that might have caused the nearby vadose contamination 
observed during drilling to spread to the present location of well 299-E33-41. Several of the 
following occurrences describe water-line leaks and valve ruptures at the 244-BX receiving tank, 
located about 45 .7 m (150 ft) south of well 299-£33-41 (see Figure 2-1). This water likely 
remobilized tank waste while well 299-£33-41 was being drilled. 

• Tank Farm-1990-0054, September 1990. Raw water was found discharging from a 
1.3 cm (0.5-in.) line onto the ground from the exterior wall of the 244-BX double­
contained receiving tank (DCRT) located just south of well 299-E33-41 (see Figure 2-
11). Although a leak-detection alarm sounded and the area was checked, the open line 
was not discovered. Approximately 4.5 hours later, an open valve was found in the 
DCRT building. How long the water flowed onto the ground before the alarm activated 
was not reported. A 5,678-L (1,500-gal) increase was observed in the DCRT, but no 
estimate was given on the total volume of liquid released to the soils. However, the open 
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valve reportedly finally was noticed because a pool of water was discovered adjacent to 
the 244-BX DCR T pump pit. 

• Tank Farm-1990-0373, December 1990. Subzero weather conditions caused raw water 
piping in the 244-BX OCR T building to rupture several valves. No estimate was made of 
the amount of water discharge to the surrounding soil. Approximately 2082 L (550 gal) 
of water drained into the 244-BX DCRT via the 244-BX flush pit floor drain. Excess 
water also had to be removed from the flooded instrument building. It is important to 
note that drilling began in January 1991 for well 2 99-E3 3-41 , located approximately 
48.8 m (60 ft) north of244-BX DCRT, where the terrain slopes slightly downward 
toward the north. 

• Tanks 241-BX-101 and 241 BX-103. These two single-shell tanks, located near 
well 299-£33-41, were placed on the candidate intrusion list. indicating possible liquid 
intrusion into the tanks (Hanlon 1999). Both tanks 241-BX-l 01 and -103 have been 
interim stabilized. Both tanks are assumed leakers. These tanks were placed on the 
intrusion list because surveillance data show that the surface levels in the tanks have met 
or exceeded the increase criteria. Both tanks are on the east side of the BX tank farm, 
near well 299-E33-41. The source of the liquid that may be intruding into these tanks is 
unknown. 

• Raw and Sanitary Water Lines. As-built diagrams show 10 and 15 cm (4- and 6-in.) 
raw water lines and 3.8 cm (1 .5-in.) sanitary water lines running north and south along 
Baltimore Avenue and along the BY tank farm fence lines. These lines run past 244-BX­
DCRT and next to well 299-E33-41 . Also, until recently, the BY tank farm had 
pressurized water lines inside the tank farm fence lines. Near-surface concentrations of 
contaminants close to water line leaks could be another source of groundwater 
contamination. Although rarely documented as important events, water-line leaks have 
occurred, as is common with any water system. The lack of records makes determining 
or documenting any significant effect on contaminant mobilization or transport difficult. 

2.3.3 Subsurface Discharge 

2.3.3.1 Vadose Zone Moisture Distribution. Substantial fluid volumes of tank waste and tank 
waste condensates were discharged into cribs and trenches adjacent to the B-BX-BY WMA. 
These fluids could have migrated into the vadose zone underneath the B-BX-BY WMA. 
However, no evidence exists to indicate that such events occurred. Given that more than 
20 years have passed since crib and trench discharges adjacent to the B-BX-BY WMA occurred 
and the soils are highly permeable, any moisture from these sources is unlikely to be limited to 
silt-rich layers underlying the area. Based on a likely recharge scenario that 40 percent of the 
annual precipitation, which occurs almost exclusively during the winter, a flux rate of 70 mm/yr 
is estimated. Ten times the flux rate is reasonable as recharge or 0. 7 meters per year penetration 
into the vadose zone. Over 20 years flu ids may have migrated approximately 14 meters into the 
subsurface (Ward et al. 1997). 

In the months before well 299-E33-41 was drilled, several flooding events occurred just 
south of this well ' s location at the 244-BX DCRT. The migration through the vadose zone of 
water from these floods while well 299.E33-4 l was being drilled would explain the series of 
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high-radiation concentrations in a series of silt lenses from 22.3 m to 73 .2 m (73 to 240 ft) and 
the contaminated perched water zone at 68 .3 m (224 ft) below the ground surface. The actual 
water-table surface at this time was 75 .3 m (247 ft) from the ground surface. Well 299-£33-41 is 
close to the site of the 113,562 L to 340,687 L (30,000- to 90,000-gal) overflow or spill between 
tanks 241-BX-103 and -102 in 1951 (DOE 1993). This tank leak is most likely the cause of the 
contamination and creation of the perched zone because it is only l l .3 m (37 ft) from the well . 
The nearest crib is 216 B-7B, 91.4 m (300 ft) from the well. 

2.3.3.2 Water Table and Artificial Recharge. The water table has changed significantly since 
tank farm operations began in the early 1950s. The shift in discharge of large volumes of 
wastewater in the early 1950s raised the water table in the vicinity of the study area to over 4.9 m 
( 16 ft) above the level before Hanford Site operations (Figure 2-11 ). The flow direction should 
be turning back to the original pre-Hanford direction, which is assumed to be to the southeast. 
This expected flow direction change would be in response to the diminishing B Pond mound 
located about 0 .6 km (1 mi) east of the B-BX-BY WMA. Water levels are declining rapidly, as 
shown in Figure 2-11 . As a result, in 5 to 8 years, some wells will contain little water. Given the 
transient hydrological conditions in this region, long-term water levels are difficult to predict. 

Figure 2-11 . Historical Water Levels Near the 8-BX-BY WMA. 
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2.4 HYDROLOGIC PROPERTIES 

2.4.1 Vadose Zone Properties 

A summary of vadose zone hydro logic properties collected for Hanford Site sediments is 
provided in Khaleel and Freeman ( 1995). A subset of this database is included in Appendix C, 
Table C 1. The most pertinent data were collected on Hanford formation soils underlying the 
BY cribs during the remedial investigation of the 200-BP-l operable unit. Given the proximity 
of the soil locations, these data are considered to be waste site-specific. The database includes 
the location of the sample, the depth at which the sample was collected, particle size distribution, 
moisture retention curve data, and saturated hydraulic conductivity values. Generally, the soils 
are variable mixtures of sands and gravels. Well-defined horizontal strata with distinctly 
different hydraulic properties favoring lateral movement in the vadose zone (e.g., silty sands) are 
probably present locally, but are not widespread. 

2.4.2 Aquifer Properties 

This section provides information on the current nature of the unconfined aquifer in the 
immediate region of the B-BX-BY WMA. Aquifer properties were determined from 
stratigraphic interpretations, current water elevations, and hydraulic conductivity values based on 
aquifer tests . Details are provided in Hartman (2000). 

The water table lies in basal gravels interpreted as flu vial pre-Missoula sediments, 
extending upward at places into unit H3 of the Hanford formation . As explained in 
Section 2.2 .7, the water table rests within these loose, sandy gravels, displaying primary grain 
sizes that range from cobble- to boulder-sized clasts. The aquifer thickness varies from 2.1 m to 
4.3 m (7 to 14 ft) across the Site, depending on the location oflocal highs in the basalt surface. 
The aquifer appears to be thicker where the basalt surface is lower, correlating with the structure 
on the top of the basalt. 

The hydraulic gradient is flat across the 200 East Area. With about 1 O cm ( 4 in.) of 
change across the WMA, the use of discrete water elevations to determine flow direction is 
complicated. In this region, comparing data between individual wells to determine the 
upgradient versus downgradient locations is difficult. This difficulty is related to the fact that the 
total error in water elevations can be a significant portion of the actual differences in water 
elevation between two wells. Sources of vertical uncertainty that had to be addressed were the 
survey datum, survey loop or traverse errors, error caused by a well being out of plumb, and, 
occasionally, spurious water level errors. Barometric effects have been addressed in part by 
collecting contemporaneous water level measurements over a few hours or days for each data 
set. Barometric effects on water level elevation measurements at the Hanford Site are just 
beginning to be addressed (Spane 1999). 

Part of this discrepancy in water levels is related to survey datum. In 1998, the Hanford 
Groundwater Monitoring Project changed the datum to which water levels are referenced 
(Hartman 1999). The geodetic elevation datum currently used is the NA VD88 protocol standard 
, which is the new minimum constraint adjustment of the North American Vertical Datum of 
1988. This adjustment is referenced to the new International Great Lakes Datum of 1985 
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(IGLD85), local mean sea level height value, at Father Point/Rimouski, Quebec, Canada. The 
datum is not mean sea level, a geoid, or any other equipotential surface. 

In the early 1990s, the U.S. Army Corps of Engineers adjusted both the NA VD88 and 
NA VD29 data for the environmental restoration contractor. Because the National Geodetic 
Survey no longer supports NA VD29, all actively monitored wells are now referenced to the 
vertical control datum NA VD88 . However, doing this was not practical for the water-level data 
interpretation in the area of B-BX-BY, therefore, the NA VD29 was used. The NA VD88 
elevations are about 1 m higher than NGVD29 elevations in the vicinity of the Hanford Site. 
Converting elevations to NA VD88, using a software package called Corpson (Version 5.11 , 
U.S . Army Corps of Engineers 1997), which uses the VERTCON software program 
(Version 2.0) developed by NGS, can contribute errors of approximately 1 cm (0.4 in.). 

More important to the amount of error between water levels in wells than the selection of 
the vertical control datum is the choice of the specific survey loop or traverse used to calculate 
water-level elevations. Vertical surveys of wells of variable accuracy have been conducted at the 
Hanford Site over the last 50 years. However, direct measurements between well pairs are rare. 
Consequently, errors between any two wells cannot be determined. Only errors between wells 
and their control point or network of survey points in the survey traverse from which the 
measurements were made can be determined. Therefore, the accuracy in well elevation or 
location is the amount of known error in the survey, which almost always is greater than the 
actual error between any two wells in the survey (Schalla et al. 1992). If separate vertical 
surveys are conducted on different groups of wells, the amount of estimated error would 
probably be at least equal to the composite error of all the surveys. A comparison of well 
elevations, based on different surveys in the B-BX-BY WMA, gives results that differed as much 
as 50 percent of the gradient across the Site. To avoid these errors the water elevations are 
referenced to a 1992 survey based on NGVD29 . If a significant discrepancy was found, a newer 
survey based on NGVD29 was used for that well or the well's data were eliminated. Water level 
elevations are the most direct method to determine the direction of groundwater flow in the 
aquifer, but comparing water-level elevations from different surveys must be done with care to 
avoid confusion and incorrect conclusions. 

A third source of error is vertical plumbness of the well. As part of the Resource 
Conservation and Recovery Act of 1976 (RCRA) assessment work conducted by the Hanford 
Groundwater Monitoring Project, vertical plumbness was measured in several wells that 
appeared to complicate the interpretation oflocal flow. Well 299-E33-39 was surveyed in fiscal 
year (FY) 1999 because data from that well consistently displayed anomalous low water 
elevations. Based on deviations from vertical, determined with a downhole gyroscope, a 12 cm 
(0.4-ft) correction was added to the water levels in this well. 

The total errors from all sources complicate the use of even a contemporaneous set of 
water level data to estimate flow direction. Besides survey errors (i.e., datum and loops), 
measurement error (e.g., tape accuracy limitations and well out of plumb), and storm effects 
( e.g., rapid barometric changes) can make accurate interpretation of certain data sets difficult and 
complicated. Therefore a series of contemporaneous sets is needed to establish a trend in the 
water table surface as shown in Figures 2-12 and 2-13. 

The data from selected wells shown in Figure 2-12 depict the general local water-level 
trend. Spurious and outlying data were removed from the individual well trends to facilitate 
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interwell comparisons. All well water elevations decrease over time. Wells E-33-34, E-37-7, 
E-33-5, E-33-39, E-34-1 l , and E-32-8 show higher elevations than wells E-33-34, E-28-26, 
E-32-5, E-28-27, and E-32-4 at any given time. The location map in Figure 2-13 clearly shows 
that the upgradient water elevations are in the north . This indicates a southwest flow direction. 
Although data from a few wells in this are do not agree with the trend shown in Figure 2-12, the 
majority of wells for which consistent survey information is available appear to mirror this 
general southwest fl ow. 

Figure 2-12. Hydrographs for 11 Wells Located North, East, West, and Southwest of the 
B-BX-BY WMA. (Wells E33 -34, E33-7, E33-5, E33-39, E34-11, E32-8, 
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Figure 2-13 . Location Map for Wells Shown in Figure 2-12 . 
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As stated earlier and as can be seen in the hydrographs, determining flow using a selected 
contemporaneous data set to determine a single flow direction could be misleading. 
Consequently, it may not be appropriate to provide a three-point solution. However, based on 
observations of recent contaminant movement and on wells that consistently appear to be at the 
same relative elevations from 1996 to 1998, an estimated flow direction lies between 200° and 
250° azimuth as shown in Figure 2-14. 

The rate of groundwater flow for RCRA sites is calculated for a homogeneous, isotropic 
aquifer from the Darcy equation shown in Hartman (2000). This simple, one-dimensional 
equation incorporates the effective hydraulic conductivity, the local water-elevation gradient 
across the Site, and an estimated aquifer porosity. The local hydraulic conductivity of 
1600 m/day (5 ,300 ft/day), based on aquifer test results, was reported in Newcomer et al. (1992) 
and Connelly et al. (1992). Porosity is estimated as 30 percent or greater for the unconsolidated 
gravels that made up the aquifer. Unfortunately, collecting enough intact core from the aquifer is 
difficult because of large grain size. Consequently, direct methods of determining porosity have 
not been used. Given the lack of direct measurements, combined with the cobble-to-boulder 
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nature of the aquifer, 30 percent may be a low estimate. The local hydraulic gradient across the 
B-BX-BY WMA is approximately 0.00017, based on September 1999 water levels. 

The effective flow rate, using these parameters, is calculated to be 0.9 m/day (3 ft/day) . 
This equates to 324 m (1,064 ft) of effective groundwater movement per year. If discrete, high­
permeability flow channels are considered as the prime avenues of contaminant transport, a flow 
rate of 0. 9 m/day (3 ft/day) may be low. This relatively high flow velocity has implications that 
relate to the optimal sampling frequency at which the groundwater is monitored. Because the 
WMA is approximately 400 m (1,300 ft) long from north to south and 300 m (985 ft) from east 
to west across the 241-BY tank farm, contamination related to leakage of tank waste might move 
through the area in less than 1 year. Given the pulse-type events seen in the past at 
well 299-£33-41 and the high frequency of contamination documented at the S-SX WMA, 
semiannual or even quarterly sampling may not be sufficient to clearly identify and differentiate 
tank-related waste from background contamination left from discharges to the surrounding cribs, 
trenches, and reverse wells (Johnson and Chou 1998; Narbutovskih 1998). As part of the RCRA 
B-BX-BY WMA assessment, a study is currently being conducted to determine the best 
sampling frequency for monitoring this WMA. 

2.5 GEOCHEMISTRY 

This section covers geochemical factors and material properties of the vadose zone and 
unconfined aquifer underlying the B-BX-BY WMA that control contaminant mobility in the soil 
column. Radionuclide and hazardous-constituent mobility can be substantially different 
depending on the innate characteristics of the contaminant and the geochemistry of the soil-water 
system. In these soils, both factors are expected to be important. Different contaminants present 
in the soils are variably mobile and, depending on interactions of tank fluids with the soil-water 
system, a given contaminant's mobility can be considerably different at different locations and 
times within the vadose zone and unconfined aquifer. 

The geochemical characteristics and contaminant mobility are best considered in terms of 
behavior in relatively undisturbed soils versus soils that have interacted with tank waste fluids. 
In addition, tank fluid chemistry varies. Both types of soil conditions are expected in the vadose 
zone underlying the B-BX-BY WMA. For relatively undisturbed soils, a substantial Hanford 
Site-specific, but not B-BX-BY WMA-specific, database is available that quantifies geochemical 
characteristics and contaminant behavior, particularly for radionuclides ( e.g., Ames and Rai 
1978; Seme and Wood 1990; Serne et al. 1993; Kaplan, Parker, and Kutynakov 1998, and 
Kaplan and Seme 1999). Average soil properties are described in Section 2.2. Soil water in the 
vadose zone and groundwater in the unconfined aquifer have similar characteristics. They are 
moderately alkaline (pH about 8) and contain moderated concentrations of cations and anions. 
Dominant cations are calcium (about 50 mg/L), magnesium (about 14 mg/L), sodium (about 
30 mg/L), and potassium (about 9 mg/L). Dominant anions are carbonate (about 70 mg/L) and 
sulfate (75 mg/L). 

Within the B-BX-BY WMA, geochemical and related soil property data have not been 
collected. However, an extensive soil sample and analysis program was conducted in the soils 
underlying the BY cribs just north of the B-BX-BY WMA as part of the 200 BP-I Operable Unit 
remediation investigation (DOE/RL 1993). At most depths in the undisturbed soils, the fraction 
of gravel-size particles (larger than 2 mm) dominates. The exceptions are a sand-dominated soil 
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at about 40 to 60 m below the surface and a silty sandy soil at about 95 m below the surface. 
The upper layer is more or less continuous at 58 m to 59 m throughout the BY crib area. 
A mineralogical analysis was not performed. 

One Site-specific study of radionuclide sorption tendencies was completed as part of the 
remediation investigation (DOE/RL 1993). This report is provided in Appendix D. Batch 
sorption experiments were completed for 6°Co, 90Sr, 99Tc, plutonium, and cyanide using local 
soils and groundwater. Measured sorption coefficient values for 90Sr, 99Tc, and plutonium were 
in the expected range for standard undisturbed soils and groundwater chemistry (5 mL/g to 
IO mL/g, 0 mL/g, and more than 1000 mL/g, respectively). As expected, cyanide sorption was 
very low. Cobalt-60 sorption also was very low (less than I mL/g) indicating the presence of a 
complexing agent acting to form anionic aqueous species with 6°Co. Additional tests were 
performed in the presence of various initial concentrations of cyanide and EDT A Cyanide 
effectively reduced 60Co sorption at both concentrations (150 and 2,000 ppb) used and EDT A 
also greatly reduced 6°Co sorption at the higher concentration (2,000 ppb). 

These results are not definitive. The use of cyanide versus ferrocyanide in these 
experiments makes the relevance of the results ambiguous. The quantities of EDT A used 
experimentally are much greater than expected in the waste stream. Given the historical record 
of adding ferrocyanide during waste processing, a potential complexing agent may be cyanide if 
cobalt exchange with iron is favorable . However, the kinetics and mechanisms of this and other 
potential reactions that might lead to the formation of cobalt complexes are unknown. Other 
species known to be present in the waste, such as carbonate and ammonia, are potential 
complexing agents for cobalt. 
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Figure 3-5. Historic Trend Plots of Nitrate Concentrations and 99Tc Activities at 
Well 299-E33-16. 
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Figure 3-6. Historic Trends of 99Tc and Uranium for Well 299-E33-41 . 
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Figure 3-7. Ratio ofNitrate to "Tc (Second Quarter). 
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During the~od of northward movement, probably before the early l 990's. the highest 
concentrations of Tc and nitrate were found in well 699-50-SJA, located north-northeast of the 
study area. The nitrate--to-"Tc ratio from this well during the early 1990's is 42, for a 99Tc value 
of 17,000 pCi/L and 716,000 µg/L of nitrate. This ratio is similar to that of the contamination 
currently moving through the northern part of this WMA 

The nitrate-to-99Tc ratio at well 299-EJJ-16 is above 200 because of the very high leveb 
of nitrate with lower ~c values, less than half that observed at wells 299-833-7 or-44. AB can 
be seen in Figure 3-7, none of the surrounding wells have a similar ratio. Wells immediately to 
the north, east, and south have high nitrate values, but do not have 99Tc above the DWS, which 
results in much higher ratios of nitrate to "Tc than at wells 299-833-7 or -44. The 
contamination observed at this well appears to have a limited spatial extent At least part of the 
aquifer at this site may be locally isolated by a depression on the basalt surface. The relief on the 
top of the basalt can be as much as 4.3 m (14 ft), which is more than the about 2.4 m (8-ft) 
thickneu of the aquifer at this well If the lower part of the aquifer is locally in a small 
depression, the contamination observed in the groundwater may be residual from liquid wute 
discharged to the 216-8-8 crib, which was used from the late 1940s to about 1952. 

Finally, the ntios at wells 299-833-41 and-44 are noticeably lower than at wells in the 
surrounding area. For example, the nitrate and "Tc levels at well 299-E33-41 are significantly 
low; both currendy are below the DWS. If a groundwater sample can be collected from 
well 299-E33-9, located west of well 299-E33-44 but within the tank farm boundarie&, further 
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Figure B-7. Thickness of the Plio-Pleistocene Unit Silt Layer. 
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Figure B-8 . Top of the Hanford Formation/Plio-Pleistocene Unit(?) Silt Layer. 
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Figure B-9. Top of the Hanford Formation/Plio-Pleistocene Unit(?) Gravel. 
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Figure B- 10. Thickness of the Hanford Formation/Plio-Pleistocene Unit(?) Gravel. 
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Figure 8-11 . Top of the Calcium Carbonate Marker Horizon within the Hanford 
Formation/Plio-Pleistocene Unit(?). 
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Figure B-12. Top of the Hanford Formation Lower Gravel Sequence/ 
Plio-Pleistocene (Undifferentiated) Units 
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Figure B-13 . Thickness of the Hanford Formation Lower Gravel Sequence/ 
Plio-Pleistocene (Undifferentiated) Units. 
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HNF-5507, Rev. OA 

Figure B-14. Top of the Hanford Formation Sand Sequence (H2 unit) . 
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Figure B-15 . Thickness of the Hanford Formation Sand Sequence (H2 unit). 
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HNF-5507, Rev. OA 

Figure B-16. Thickness of the Hanford Formation Upper Gravel Sequence (Hl unit) . 
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Figure B-17 . Regional Groundwater Plume of Hazardous Constituents. 
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Figure B-18 . Regional Groundwater Plume of Radioactive Constituents. 
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Figure E-3 . l Correlation Plot of Concentrations of Synthetic Radionuclides in Boreholes 
Surrounding Tank B-103 . · 
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Table 6 BY Unstable Zones ' 
Total Subsurface Zone Max. Year 

Borehole Depth Condition Depth GTP Max. Isotopm 
Number feet cateaorv feet rt-c/S GTP ·1dentifled Comment 

22-00--02 lOO lbt3ble 6+96 1800 1975 "'Co Downward mc>Yement at low lew.ls 
22-00--03 1•5 Unstableell1Y 80-117 12 000 1975 -co 
22-03-09 100 unstable u,ty 24-52 . 29000 1976 -CO: -.usti: . -Ru 

lntilble •8-95 16,000 1976 -co; .. 'Sb Downward ~t below bottom of well In 1993. Appe.aB 
10 be movlno at an estimated nite of 2 feet ~ vur 

22-<!4-09 100-125 Unstable eamt 75-95 1.JIIIC 1980 9'Co 
22-05.()9 100 lntable earty; 55-90 1,000 1975 -co Downward mcwement 

.: 
Lltdmrmlned 
late 

22..()6.05 100 lntable 40-84 10111JO 198• -co:·~ Downward ll10'tlefflent 
22-06-07 1•0 twtableearfy '40-52 300 1975 ..,Cs 

lntable eanv 52-tlO 1.100 1979 -u, Downward and lateral moYemel'lt 
22--06-09 100 Unstable earlY 70-90 650 1975 ·-Ru 
22-07-01 100 Unstable earlY 10-52 800 1976 . u,cs 
22-07-02 100 Unstable Htly 42-95 2,800 1976 .-o, May be: downWard movement along casing; contaminant may 

be below bottom of well 

22-07-05 100 Unstable~ 40-78 3800 1975 -co Downward moyement wtthln the zone from •2 ta 65 feet 
22-07-07 100 unstable eartv ~51 2500 1975 '"Cs: M"Sb• ·-Ru 

unstable 80-98 1800 1976 iac:o•-st> Stable sl,n 1983 or 1990 
22-07-()9 100 Unstable 62-100 2200 1976 u,cs, -co [:)owrMard rncM!ITlfflt to below wel bottmn In 1990 
22--08-01 100 Unstable 59-95 12000 1975 -co: M"St> Movement of lsot:Does ls unclear: stable from 1985 to 1994 
22-08-02 100 Unstable '4+100 15 000 1975 -CO: """Sb Downward ,~,~ DOSSlblv below bottom of txnhole 
22-0&-05 100 lk\stable eartv 63-84 900 1975 "'Co DowrfNard movement 
22-0&-06 100 unstable ear1v 73-83 450 1975 -co Levels tDO low to ldc:ntifv downwanl movement 
22--0&-09 100 I.JnsQble earty n-M 150 1975 u,Cs; ·,u 

22-<>8-12 105 Unstable urtv ZS--.0 300 1980 . u,Cs =es ~ CUM! does not flt GTP Plot 
Lffltable earty 10-51 3,000 1975 -co; M"St> 

ltmble..- 51-60 ·3,000 1975 -co Possible downward fflOYl!fflent 
unstableHrtv 60-82 1.000 1976 !"Co Downward movement within the zone 

22-09-07 100 UnstableUl1Y 2o-40 12,000 1975 --,..u 
Unstable earty '40-50 9,000 1976 ,u 
Unstableea,ty 50-64 2 700 1976 -~b: --.w 

22--09-11 100 umble earw 38-52 3500 1975 --Ru 
22·10-05 100 lklstable ear1y 55-75 DJ i979 ~ 

22•10-07 100 Unstable early •5-65 200 1983 "'Co 
22-10-10 100 Uistable urty 58-76 1,500 1975 "'Co 
22-11-01 100 IMstable 19-28 4000 198'1 u,es 
22-11-()9 100 lklstable eany 34"'6 250 1975 "'Co 

Currently, lsotx,pes cannot be Identified from !lfll5S 9"1mm1 rl'( data alone; therefore, lsotDpe:s with a rapid rite of dec:ay, such as R.u--106, or at low enough Jevm ID decay below 
detection Hmlts, may not be Identified If the period of Instability Is pnor to the ailledlon d SGLS data. 
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Table 10 BY Tank Farm unstable Zone Parame_,. . 
Total SUbsurfllCle Zana Interval 

Borehole Depth Condition Depth of Isotopes 
Number feet category fut lnstablllty Jdentffled ••Comment 
22.()()-()2 100 Unstable 64-96 1979-199• "'Co I u,es deay 1:\#'t'e fits, but was not used IS 1"CS was not ld'd by the SGtS 

22.()()-()3 l•S Unstable earty 80-117 1975-1976 -co 
2H3-09 100 Uns13ble early 24-52 1975-1977 "'Co; -~b; -.... Ru Iner. 1975-1976; deer. 1!176-1977 

lklStlbleearty 4+52 1975-1984 --iw Iner, 1975-1980; sharp lncr. 1980-mld 1982 
•·. lntable 78-92 1975-1985 -co; -"'Sb Iner. 1975-1979; dea. 1979-1985 

lntable 46-95 1975-1990 "'Co Iner. 1975-1976; stable 1976-1978; unstable deer, 1978-1990; stable 1990-199• 
22-04-09 100-125 Lntableeal1y 7S-95 1974-198• -co Ina. 1979-1980; deer. 1980-0982; dea. 1982-19&4 
22-0S-09 100 lntable 55-90 1975-1985 -co . Deer. 
22-o6-05 100 lntable 36-50 1978-1981 ""Co; ... 'Sb Dea. 

Unstable 62-8• 198&-mld1991. -c.o Deer. 
::t: 
z 

Unstable 2&-8• 197S-mld1975 -CO; .. 'Sb lncr, ..,, 
Unstable ..0-8• 1979-1994' Deer. mid 197S-1976; deer. 1979-1994 : I 

22--06-07 140 Unstable early 4'0-52 197S-mld1982 ..,Cs Deer. 
Unstable early 52-6• 1975-1985 -co lncr. 1975-1977; deer. 1977·mldl977; Iner, mldl977-1979; dea. 1979-1985 

Unstable earty 6+80 1975-198• "'Co Iner. 1975-1981; deer. 1981-1984 

Unstable Hriy 52-80 197S-mkll979 -co Iner. 1975-1977; deer. 1977-mk11977; lncr. mldl977-1979 

22-o6-09 100 Unstable early 70-90 1976-1976 ·-Ru Ina. 197S-mld197S; deer, mtd1975-1976 

22-07-()1 100 I.JnstableeJlly <&52 1975-1981 u,es Iner. 1975-1976; decr. 1976-1981 

22-07-02 100 l.lnmble tlr1y "2-53 1975-199• -0, Incr. 1975-mld1975; decr. mld197S-198•; dea. 1961-199• 
unstable early 53-70 1975-199• ""Co Iner. 1975-1979; rapid Ina. 1979-earty 1979; deer. early 1979-1981; deer. 1981-199• 

vJ 

~ \J'\ 
vJ I 

N Vl 
Vl 
0 

I _--.J 

::0 ;,;:i 
rn {Ti 

< 
< 0 
·O • Unstable early 70-82 1980-mld1987 •eo Iner. 1980-1981; deer. 1981-1987 

Unable uny 82-95 197S-1987 -co Deer. 1975-1980; Iner. 1982·mldl983; deer. mtd1963-1987 

22-07-05 100 Unstablemiy <&57 197S-199• "'Co lnc:r. 1975-mld197S; deer. mld197S-mld1978; Iner. mld197B-1979; dea. 197!H985 

Unmble early S7-6.5 mld1978-mld1986 ""Co Ina. mld1978-mld1983; deer. mld_1983-mld1966 

Unstable urty 65-78 1981-mld1987 -co lncr. · 

22-QJ--07 100 lmtablc earty 30-5" 1980-1994' mes; ... 'Sb; ... Ru Step deer. l 980-1961; ftat near O tD 199• 
l)IStlble 80-98 197S-1985 -co; -so Inc:r. 1975-1976; deer, 1976-1981; Iner. 1981-mld1981; deer. mld1961-1985 

22-07--09 100 l.mtable 62-74' 197S-1986 wes Incr. 197S-mld1976; deer. m1976-1986 

Unstable 74-8• 197S-mldl988 -co Iner. 1975-1979; deer. 1979· mld19SO; Iner, mldl980-~982; dea. 1962-mldl988 
Unstable 8•-9• 1982-1989 ""Co Ina. 1982-1986; dea. mld1981-1985; decr. 1965-1994' 
U\SQbl1 94-100 1981-1990 ""Co lncr. 1981·mld1981; deer. mld1981-mldl982; Iner. 1984-mldl986; dea. mld1966:-1990 

22-08-01 100 Unstable Si-95 1975-1986 ""Co; ... 'Sb Dea. 
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22--08--02 100 Unstable 44-Q 1975-1994 ""Co; ·--sb Dec;r, 1975-1982 nat near o 1982-1~ 

unstable 62-n 1975-199-4 --sz, lna. 1975-1977; deer, 19n•1994 

Unstable 72-M 1975-1994 ."'St) DeQ-, 1975--1981; Ina. 1981-1985; deer. 1985-1994 

lntable &HOO 1975•1994 ·-si, Dea-, 1975-1988; Iner. 1988-1991; deer. 1991-1994 

22~5 100 unstableeartv 63-74 1975-1986 ""Co Deer. 
Unstableurty 7+84 mld19&H990 ""Co Iner. 

22--08-06 100 lMlstlbleearty 73-13 1975-1977 ""Co Alt 

22-o&-09 100 Unstable early 72-84 1975-1976 wes;~ Iner. 
22-08-12 105 Unstable early 25-<IIO 1975-1994 ... cs . Iner, 197S-mldl976; dea. mld1976-197B; Ina. 1978-mldl980; dea. mld1980-1983; flat near 0 1963-199-4 

unstable eil'ty .«>-51 1975-1989 -c:o; -"°Sb De(r, 

unstable ear1y 51.al 1975-1983 -co DeQ-, 1975-1979;1ncr. 197~d1983 

Unstableurty 60-70 1975-1987 -co Deer. 
Unstable early :10-82 1975-1983 -co Ina. 

22--09-07 100 lntable early 20-«) mld1978-1982 ·-Ru Deer. 
lkl5tableearty '40-50 1975-1984 --Ru Iner. 1975-1976; deer. 1980-19&4 

Unstable early 50-64 1980-1990 ·-st,; -Ru Deer. 

22-o9-11 100 Unstable early 38-52 1975-1976 ·-,w Deer. 
22-10-05 100 Unstable urty 55-75 1975-1979 -co Ina, 

22-10-07 100 Unstable early <15-65 1980-1994 -co rna. 1980-1983; deer. 1983-151115; nat nur o 1985-1994 

22-10.10 100 Unstable ear1y 58-76 1975-1980 ""Co Dea-. 
22·11-01 100 Unstable 1H8 1982-1994 "'Cs Iner. 1982-1964; deer. 198+1994 
22-11.(19 100 Unstableurty 34-46 t97S-rnd1978 "t'.o Alt 

-currtntty, lsowpes cannot be ldenlffled from grass gamma ray data alone; therefore, lsatDpes with a rapid rate of decay, such as Ru-106, or at low enough levels to decay below 
detettlon llmlts, may not be ~ned If the period rl lnstlblltly Is pr10r ID the ccllectlon of SGLS data. 

•9Unless othtlWlse noted, the GTP plot decrmes mns1swt with the decay aJM ot 1cnawn Isotopes. 
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BY Tank Farm 
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Figure 2. BY Tank Farm Radiation Zone Conditions 


