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1.0 Introduction

For fiscal year 2006, the United States Congress authorized $10 million dollars to Hanford for
““...analyzing contaminant migration to the Columbia River, and for the introduction of new technology
approaches to solving contamination migration issues.” Administration of these funds through the
U.S. D¢ rtment of Energy (DOE) Office of Environmental Management (specifically, ~"/1-22) involved
a peer review and selection process, under which nine projects were selected to meet the objectives of the
appropriation. As part of this effort, Pacific Northwest National Laboratory (PNNL)' is performing
bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate
injections to reduce uranium concentrations in the groundwater to meet drinking water standards
(30) .)ins 1 Polyphosphate injection was selected for testing based on technology screening as part
of the 300-FF-5 I : [11 Feasibility Study for treatment of uranium in the 300 Area.

This report describes resul >t the treatability test of uranium stabilization through polyphosphate
injection for treatment of uranium ir  oundwater beneath the Hanford 300 Area (see Figure 1.1 and
Figure 1.2). The tre ient concept for this technology involves the formation of phosphate m s
(autunite and apatite) in situ that 1) directly sequesters the existing aqueous uranium in autunite minerals
and 2) precipitates apatite minerals that could increase sorption and long-term treatment of uranium
migrating into the treatment zone (Wellman et al. 2005, 2006). Polyphosphate injection was selected for
testi  based on| rious lab-scale investigations. Evaluation of in situ treatment of uranium
contamination is consistent with the results of technology screening conducted to identify a viable
remedial action alternative for uranium in 300 Area groundwater, as part of the 300-FF-5 Phase 111
Feasibility Stt  (DOE 2005).

The field site for the polyphosphate treatability test, which is located in the vicinity of well 399-1-23,
was selected based on hydrogeologic characterization data collected at four wells installed in fiscal year
2006 as part of the 300 Area limited field investigation (Williams et al. 2007). The polyphosphate
treatability test site is comprised of a single injection well (399-1-23) surrounded by a network of
monitoring wells within the targeted injection volume and downgradient monitoring wells (see Figure 1.2
and Figure 1.3). The monitoring wells were installed during two separate drilling campaigns, one in
November and December 2006 to support itial site characterization activities (Vermeul et al. 2006) and
a second in May 2007 to provide additional downgradient monitoring wells for monitoring
amendment/tracer plume drift under a wide range of Columbia River stage conditions.

: following sections describe the site, project background, and polyphosphate technology used to
conduct the treatability test of uranium stabilization.

! PNNL is operated by Battelle for DOE under Contract DE-AC05-76RLO1830.
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Changes in the spatial distribution of conservative tracer arrival over the three phases of the injection
test are shown in plan view in Figure 4.4. Three snapshots of tracer distribution are shown at elapsed
times of 18 hours into each injection phase. As indicated, tracer concentrations at most well locations
outside the targeted primary treatment volume were successively lower during the second and third
injection phase, with the exception of wells 399-1-29 and 399-1-38 where tracer concentrations increased.

Permeability reduction in the Hanford formation was investigated by comparing the pressure recovery
re. Honses associated with termination of the polyphosphate injection test (post-treatment) to the
site-specific hydraulic characterization results obtained with the tracer injection test performed in
December 2006 (pre-treatment). The same river correction and hydraulic analysis methods used for
estimating aquifer hydraulic properties from ~ pre-treatment pressure buildup data were used in the
analysis of the post-treatment recovery responses. Refer to Section 3.2.3 for a detailed discussion of the
Rasmussen and Crawford (1997) multiple-regression deconvolution river correction and Neuman (1975)
type-curve methods. Prior to the type-curve fitting, the recovery data were translated into equi  ent
pressure buildup responses using the method of Agarwal (1980).

Figures 4.5 through 4.8 show the pressure and pressure derivative data plotted along with the Neuman
(1975) type curves and model inputs for the four monitoring wells used in the analysis. Prescribed vah
for specific yield, anisotropy ratio, storativity, and aquifer thickness are summarized in Table 4.2. A
specific yield value of 0.15 was used in the post-treatment analysis, rather than 0.19, which v used in
the pre-treatment analysis. This resulted in improved curve fits and is consistent with the indication of
permeability reduction (see discussion below). The other model input parameters were held consistent
with the analysis of the pre-treatment hyd lic analysis. It should be noted that, due to the extensive
nature of the river correction, the hydraulic analysis of the post-injection pressure recovery data was
restricted to four selected monitoring wells, all of which were also used in the previous hydraulic
characterization (Section 3.2.3.2).
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Appendix B

Baselin Sampling R sults






























Appendix C

Amendment Arrival P'~*~







































































