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A few selected intact core sleeves also were exclusively  lyzed by others to measure hydraulic
conductivity as a function of moisture content. The results o ese analyses will be docum  2d
« ewhere. We also provide our interpretatic  >f the data in the context of determining the appropriate
geologic conceptual model, the vertical exte of contamination, the migration potential of e
contaminar . that still reside in the vadose zone, anc 1e correlation of the cc  aminant distribution in the
orehole sediment in relationsh  to groundwater plumes in the aquifer proximate and downgradient from
the SX Tank Farm.

This report is organized into seven sections that describe the geology, analytical methods, analytical
results, and summary and conclusions, refer esc¢ d, inadc on to eight appendices.
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A discordant clastic dike was intersecte 1ear the 52-meter (171.0-foot) depth in borehole 299-W22-
48 within a sandy sequence of the upper Rt  nit (Figure 3.11). The dike cor letely fills one core sleeve
(Figure 2.27) and partially fills the underlying core sleeve. The dike, - 0.75 meter (2.5 feet) thick, is
characterized by vertical to subvertical minations alternating betwee re clay and silt to pale yellow
silt and sand. Dike laminations are weakly to strongly calcareous. The dike contains a distinctly higher
moisture content (~15 wt%), as corroborate  on the neutron-neutron geophysical log, yet is o1 slightly
elevated on the total gamma log (see Figure 2.19).

Clastic dikes, which are usually asso ited with cataclysmic ice-age flood deposits of the Hanford
formation, are sometimes reported in underlying stratigraphic units, including the Ringold Formation
(Fecht et al. 1999). Of particular significance is the fact that this clastic dike lies 10.7 meters (35 feet)

zlow the base of the flood deposits an 51 ters (20 feet) below the indurated Plio-Pleistocene caliche
(PPlc) un (see Figure 2.19). While it is possible this dike is connected with Pleistocene cataclysmic
flooding, the possibility also exists that th ke is of Ringold age and occurred prior to ice-age flooding.
If the dike formed during Pleistocene tim¢ 2 implication is that clastic dikes (i.¢., preferential
pathways) might be connected from the nc  surface to the water table beneath the southern portion of the
200 Area’s Plateau. Alternatively, if the dike is Ringold in age, it is probably truncated along the
overlying Plio-Pleistocene unit and/or Hanford formation boundaries.

To identify the relative age and origin of the dike, as well as any possible manmade contaminants
present, detailed sampling and measurements will be performed for grain size, mineralogy, major and
trace element composition, and paleomagnetic field orientation of the dike and immediately adjacent
material. The hydraulic properties of the cored dike material will also be measured.

2.4.2.2 Borehole 299-W22-50

Well 299-W22-50 is located ~25 meters (82 feet) southeast of the southeast corner of the S-SX Tank
Farm fence (see Figure 2.2). UTM coor n s are 566,904.261 cast and 134  39.756 north [datum is
NADS83 (91)]. Land surface elevation is 2 .4 meters (669.75 feet) above msl.

This borehole was drilled from the surface to 73.5 meters (241 feet) bgs using the core-barrel cable
tool techni 1e and from 73.5 to 167 meters (241 feet to 547.5 feet) bgs using the air rotary technique.
Total depth was 167 meters (547.5 feet) bgs. The water table was encountered at ~67 meters (219 feet)
bgs. The borehole was completed as a well | January 2000; it is composed of a 10-centimeter (4-inch)-
diameter well casing with a 4.6 meter (15-foot)-long sampling screen placed at the water table (see
Horton and Jo  nson 2000).
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Semiquantification of miner. phases by XRD was performed according to Brindley and Brown
(1980). The r itionship of intensity and mass absorption to the weight fraction of an unknown phase is
eXpresse  as:

1, = pp/p (wi)

where

Tis' :intensity of the unknown phase

I, is the intensity of the pure phase

I, 1s the mass absorption of the pure phase

u is the average mass absorption of the unknown mixture
wf is the weight fraction of the unknown.

Pure mineral phases of illite, smectite, kaolinite, and chlorite were obtained from the Clay Mineral
Society’s source clays repository (operated from the University of Missouri in Columbia, Missouri) and
analyzed under the same conditions as the sediment samples. Quartz, feldspars, and calcite standards
were purchased from the Excalibur Mineral Company, Peekskill, New York, ground and analyzed on the
diffractometer to obtain intensities for pure non-clay phases.

The mass attenuation coefficients of se  ed samples were measure  according to Brindley and
Brown (1980). Ground bulk powders and air-dried clays were packed into a 0.94-inch-thick circular
holder with no backing. The holder was placed in front of the detector and positioned to allow the x-ray
beam, diffracted from pure quartz, to pass through the sample and into the detector. The scan was
analyzed from 26.0 to 27.0 degrees 20. The mass attenuation cor icients were measured directly using
the following equation:

= (1/px) In (I,/1)

where

1/px is the mass per unit area as the sample is prepared

I, is the intensity o: 1e incident beam

I, is the intensity of the transmitted beam through sample thickness x.

In addition to XRD, transmission electron microscopy (TEM) characterization of selected samples
was conducted on a JEOL 1200X electron microscope equipped with a Links detector system. Samples
were prepared for TEM by transferring a sma  aliquot of a dilute clay slurry onto a formvar carbon-
coated 3-millimeter copper support grid. e clay solution contained 0.15% tert-butylamine to reduce the
surface tension of water.

Structural formulas were derived from data collected from the TEM analysis. On average, an energy-
dispersive x-ray spectra was collected from a minimum of five particles from the sameé mineral phase
common to the sample. The x-ray spectra were collected and processed using the Cliff-Lorimer Ratio
Thin Section method and then converted to a structural formula (based on half-unit cell (O,,(OH),) by the
methc  described in Reynolds and Reynolds  789) and Newman (1987).
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Figure 4.5. Particle-Size Distt  ations for the Four Composite Sediment Samples

There is a large difference between ¢ vy sieving and the wet sieving in the particle-size distribution
for fine-grained samples, which often tend to form sedimentary aggregates. The dispersant used to
facilitate particle separation during the wet sieving/hydrometer analysis was more effective at
disaggregating the sample than was the dry  :ving technique; therefore, the data in T le 4.3 is more
representative of the true particle size, espe lly for the Ringold silt composite. There also appears to be
measurable agglomeration in the two fine s s that is also broken down when wet sieving is used. Thus,
we suggest that the wet sieving/hydrometer data are more accurate and useful, at least for the analysis of
fine-grained sediment.

Particle sorting is indicated by the shape of the curves in Figure 4.5. Samples that are well sorted
(e.g., Hanford fine sand) show a particle-size distribution curve with a steep midsection and flat tails on
either  d of the curve. The borehole fine  d is less well sorted, which probably reflects the fact that
this sample was composited over a relativi ~ ong . 0.5-meter or 34.5-foot) interval whereby many
different strata were mixed together. The Ringold silt composite is also less well sorted than the two
composites from the Hanford formation (i.e., Hanford coarse sand and Hanford fine sand).

4.3 Partii @ Density

The particle density results are shown in Table 4.4.
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5.3 Discussion: Comparisc Between Boreholes 299-W22-48 and
299-W22-50

The moisture profiles in the two RCRA  >reholes show similar trends in the same sediment types,
though the moisture spikes in borehole 299-W22-48 within the Hanford formation H2 unit indicate a

greater absolute moisture content.  oth >les show several moist zones in the Hanford formation H2
unit, associated with thin finer-grained | hat are common in this facies of the Hanford formation.
Both boreholes also show higher moistu iin the PPlc subunit. Another higher-moisture zone occurs

at the contact between the Hanford formation H2 unit and underlying fine-grained Plio-Pleistocene mud
Plz) subunit. As discussed in companion documents on contaminated sediment, the moisture content
itself is not indicative as to whether a certa: strata is draining or accumulating water.
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e speculate that the « :vated nitrate is manmade nitrate that was present in the groundwater when the
water tal : was much shallower (closertot  ground surface). Aside from the one spike (elevated
concentrations) in the  inford formation H 1nit at borehole 299-W22-50, the calculated porewater
cation concentrations are quite similar in the same sediment types for the two boreholes. There are higher
concentrations of magnesium and potassium leachable in the  ingold Formation at both boreholes than in
the overlying Hanford formation sediment. ~ is undoubtedly is related to geologic age and degree of
weathering.
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e acid leach (8M nitric acid extraction)
e UFA-extracted porewater composition.

Physical properties, such as particle- e distribution and moisture content, also vary according to
lithology. Strata with finer particle sizes (e.g., lower Hanford formation), and the top of PPlc subunit
with its high cement/clay cont t, retain more moisture in the vadose zone. High moisture is also
associated with a sub-vertical istic dike within the upper Ringold unit (Rtf) ir  orehole 299-W22-48.
Of the two methods use to determine particle size distribution (dry sieve and wet sieve/hydrometer), the
wet sieve method 1s superior to the dry sieve method, especially in fine-grained sediments, which tend to
cling together during dry sieving. Unfortun :ly,a dstall earlier pa cle size characterization at
Hanford was done using the dry sieve method.

Past studies have shown that sediments in the vadose zone are dominated by quartz, potassium- and
plagioclase-feldspar, basalt, and other lithic fragments with minor amounts of mica, amphibole, calcite,
and other trace minerals (Tallman et.  1979). The x-ray diffraction (XRD) work done for this study is in
agreement with past work and shows that the sediment is 25 to 95 wt% quartz, 5 to (possibly) 40 wt%
potassium feldspar, 10 to 20 wt% plagioclase feldspar, and 0 to 40 wt% calcite with trace to minor
amounts of amphibole, mica, and chlorite.

Mineralogical and geochemical variations, some significant, exist between the different stratigraphic
units, as a result of differing depositional environments and sources for the sediments. For example,
calcite-rich samples are associated with the lower Plio-Pleistocene subunit (PPI¢), which unlike other
stratigraphic units, underwent significant pedogenic alteration. In addition to high calcium oxide the PPlc
subunit is relatively high in magnesium oxi , which co-precipitated with calcium during pedogenesis.
Vadose-zone sediments contain very little organic carbon.  1e organic carbon is slightly greater for the
PPlc subunit (up to 0.2 wt%), compared to . ¢ other units, which are all <0.1 wt% carbon. Calcium
carbonate content, calculated from the amount of inorganic carbon present, approaches 40 wt% for the
PPlc subunit; all other units are generally less than a few wt% calcium carbonate. The concentration of
major elements such as silica, iron, and calcium, varies significantly because of different ratios of
quartzo-feldspathic to basaltic detritus in the inford versus Ringold formations. Samples high in
potassium oxide may reflect the relativi igh illite content of the Ringold Formation and finer-grained
portions of the Hanford formation.

Clay minerals, measured semiquantitatively using XRD, include smectite, illite, chlorite, and
kaolinite. Overall, within the clay sized fi tion of the sediments smectite ranged in concentration from
10 to 30 (wt%). Illite concentrations ranged from ~10% to 50% and chlorite concentrations were a little
less (~5 to 35 wt%). Minor amounts of kaolinite (~5% to 10%) were also detected. Quartz, feldspar, and
amphiboles made up less than - 5 wt% of the clay fraction. The only consistent trend in the mineral
content of samples is the substantial incr¢ ¢ in calcite, relative to other minerals, for the PPlc subunit.
This trend is noted in both the bulk sample as well as the <2-micron fraction.
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Appen: x A

Summary of Field Geologists’ Sample Descriptions for
Borehole 299-W22-48 (contains 8 pages) ani
Borehole 299- v22-50 (« ntains 8 pages)






















































Appendix B

Summary ¢ Gec  sts’ Core Sample Descriptio
fra 1+ -ehole 299-W22-48
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Appendix C

s for Borehole 299-W22-48 (9 ages)
299-W22-50 (9 pages)















RLS Neutron-Neutron Moisture Survey
Waste 1 nagement Technical Services

I HEA

Project: RCRA drilling 1999 Well: 299-W22-48

Borehole Information

We # 299-W22-48 Water Depth 226 ft Total Depth ft
Elevation Reference n/a Elevation n/a ft
Depth Reference _Ground Surface Casing Stickup 11.75in. —0.38”. 8.625in. - 1.0°
Casing Diameter 11.75 in. Depth Interval 0to 50 ft Thickness 0.5 in.
Casing Diameter 8.625 in. Depth Interval 010245 ft Thickness _0.5 in.

| =

Logging Information

Log Type Neutron-Neutron Moisture

Company Waste Management Technical Services

Logging Engineers 1.E Meisner

Instrument Series RLSMQ0.0

Logging Date October 27, 1999

Logging Unit RLS-I

Depth Interval 0"t 100’ Prefix MS45
507 o 1507 MA46
145710 225757 NMA47

Instrument Cahbration Date May 13, 1909

Calibration Report WHC-SD-EN-TI-306, Rev. 0

alysis Information

Company Waste Management Technical Services
Analyst Steven Kos

Date March 15, 2000

Depth Reference Ground Surface

Notes The moisture measurements werc a  ired at 0 250-f depth intervals at a logging speed of 1.0 ft per
minute
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Neutron- eutron Moisture Survey
Waste j¢ 1ent Technical Services

Prc 2ct: RCRA ) in 399 Log Date :October 27, 1999
Borehole: 299-W22-48 Dep Datum: Ground Level

¢ sture Vol. %
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RLS P a2utron-Neutron Moisture
Waste N ana¢  ent Tec 1 ce Setrvices

Project: RCRA Drilling1 39 LogDate: Novembe 30,1999
Bore ole: 299-W22-50 Depth Datum: Grounc eve
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Appendix D

'article-Size Resu s from Seven Borehc s in Vicinity
of the S-SX Tank Farm















ppendix E

Inventory of Core S| :ves from Borehole 299-W22-48












Appe dix F

Inventory of Core € :eves fro 1 Borehole 299-W22-5(0












ppen ix G

Some Mineralogical An: y s of the Com )osite Sediment Samples















Appendix [

Some Mineralogica Analyses from Boreholes 299-W22-48 an. -50













XRD Tracings of E  ( Samples From Bc  1ole B8812
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Figure H.1. XRD Pattern ' Bulk Samples from 299-W22-48 (B8812)
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