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1 Introduction

This field summary report documents the drilling, sampling, and decommissioning of three vadose zone
characterization boreholes installed in the 200-DV-1 Operable Unit (OU) within the Central Plateau of the
Hanford Site in fiscal years (FYs) 2016 and 2017. These boreholes were drilled as part of the

200-DV-1 OU remedial investigation to characterize the deep vadose zone beneath 200-DV-1 OU waste
sites located in the S Complex Area. The boreholes were drilled and sampled as defined in
DOE/RL-2011-104, Characterization Sampling and Analysis Plan for the 200-DV-1 Operable Unit
(hereinafter called the sampling and analysis plan [SAP]). The purpose of this document is to describe
field methods and results from drilling and sampling three characterization boreholes in the

S Complex Area.

1.1 Background on 200-DV-1 OU and the S Complex Waste Sites

The 200-DV-1 OU comprises 43 waste sites in three distinct geographical areas of Central Plateau: the

B Complex Area, the T Complex Area, and the S Complex Area. This OU includes the vadose zone from
the ground surface to the water table at these 43 waste sites. The 200-DV-1 OU was created in 2010 to
support remedy selection for waste sites with deep vadose contamination. The deep vadose zone begins
approximately 15.2 m (50 ft) below ground surface (bgs) and extends to the water table at depths ranging
from 55 to 82 m (180 to 270 ft) bgs. The deep vadose zone was contaminated during disposal of
hazardous waste associated with plutonium separation processes. In the S Complex Area, the
reduction-oxidation (REDOX) process operating at the 202S Plant (S Plant) used methyl isobutyl ketone
(MIBK) to separate plutonium and uranium from the dissolved fuel rod solutions. From 1952 through
1967, S Plant processed approximately 24,000 tons of uranium fuel rods. The lingering contamination in
the deep vadose zone is a potential source for continued release of mobile contaminants to the
groundwater. The deep vadose zone is being characterized by drilling boreholes and collecting soil
samples at selected depths.

The primary contaminants in the deep vadose zone at the S Complex Area that are driving long-term risk
are uranium and technetium-99 because of their adverse health effects, mobility, and long half-lives.
Additional mobile contaminants of long-term concern are iodine-129, chromium (assumed to be
hexavalent chromium), tritium, nitrate, and MIBK (DOE/RL-2010-89, Long-Range Deep Vadose Zone
Program Plan). The S Complex Area includes three waste sites in the 200-DV-1 OU associated with

S Plant.

Three boreholes were drilled at three waste sites:

1. Borehole C9512 at the 216-S-9 Crib
2. Borehole C9513 at the 216-S-13 Crib
3. Borehole C9514 at the 216-S-21 Crib

1.1.1  216-S-9 Crib

The 216-S-9 Crib is located east of the S-SX and SY Tank Farms as displayed in Figure 1-1. The waste
site was a 91 m (300 ft) long by 9.1 m (30 ft) deep crib fed by a perforated vitrified clay pipe, as shown in
Figure 1-2. From 1965 to 1969 the crib received 49.5 million L (13.1 million gal) of condensate from

S Plant. The crib was taken out of service when it reached its radionuclide limit. Table 1-1 shows the total
estimated inventory of mobile contaminants discharged to the 216-S-9 Crib, which included large
guantities of uranium, tritium, and nitrate. In 2016, borehole C9512 was drilled near the influent end of the
crib, near the leak discovered in 1969 at the junction of the pipelines that re-routed the waste to the
replacement crib.

1-1
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Figure 1-2. Configuration of the 216-S-9 Crib

Table 1-1. 216-S-9 Crib Inventory of Mobile Contaminants

Contaminant Inventory
Uranium (total) 2.76x10% kg
Technetium-99 1.04x101 Ci
lodine-129 2.95x1072 Ci
Cobalt-60 1.12x1072 Ci
Tritium 1.17x102 Ci
Nitrate 4.18x10* kg
Fluoride None
Ferrocyanide None
Chromium* None

Source: RPP-26744, Hanford Soil Inventory Model, Rev. 1.
Note: In RPP-26744, radionuclides are decayed to January 1, 2001.

*The Soil Inventory Model in RPP-26744 does not provide speciation information for chromium.
All chromium inventories are assumed to be hexavalent unless other information is available.

1.1.2  216-S-13 Crib

The 216-S-13 Crib is located west of the solvent storage and makeup building as displayed in Figure 1-3.

The waste site was a 3.7 by 3.7 m (12 by 12 ft) square wooden box with an open bottom, fed by one inlet pipe
near the top of the box as shown in Figure 1-4. From 1952 to 1972 the crib received 4.9 million L

(1.3 million gal) of liquid waste from decontaminated metal and MIBK solvent storage facilities and sump
waste from the uranyl nitrate hexahydrate storage facility. The crib was removed from service when the
storage facilities were deactivated. Table 1-2 shows the total estimated inventory of mobile contaminants
discharged to the 216-S-13 Crib, which included large quantities of uranium, tritium, nitrate, and chromium.
Additionally, 10,000 kg of MIBK and 10,000 kg of sodium dichromate were disposed in the crib
(DOE/RL-2007-02-VOLII-ADD3, Site-Specific Field Sampling Plans for the 216-B-42 Trench,

216-S-13 Crib, 216-S-21 Crib, 216-T-18 Crib, and 216-T-19 Crib and Tile Field in the 200-TW-1/PW-5
Operable Units). In 2017, deep borehole C9513 was drilled near the influent (eastern) side of the crib to
address the zone that is expected to have the highest contamination. The location selected in
DOE/RL-2011-104 was within the footprint of the crib but during characterization planning, the borehole was
relocated outside the crib footprint because of subsidence concerns.
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Figure 1-4. Configuration of the 216-S-13 Crib

Table 1-2. 216-S-13 Crib Inventory of Mobile Contaminants

Contaminant Inventory
Uranium (total) 3.05kg
Technetium-99 4.40x101Ci
lodine-129 None
Cobalt-60 1.85x103Ci
Tritium 4.31x10 Ci
Nitrate 3.48x10% kg
Fluoride 4.79x10' kg
Ferrocyanide None
Chromium* 1.21x10% kg

Source: RPP-26744, Hanford Soil Inventory Model, Rev. 1.
Note: In RPP-26744, radionuclides are decayed to January 1, 2001.

*The Soil Inventory Model in RPP-26744 does not provide speciation information for chromium.
All chromium inventories are assumed to be hexavalent unless other information is available.

1.1.3  216-S-21 Crib

The 216-S-21 Crib is located west of the S-SX Tank Farm as displayed in Figure 1-5. The crib was a
4.8 by 4.8 m (16 by 16 ft) wooden box with two vent risers and one test well going through the center of the

box, as shown in Figure 1-6. From 1954 to 1970 the crib received 87 million L (23 million gal) of

condensate from the 241-SX-401 Building condensers. Table 1-3 shows the total estimated inventory of
mobile contaminants discharged to the 216-S-21 Crib, which included large quantities of technetium-99,
tritium, nitrate, and chromium. Borehole C9514 was drilled in 2016 near the influent (eastern) side of the
crib to address the zone that was expected to have the highest contamination. The location selected in
DOE/RL-2011-104 was closer to the center of the crib, but during characterization planning, the borehole

was relocated further away from the crib center because of subsidence concerns.
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Figure 1-6. Configuration of the 216-S-21 Crib

Table 1-3. 216-S-21 Crib Inventory of Mobile Contaminants

Contaminant Inventory
Uranium (total) 1.06x10 kg
Technetium-99 2.11x10Ci
lodine-129 3.23x10*4 Ci
Cobalt-60 3.36x1072Ci
Tritium 2.54x103 Ci
Nitrate 4.91x10% kg
Fluoride 2.19x10' kg
Ferrocyanide None
Chromium* 5.08x10* kg

Source: RPP-26744, Hanford Soil Inventory Model, Rev. 1.
Note: In RPP-26744, radionuclides are decayed to January 1, 2001.

*The Soil Inventory Model in RPP-26744 does not provide speciation information for chromium.
All chromium inventories are assumed to be hexavalent unless other information is available.
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1.2 Hydrogeology of the 200-DV-1 Operable Unit S Complex Area

The 200-DV-1 OU is located in the Central Plateau of the Hanford Site, which is the topographically
elevated region formed during the Pleistocene cataclysmic floods (DOE/RL-2002-39, Standardized
Stratigraphic Nomenclature for Post-Ringold-Formation Sediments Within the Central Pasco Basin).
These paleo-floods deposited thick sequences of unconsolidated silt, sand, and gravel known as the
Hanford formation (Hf) onto older sediments of the Cold Creek unit (CCU) and Ringold Formation,
creating a mega flood bar. The unique depositional setting of the Hf sediments created a series of
erosional unconformities that result in heterogeneities within the stratigraphic unit. All 200-DV-1 OU
waste sites are located within the Central Plateau on this ancestral flood bar.

In the S Complex Area, the vadose zone is 67.4 to 72.5 m (221 to 238 ft) thick and is composed of two of
the three units of the Hf (Hanford formation unit 1 [Hf1] and Hanford formation unit 2 [Hf2]), the Cold
Creek unit silt (CCUz) and Cold Creek unit caliche (CCUc), the Ringold Formation upper fines (Ringold
Formation member of Taylor Flat [Rtf]), and part of the Ringold Formation member of Wooded

Island — unit E (Rwie). The Hf comprises about one half of the vadose thickness and consists of an upper
open framework gravel unit (Hf1) and a sand-dominated unit (Hf2). The Hanford sediments typically
have higher permeability and hydraulic conductivity compared to the older, more consolidated CCU and
Ringold Formation. The CCUz is a fine-grained silt to sand facies that overlies the CCUc, which is a
variably cemented calcium carbonate fine- to coarse-grained deposit. Underlying the CCU is the Ringold
Formation, which is locally composed of predominantly fine-grained silt and sand (Rtf) atop a fluvial
deposit of silty, sandy gravel (Rwie). The S Complex vadose zone overlies an unconfined aquifer,
contained within the Rwie. The saturated thickness of the aquifer in the S Complex ranges from 102 to
108 m (335 to 355 ft).

1-8
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2 Field Methods

Drilling was carried out in accordance with SGW-58552, Description of Work for the Characterization of
200-DV-1 Operable Unit, FY2015. Sampling, sample quality assurance, and quality control were carried
out under the direction of the following documents:

e DOE/RL-2011-104, Characterization Sampling and Analysis Plan for the 200-DV-1 Operable Unit

e DOE/RL-2011-104-ADD1, Characterization Sampling and Analysis Plan for the 200-DV-1 Operable
Unit Addendum 1: Attenuation Process Characterization

e DOE/RL-2011-104-ADD2, Characterization Sampling and Analysis Plan for the 200-DV-1 Operable
Unit Addendum 2: Supplemental Shallow Soil Risk Characterization Sampling

Stillwater LLC, Layne Christensen Company, Cascade Drilling L.P., Great West Drilling, and Holt
Services drilled the three boreholes between April 2016 and September 2017 under the direction of
CH2M HILL Plateau Remediation Company. Freestone Environmental Services provided well site
geology services and Stoller Newport News Nuclear provided geophysical logging services.

2.1 Drilling

Boreholes C9512, C9513, and C9514 were drilled in the S Complex Area to characterize the mobile
contaminants in the vadose zone at or near the waste sites. Geophysical logs from nearby wells had
previously identified a zone of high radiological contamination between 4.6 and 15 m (15 and 50 ft) bgs.
In order to protect the work site personnel, samples and drill cuttings from this zone could not be brought
to the surface. Therefore, one type of drill rig pushed through the high radiological zone and another type
of rig cored through the vadose zone as shown in Figure 2-1. Borehole C9513 was deeper than the other
two boreholes and the casing was downsized to meet the same objective, as shown in Figure 2-2.

— Phase 1: Becker Hammer

2 2
EgmzoNO>» 2k

. Phase 2: Sonic

125°-140

—

Figure 2-1. 200-DV-1 OU Drilling Schematics for Boreholes C9512 and C9514
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Figure 2-2. 200-DV-1 OU Drilling Schematics for Borehole C9513

Figure 2-3 shows the first phase of drilling using a Foremost AP-1000® Becker Hammer drill rig to push
through the high radiological zone to approximately 15 m (50 ft) bgs. The Becker Hammer rig drove
8.625 in. diameter temporary casing with a removable 6.625 in. diameter inner drive rod using a

600 horsepower diesel hammer. Following installation of casing, the borehole was geophysically logged
to determine if the Becker Hammer had drilled through the radiological contamination. If the high
radiological zone had successfully been drilled through, then drilling proceeded to the second phase.

The second phase of drilling used either a 600C full-size, track-mounted sonic drill rig or a Terra Sonic
150CC track-mounted sonic rig (Figure 2-4), to core from the bottom of the high radiological zone to total
depth (TD). The sonic drill rig used vibrational, rotational, and downward force to drive 6 in. diameter
temporary casing to depths around 38 to 73 m (125 to 240 ft) bgs. Appendix A contains the drilling
summaries for boreholes C9512, C9513, and C9514.

® Foremost AP-1000 Becker Hammer drills are a tradename of Foremost, Surrey, British Columbia, Canada.
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Figure 2-4. 200-DV-1 OU Sonic Drill Rigs: 600C Full-Size Track-Mounted Rig (Left),
Terra Sonic 150CC Track-Mounted Rig (Right)

2.2 Sampling and Analysis

Soil samples were collected in the shallow vadose zone above 4.6 m (15 ft) bgs and in the deep vadose
zone from approximately 15 m (50 ft) bgs to TD. The Becker Hammer used a split-spoon sampler and the
sonic rig used plastic sleeves to collect shallow soil samples (0 to 4.6 m [15 ft] bgs) at preselected
intervals during phase 1 of drilling as shown in Figure 2-5. Both split-spoon soil and sleeve samples were
bottled at the drill site and subsequently shipped to offsite analytical laboratories. During phase 2 of
drilling, the sonic rig collected intact continuous core samples using 5 ft long by 4 in. diameter plastic
LEXAN® liners, as shown in Figure 2-6. The cores were surveyed for temperature and radiological
contamination, labeled, and sent to the 6267 Sample Packaging, Shipping, and Receiving Building, just
east of the 200 West Area, to be stored in a refrigerator while awaiting transport to the RJ Lee soil
laboratory for lithological logging and subsampling. Preselected cores were also sent to Pacific Northwest
National Laboratory (PNNL) for analysis of contaminant attenuation and transport per
DOE/RL-2011-104-ADDL1.

® LEXAN is a registered trademark of SABIC, Riyadh, Saudi Arabia.
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Figure 2-5. 200-DV-1 OU Shallow Soil Samplers: Becker Hammer Split Spoon,
Sonic Sleeves (Left to Right)

R

Figure 2-6. 200-DV-1 OU Deep Soil Samplers: Sonic Core

After the sonic rig reached TD, the borehole was geophysically logged. Adjustments to the planned
sample interval depths per DOE/RL-2011-104 were made based on identification of man-made
radiological contaminants, high moisture peaks, and lithologic transitions identified in the geophysical
logs. Additionally, the core samples were assessed based on the core temperature readings to ensure that
cores with the lowest (or acceptable) temperature readings were selected for subsampling. Heat generated
during sonic drilling can result in increased core temperatures; therefore, the temperature of the core was
measured using both an infrared gun and temperature tape. All soil samples were analyzed for
contaminants of potential concern (COPCs) per DOE/RL-2011-104 at either Test America Laboratories
or GEL Laboratory. The analytical methods used by the laboratories are detailed in Table 2-1.
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Table 2-1. 200-DV-1 OU Analytical Methods

Method
Constituent [HEIS Method Name] Description Sample Preparation
Radiological

Am-241 AEA Isotopic americium/curium analysis by alpha Acid extraction, separation by sequential Eichrom
[AMCMISO_EIE_PREC_AEA] spectrometry ion-exchange resin, and precipitated on a filter
[AMCMISO_EIE_PLT_AEA]

C-14 LSC C-14 analysis by liquid scintillation counter Burn sample in a furnace and collect gas
[C14_LSC]

[C14_CHEM_LSC]

Cs-137 GS Gamma-emitting radionuclide analysis by GS using No sample preparation

Co-60 [GAMMA_GS] germanium high energy detectors

Eu-152

Eu-124

Eu-155

1-129 LEPS lodine-129 analysis by LEPS Solvent extraction and precipitation
[1129_SEP_LEPS_GS]

Np-237 AEA Neptuniun-237 analysis by alpha spectrometry Acid leach, separation by ion exchange, and
[NP237_IE_PRECIP_AEA] precipitated on a filter
[NP237_LLE_PLATE_AEA]

Ni-63 LSC Nickel-63 analysis by liquid scintillation counter Acid leach and separation by ion exchange
[NI63_LSC]

Pu-238 AEA Isotopic plutonium analysis by alpha spectrometry Acid leach and separation by ion exchange

Pu-239/240 [PUISO_PLATE_AEA]

[PUISO_IE_PRECIP_AEA]

Sr-90 GPC Total beta strontium analysis by GPC Acid leach, chemical separation, and precipitated on
[SRISO_SEP_PRECIP_GPC] a filter
[SRTOT_SEP_PRECIP_GPC]

Tc-99 LSC Technetium-99 analysis by liquid scintillation Acid leach and separation by Eichrom ion-exchange
[TC99 _EIE_LSC] counter resin
[TC99_ETVDSK_LSC]

H-3 LSC Tritium analysis by LSC Burn sample in a furnace and collect gas

[TRITIUM_DIST_LSC]

T 'A3d '96ST9-MOS
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Table 2-1. 200-DV-1 OU Analytical Methods

Constituent

Method
[HEIS Method Name]

Description

Sample Preparation

U-233/234 AEA Isotopic uranium analysis by alpha spectrometry Acid leach, separation by ion-exchange resin, and
U-235 [UISO_IE_PRECIP_AEA] precipitated on a filter
U-238 [UISO_IE_PLATE_AEA]
[UISO_IE_PLATE_AEA]
Nonradiological
Al 6020 Metals (EPA 846) Metal analysis by ICP-MS Acid leach
As [6020_METALS_ICPMS]
Ba
Cd
Cr
Cu
Pb
Mn
Ni
Se
U
NH3 350.1 Ammonia (EPA 846) Ammonium analysis by automated colorimetry Sulfuric acid extraction
[350.1_AMMONIA]
Sb 6010 Metals (EPA 846) Metal analysis by ICP-AES Acid leach
Ag [6010_METALS_ICP]
CI- 300 Anions (EPA 600) or 9056 Anions Anion analysis by ion chromatography 10:1 water extraction
F (EPA 846)
NOs [300.0_ANIONS_IC]
NO2 [9056_ANIONS_IC]
POs*
SO4*
CN- 9012 Cyanide (EPA 846) or equivalent Cyanide analysis by automated colorimetry Water leach with a base
[9012_CYANIDE]
Cr(VI) 7196 Hexavalent Chromium Hexavalent chromium analysis by colorimetry Alkaline leach
(EPA 846)
[7196_CR6]
Hg 7471 Mercury (EPA 846) Mercury analysis by cold vapor atomic absorption Chemical vapor generation

[7471_HG_CVAA]

T 'A3d '96ST9-MOS
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Table 2-1. 200-DV-1 OU Analytical Methods

Method
Constituent [HEIS Method Name] Description Sample Preparation
Geochemical
Al 6010 Metals (EPA 846) Metal analysis by ICP-AES or ICP-MS 1:1 water extraction
Ba [6010M_ICP_WE]
Ca
Fe
Mg
Mn
K
Na
Ca 6010 Metals (EPA 846) Metal analysis by ICP-AES Acid leach
Fe [6010_METALS_ICP]
Mg
K
Na
Al 6020 Metals (EPA 846) Metals by ICP-MS Acid leach
Ba [6020_METALS_ICPMS]
Mn
TIC 9060 TOC TIC analysis by measuring CO: after acid purging Water leach
(EPA 846)
TOC [9060_TOC] TOC analysis by measuring CO: after chemical
[9060_TOC_WE] oxidation
Physical
pH 9045 PH (EPA 846) pH of soils using an electrode --
[9045_PH]
Specific 9050 Specific Conductivity Specific conductance is measured using a self- --
Conductance (EPA 846) contained conductivity meter (Wheatstone bridge-
[9050_CONDUCT] type or equivalent)
Bulk Density D2937 Bulk Density (ASTM) Standard test method for density of soil in place by --

[D2937 DENSITY]

the drive-cylinder method (vol. 4.08)

% Moisture

D2216 Percent Moisture (ASTM)
[D2216_%MOIS]

Percent moisture in soils measured by drying soil in
an oven

Particle Size

D422 Particle Size (ASTM)
[D422_PARTCLSIZE]

Particle size distribution using a sieve

T 'A3d '96ST9-MOS
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Table 2-1. 200-DV-1 OU Analytical Methods

Method
Constituent [HEIS Method Name] Description Sample Preparation
Organics

Kerosene Total Petroleum Hydrocarbons (WDOE) Total petroleum hydrocarbon analysis by gas Solvent extraction
[WTPH_DIESEL] chromatography-flame ionization detector

TBP 8270 Semi-Volatile Organic Analysis (EPA | Semi-volatile organic compound analysis by GC- Solvent extraction
846) MS
[8270_SVOA_GCMS]

MIBK 8260 Volatile Organic Analysis (EPA 846) | Volatile organic compound analysis by GC-MS Gas purge
[8260 VOA_GCMS]

PCB 8082 PCB (EPA 846) PCB analysis by gas chromatography-electron Solvent extraction
[8082_PCB_GC] capture detector

AEA = alpha energy analysis LSC = liquid scintillation counter

ASTM = ASTM International (formerly American Society for Testing and Materials) pPCB = polychlorinated biphenyl

GC-MS = gas chromatography-mass spectrometry TBP = tributyl phosphate

GPC = gas proportional counting TIC = total inorganic carbon

GS = gamma spectroscopy TOC = total organic carbon

HEIS = Hanford Environmental Information System MIBK = methyl isobutyl ketone

ICP-AES = inductively coupled plasma-atomic emission spectroscopy ou = operable unit

ICP-MS = inductively coupled plasma-mass spectroscopy WDOE = Washington State Department of Ecology

LEPS = low energy photon spectroscopy

T 'A3d '96ST9-MOS
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2.3 Geologic Logging

Geologic logging was conducted concurrently with borehole drilling in accordance with standard methods
for geologic logging. Geologic logging activities included preparing daily reports, borehole logs, and well
summary sheets. In most cases during phase 2 drilling, due to sediment collection via the continuous core,
detailed geologic descriptions were not possible in the field but were completed in the RJ Lee soil
laboratory when the cores were opened for core logging and subsampling. Appendix A contains the well
site geologist’s drilling summary reports for boreholes C9512, C9513, and C9514.

2.4 Geophysical Logging

Geophysical logging was conducted to characterize the nature and vertical extent of gamma
contamination, identify sediment layers suitable for sampling, define geologic units with potential for
lateral correlation, and evaluate the straightness of the borehole.

The Spectral Gamma Logging System, High Rate Logging System, Neutron Moisture Logging System,
Borehole Deviation System (BDS), and Passive Neutron Logging System were all used during this
project. As shown in Figures 2-1 and 2-2, each borehole consisted of either two or four casing strings,
with each casing string logged separately with the exception of the BDS, which was deployed once when
total depth was reached within the respective casing strings.

After drilling of each casing string was completed, a radiological control technician swabbed and checked
the borehole to assess the downhole environment and determine if there was any internal contamination
that could contaminate the logging tools. As a matter of practice, it was decided to sleeve the logging
tools in 4 mil (0.004 in.) thick plastic during logging to prevent the Sonde from coming in contact with
the casing, as shown in Figure 2-7.

Figure 2-7. Geophysical Logging: Sonde Above Borehole, Sonde Getting Sleeved,
Sleeved Sonde Lowered in a Borehole (Left to Right)

2-9
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Prior to using each logging system, verification checks were conducted to ensure proper tool operation.
Logging was conducted to within approximately 0.3 m (1 ft) of the bottom of the borehole. The bottom
0.3 m (1 ft) was not logged to limit the potential for contaminated material to be brought up to the surface
following a log run. The High Rate Logging System and Passive Neutron Logging System log runs
focused on intervals of high radioactivity, as determined during initial Spectral Gamma Logging System
logging. A centralizer was used during logging of each first casing string to keep the logging tool near the
center of the borehole axis. Due to the smaller diameter of the second casing string, no centralizer was
used except when logging with the BDS. Verification checks were conducted following each logging day.
Repeat log runs were conducted over 10% of the logged intervals as another quality check to confirm both
proper tool operation and depth repeatability. Appendix B contains the geophysical log data reports.

2.5 Core Logging

The intact 1.5 m (5 ft) long continuous cores collected during sonic drilling were sent to the RJ Lee soil
laboratory for lithologic logging and subsampling. Prior to cutting the core, the outside of the LEXAN
liner was surveyed with hand-held instruments for alpha, beta, and gamma radiation. Each LEXAN liner
was then cut lengthwise on each side, as shown in Figure 2-8. After opened, the soil was surveyed again.
Pictures of each core were taken using a digital camera. The lithology of each core was logged in detail
per the standard methods for geologic logging. Preselected soil intervals were subsampled, bottled,
labeled, and shipped to offsite analytical laboratories for analysis. Appendix C contains the detailed core
descriptions and digital photographs.

95.0 C9513 Core 13 90.0
lmll”ll|||l||||l||l|ll|l|IIrI|lII|j|||I|IIIIiI|£L!!II|IIPI|IIII|IIII[IIII|I|II|I|II|IIII|III-I|II!J" R U U R R T T

OO ~RONTONTTTO OO TON OO TOUNTNTNODONONTON-—DONOWD T ON -

Figure 2-8. Example Core from 27.4 to 29.0 m (90 to 95 ft) bgs in Borehole C9513 Showing a Very Distinct
Color Change in the Silt from Reddish-Brown to Bluish-Grey at 27.7 m (90.8 ft) bgs

2.6 Borehole Decommissioning

Boreholes C9512, C9513, and C9514 were decommissioned from total depth to approximately 0.6 m
(2 ft) bgs with bentonite chips. Concrete was poured from 0 to 0.6 m (2 ft) bgs and a brass marker was
placed at ground surface for identification.

2.7 Waste Management

The waste generated from 200-DV-1 OU drilling, sampling, geophysical logging, and borehole
decommissioning activities was managed according to DOE/RL-2012-20, Waste Control Plan for the
200-DV-1 Operable Unit.
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3 Borehole Results

This chapter details the borehole as-built diagrams and analytical results (sediment and geophysical log
plots). It presents a composite borehole log showing the overall borehole lithology, contaminant depth
profile, and geophysical logging profile for each of the three characterization boreholes. Additionally, some
preliminary observations based on the soil and geophysical data from the three characterization boreholes
are noted in this chapter. These observations focus on the mobile contaminants with the largest quantities
discharged to the waste sites (uranium, technetium-99, iodine-129, tritium, nitrate, and chromium), as
shown in Tables 1-1 through 1-3.

All required data analyses were completed. Data from the 200-DV-1 OU boreholes in the S Complex Area
have been reviewed and verified as part of the quality assurance process in accordance with the SAP
(Section 2.4 of DOE/RL-2011-104). Data validation will be documented in separate data validation reports
and discussed in the data usability assessment report. Detailed interpretations of the borehole and analytical
data and an updated 200-DV-1 OU conceptual site model (CSM) will be presented in future reports.

Table 3-1 details the number of samples collected, total depth achieved for each borehole, and deviations
from the SAP (DOE/RL-2011-104, DOE/RL-2011-104-ADD1, and DOE/RL-2011-104-ADD?2). In
general, the number of SAP samples stayed the same but the sample depths were moved to avoid the high
radiological zone (Section 2.1) and to sample at optimal depths after reviewing the geophysical logs
(Section 2.2). Additionally, supplemental samples were collected to satisfy the SAP addenda
(DOE/RL-2011-104-ADD1 and DOE/RL-2011-104-ADD?2).

3.1 Borehole C9512 at the 216-S-9 Crib

Borehole C9512 is located at the 216-S-9 Crib. The Becker Hammer drill rig pushed 8.625 in. diameter
casing from ground surface to 11.1 m (36.4 ft) bgs and the sonic rig drilled 6 in. diameter casing to TD of
43.4 m (142.5 ft) bgs (Figure 3-1). C9512 was geophysically logged and final sample depths were selected,
as shown in Figure 3-2. The sediment samples were analyzed for COPCs, as displayed in Tables 3-2 and
3-3, and the lithology was logged and plotted with mobile COPCs and borehole geophysics, as shown in
Figure 3-3.

The sediment samples collected at approximately 19 m (61 ft) bgs and approximately 32 m (104 ft) bgs
contained elevated concentrations of nitrate (212,000 and 288,000 pg/kg, respectively). Tritium was present
in the lower portion of the borehole with concentrations increasing with depth; concentrations were 54, 100,
and 417 pCi/g at 32, 40, and 43 m (104, 130, and 140 ft) bgs, respectively. The sample with the highest
tritium concentration was collected from a zone of high moisture at the CCUz. Low concentrations of
iodine-129 were detected in the two deepest samples from the borehole (40 and 43 m [130 and 140 ft] bgs).
Borehole geophysical logs show cesium-137 contamination from ground surface to approximately 20 m

(64 ft) bgs.

Borehole C9512 encountered the Hf1 and Hf2 and a portion of the uppermost fine-grained CCU. No soil
was evaluated from 4.6 to 10 m (15 to 32 ft) bgs due to the Becker Hammer drilling method. Therefore, the
base of the crib fill at borehole C9512 is inferred from geophysical logs showing an abrupt increase in
cesium-137 at 7.9 m (26 ft) bgs, although the contact could potentially be shallower. The sandy and silty
gravel intervals encountered at the start of sonic drilling at 9.8 m (32 ft) bgs indicates the borehole is well
into the gravel-dominated Hf1. A transition at 17 m (56 ft) bgs to massive sand followed by well-bedded
sand and silty sand indicates the top of the Hf2. This transition can also be seen in the geophysical logs
where an increase in natural potassium, uranium, and thorium indicate an increase in clay minerals and
fine-grained sediments. At 39 m (128 ft) bgs the silt content increases to 90% but then drops back down to
15% from 39.8 to 40.3 m (130.7 to 132.2 ft) bgs. At 40 m (132 ft) bgs the unit is 100% laminated, light
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yellowish-brown silt. This is the top of the CCU, specifically the CCUz, which persists to TD of the
borehole at 43.4 m (142.5 ft) bgs.

Table 3-1. Deviations from the 200-DV-1 OU SAP for S Complex Boreholes

Planned
Waste Site Borehole (SAP) Actual Reason for Deviation
216-S-9 Crib C9512 Samples: 7 Samples: 11 Samples: Two supplemental shallow
Depth: 42.6 m | Depth: 43.4 m samples collected for risk assessment per
supplemental vadose zone samples collected
for PNNL per DOE/RL-2011-104-ADD1.
Depth: Not applicable
216-S-13 Crib C9513 Samples: 11 Samples: 21 Samples: Seven supplemental shallow
Depth: 74.7m | Depth: 73.3m samples collected for risk assessment, and
(245 ft) (240.5 ft) three supplemental vadose zone samples
collected for PNNL per
DOE/RL-2011-104-ADD1.
Depth: Stopped drilling 4.5 ft above
planned depth to avoid drilling into the
groundwater per the Washington
State Department of Ecology.
216-S-21 Crib C9514 Samples:7 Samples: 9 Samples: Two supplemental shallow
Depth: 38.1m | Depth: 38.9m samples collected for risk assessment per
(125 ft) (127.6 ft) DOE/RL-2011-104-ADD2.
Depth: Not applicable

References: DOE/RL-2011-104-ADD1, Characterization Sampling and Analysis Plan for the 200-DV-1 Operable Unit
Addendum 1: Attenuation Process Characterization.

DOE/RL-2011-104-ADD2, Characterization Sampling and Analysis Plan for the 200-DV-1 Operable Unit Addendum 2:

Supplemental Shallow Risk Characterization Sampling.
operable unit
Pacific Northwest National Laboratory
sampling and analysis plan

ou =
PNNL =
SAP
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Eaorehole As-Built Diagram: 200-0%-1 Characterization

Drilling Methiod: | PushiSonic hwiell Mame: 216-5-9 Cribh
Orillirug Fluid: H/A whell .0 o512
Orrillers rame: HiA State Coordinates: M1344:20
Drilling Compary Layne/Cascade ESET15T

Date Started: 41272016 Start Card #: MO

Design Doc: SGW-58552 Elevation Ground Surface 207.7 m ams|
Sonic Start Ti2ai2016

Ground Surface

Sample Intereal [t bgs)

Cemert Grout Surface Seal 0-2' bgs

Broken shoe 32 6-34' bgs was removed

8 5/8" Push Casing 0-36.4' bgs

Berntonite Crumbles 2-142.5' bgs

E" Temporary Caszing 36.4-142.5' bygs

Samples
O PHML
B CHPRC

Total Depth - 142.5' bas

Mot to scale

3.0-50
g.0-58.0

13.0-15.0

37.0-42.0

57.5-62.5

Bz.2-77.3

T6.3-813

10Z2.6-107.6

N7.0-127.0

127.2-132.2

1537.0-142.0

Figure 3-1. As-Built Diagram for Borehole C9512
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Note: Appendix B contains the complete geophysical log report.

Figure 3-2. Geophysical Log and Sample Depths for Borehole C9512



Table 3-2. Radiological Contaminant Concentrations in Samples Collected from Borehole C9512
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Sample Interval Sample Number Am-241 C-14 Cs-137 Co-60 Eu-152 Eu-154 Eu-155 1-129 Np-237 Ni-63 Pu-238 Pu-239/240 Sr-90 Tc-99 H-3 U-233/234 U-235 U-238
(ft bgs) (HEIS #) (pCilg) (pCilg) (pCi/g) (pCi/g) (pCilg) (pCilg) (pCi/g) (pCilg) (pCi/g) (pCi/g) (pCilg) (pCilg) (pCi/g) | (pCifg) | (pCilg) (pCilg) (pCi/g) (pCilg)
392.55 B33XV3 0.0666 068 0.721 0.0&63 0.0365 0.0824 0.06158 0.0&86 276 0.%38 0.0367 O.lZJSS 0.677 0.l1J89 0.0541 0.254

6-82 B33XV4 0.0308 0.587 0.463 0.0&57 0.0314 0.0392 0.0597 0.0585 5.636 0.0391 017 0.347 0.375 0.%)83 0.0289 0.26
13-15.3 B33XV5 0.06169 O.iLJ85 0.0365 0.0&55 0.0819 0.06183 0.031 0.%121 0.%44 4.87 0.0348 0.0691 0631 0.86 488 0.0568 0.371
40.7 - 415 B37FF9 0.701 8.29 5.36 O'Ojll 0'0812 0'0364 0'%26 0'327 0'0318 5'87 0.0905 0.671 0.32 0'308 30.3 0.562 0'%38 0.605
B37FH1 0.243 0.795 1.24 0'0634 0'327 0'0352 0'323 0':511 0'0337 606 0.123 0.267 0.359 186 14.6 0.165 0'0845 0.178

60.8 - 62
B37FH3 0349 0.364 12 0.0&16 0.0548 0.0864 0.0534 0.:538 0.0891 7.88 0.0301 0.244 0.288 1.89 15.8 0217 0.0886 0.308
78.5-79.8 B37EH5 0.0861 0.672 0.0&03 0.0&28 0.0523 0.06111 0.%21 O.b67 0.0&52 7.652 0.0898 0.0811 0.668 1L.Jl 101 0.258 0.0371 0271
103.1 - 104.6 B37EH7 0.0331 1.05 0.0'jOZ 0.0624 0.0578 0.0392 0.0348 0.0377 0.0347 7615 0.0335 0.0327 0.672 134 537 0124 0.0342 0218
129.2 - 130.2 B37FH9 0.0318 0.669 0.0624 0.0&43 0.0581 0.%46 O.(l)JZ7 0729 0.0356 6.619 0.0373 0.(&69 0.346 0.332 100 0279 0.354 0.172
139 - 140.5 B37E1 0.384 0.393 0.0&91 0.0517 0.0328 0.0873 0.0838 0.601 0.0803 639 0.0376 0.l1J05 0.366 1.89 417 0178 0.0822 0.168

Notes: Blank cells indicate no result for sample number.

Undetected radionuclide value reported is the minimum detectable concentration.

bgs = below ground surface

HEIS = Hanford Environmental Information System

Data qualifier
U =analyzed for but not detected
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Table 3-3. Nonradiological Contaminant Concentrations in Samples Collected from Borehole C9512
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Sample Sample
Interval Number Al NH3 Sb As Ba Cd CI Cr Cu CN- F Cr(VI) Pb Mn Hg Ni NOs NO> PO4* Se Ag SO4* |Kerosene| TBP u
(ftbgs) | (HEIS#) | (ng/kg) | (Mg/kg) | (Mg/kg) | (Mg/kg) | (Mg/kg) | (g/kg) | (Markg) | (Markg) | (Mg/kg) | (hglkg) | (Mg/kg) | (Halkg) | (Mg/kg) | (Mg/kg) | (Mg/kg) | (Mg/kg) | (g/kg) | (Markg) | (Markg) | (Mg/kg) | (Mglkg) | (Mglkg) | (Mg/kg) | (Hg/kg) | (Hg/kg)
1,900 31,400 102 3,800
B33XT3 B 1,100 N U BN 6,900
3.2-55
B33XT8 6,060,000 480 7,100 86,900 140 7,000 14,800 120 5,600 14 11,300 1,600 190 350 48 550
D BD D DN BD D D U D B D BD BD U U D
1,800 27,400 112 2,300
B33XT4 B 1,500 N B BN 7,900
6-8.2
B33XT9 6,080,000 510 8,700 | 132,000 140 11,500 | 21,400 120 7,200 10 15,500 1,800 210 350 48 710
D BD D DN BD D D U D U D BD BD U U D
35,000 102 1,300
B33XT5 31,000 1,200 N U BN 120,000
13-1523 B33VX0 6,440,000 158 490 8,000 | 109,000 110 11,000 | 21,100 120 6,900 11 15,000 2,000 120 350 48 640
' D BN BD D DN BD D D U D U D BD U U U D
B33XV5 200
B
B37FF9 10,000 500 180 66,400 664 1%60 19,000
40.7-41.5
B37FHO 5,570,000 | 6,570 460 2,900 52,400 140 9,200 11,000 110 3,800 | 285,000 15 10,400 810 190 340 47 880
D N ubD D D D D D U D D B D ub ubD U U D
1,000 150 1,020 1,230 2,100
B37FH1 B 510 U 212,000 B U B
B37FH2 7,700,000 | 9,360 470 6,700 | 135,000 120 13,400 | 15,000 120 6,300 | 617,000 11 13,100 910 190 340 47 580
D N ubD D D BD D D U D D U D BD ubD U U D
60.8 - 62
1,100 150 1,050 1,260 2,100
B37FH3 B 520 U 212,000 B U B
B37EH4 7,490,000 | 11,100 500 5,600 83,800 74 12,700 | 15,000 110 6,200 | 379,000 10 18,200 930 190 340 47 550
D N ub D D BD D D U D D U D BD ub U UZH D
1,900 150 93,000 624 1,260 1,500
B37FH5 B 810 U 7 Uz Uz B
78.5-79.8
B37FH6 8,450,000 888 480 6,700 | 142,000 92 14,200 | 18,100 110 6,300 | 580,000 11 13,400 710 170 340 47 1,100
D CN ubD D D BD D D U D DN U D ub ubD U U D
150 288,000 | 2,100 1,260
B37FH7 8,400 1,500 U DZY 7 Uz 4,200
103.1-104.6
B37FH8 9,850,000 863 480 6,700 84,400 110 18,200 | 15,600 120 6,400 | 429,000 12 19,000 1,000 190 350 48 780
D CN BD D D BD D D U D DN B D BD ub U U D
990 150 33,200 624 1,720
B37FH9 U 840 U 7 Uz BZ 3,400
129.2 - 130.2
B37EJ0 11,800,000 | 705 530 9,600 | 116,000 170 21,800 | 22,500 120 8,500 | 409,000 14 24,800 1,200 190 350 49 930
D CN BD D D D D D U D DN B D BD ub U U D
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Table 3-3. Nonradiological Contaminant Concentrations in Samples Collected from Borehole C9512

SGW-61596, REV. 1

Sample Sample
Interval Number Al NH3 Sb As Ba Cd CI Cr Cu CN- F Cr(VI) Pb Mn Hg Ni NOs NO> PO4* Se Ag SO4* |Kerosene| TBP u
(ftbgs) | (HEIS#) | (ug/kg) |(ug/kg) | (Mg/kg) | (Ma/kg) | (Malkg) | (ug/kg) | (Markg) | (Mg/kg) | (Ha/kg) | (Ma/kg) | (glkg) | (Mg/kg) | (Ha/kg) | (Malkg) | (ng/kg) | (Markg) | (Mo/kg) | (Ha/kg) | (Ma/kg) | (g/kg) | (Mgrkg) | (Mg/kg) | (ug/kg) | (ng/kg) | (Mgrkg)
B37FJL 2,600 1000 | 2P 27400 | 824 | 2390 11,000
139 -140.5
B37E12 9,050,000 | 1,060 550 5,200 92,900 100 12,500 | 18,200 130 9,300 | 382,000 12 14,400 1,200 200 390 53 690
D CN ub D D BD D D U D DN U D BD ubD U U D
Note: Blank cells indicate no result for sample number.
bgs = below ground surface
HEIS = Hanford Environmental Information System
TBP = tributyl phosphate

Data qualifiers
= analyte was detected at less than the quantitation limit but greater than the method detection limit

= analyte was detected in both the sample and the quality control blank

= analyte was reported at a secondary dilution factor

= laboratory holding time exceeded before the sample was analyzed

spike and/or spike duplicate recovery is outside control limits

= analyzed for but not detected

= result is suspect

= miscellaneous circumstances exist; additional information available in database comment field

N < CZTIOOW®m
I
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Notes: The contaminant scale changes with each borehole. The ground surface elevation at borehole C9512 is 204.4 m (670.7 ft).
Appendix C contains the complete borehole core log report and photographs.

Figure 3-3. Composite Log Profile for Borehole C9512
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SGW-61596, REV. 1

3.2 Borehole C9513 at the 216-S-13 Crib

Borehole C9513 is located at the 216-S-13 Crib. The sonic rig drove 12 in. diameter casing from ground
surface to 3.6 m (11.9 ft) bgs and the Becker Hammer rig pushed 8.625 in. diameter casing to 13.1 m

(43 ft) bgs. The sonic rig returned to drill 7 in. diameter casing to 48.9 m (160.3 ft) bgs and 6 in. diameter
casing to TD at 73.3 m (240.5 ft) bgs as shown in Figure 3-4. Borehole C9513 was geophysically logged
and final sample depths were selected, as shown in Figure 3-5. The sediment samples were analyzed for
COPC:s, as displayed in Tables 3-4, 3-5, and 3-6, and the lithology was logged and plotted with mobile
COPCs and borehole geophysics, as shown in Figure 3-6.

Sediment samples collected from approximately 28 m (91 ft) bgs to approximately 59 m (192 ft) bgs had
significantly high concentrations of hexavalent chromium with concentrations increasing to a peak
(9,790 pg/kg) in the moist CCUz (approximately 45 m [147 ft] bgs) and then decreasing below the CCUc
in the Rtf (approximately 59 m [192 ft] bgs). Similarly, concentrations of MIBK were elevated from 29 to
53 m (95 to 173 ft) bgs with a maximum concentration (1,900,000 ug/kg) at the CCUz (approximately
44 m [143 ft] bgs) and lower concentrations in sediments collected from the Rtf (approximately 52 m
[170 ft] bgs). High uranium concentrations (32,700 and 36,800 ug/kg) were found at 27.7 m (91 ft) bgs in
the Hf2 and at 40.2 m (132 ft) bgs at the CCU contact. Technetium-99 was detected (11.4 pCi/g) at
approximately 35.4 m (116 ft) bgs. Borehole geophysical logs show cesium-137, cobalt-60, uranium-235,
and protactinium-234 contamination at approximately 9 to 17 m (30 to 55 ft) bgs, with sporadic hits of
uranium-235 and protactinium-234 throughout the borehole to approximately 46 m (150 ft) bgs.

Borehole C9513 is a deep borehole drilled through the Hf1 and Hf2, the CCU and CCUc, the Rtf and a
portion of the Rwie to TD just above the water table. The crib fill material extends from the ground
surface to at least 4.6 m (15 ft) bgs where the Becker Hammer drilling method commenced and continued
to 14 m (45 ft) bgs. There is a marked change in the geophysical log response at 12 m (39 ft) bgs where
all the spectral components increase, indicating a change in lithology to finer-grained sediments and the
Hf2 contact. Once the sonic drilling began at 14 m (45 ft) bgs, the Hf2 was revealed to be alternating sand
and silty sand with distinct bedding structures. There are several silt beds within the Hf2 where core
observations correlate well with neutron moisture log response. The volume percent moisture in those
beds is as high as 25%. One high moisture bed at 27 m (90 ft) bgs corresponds to high concentrations of
uranium and MIBK as well as a very distinct color change from reddish brown silt to bluish gray silt, as
shown in Figure 2-8. The upper CCU was encountered at 40 m (132 ft) bgs where the thorium and
neutron moisture logs increase and the lithology transitions into a more silt-dominated system. The CCU
displays multiple soft sediment deformation structures, including a coarser-grained injectite structure
from 43.6 to 44.2 m (143 to 145 ft) bgs. Injectites are soft sediment deformation structures resulting from
rapid sedimentation loading overpressured saturated sediments below. The CCUc contact is interpreted at
46 m (150 ft) bgs from the characteristic spectral gamma signature (increased natural uranium and a
substantial decrease in potassium and thorium). The CCUc contact is contained within the cores sent to
PNNL and preserved intact for hydraulic analyses; therefore, a textural description of the CCUc is not
available for this well.
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Borehole As-Built Diagram: 200-D%-1 Characterization

Ground Surface

Drilling Method: - D-Push/Sonic el Fame: 216-5-13 Crib
Orillirg Fluid: H/A Welll.0: C9513

Crrillers rame: H/a, State Coordinates: M134011.33
Crilling Campary GWHolt ESE7154.04
Date Started: SME201T Start Card #: M.0O.

Dezign Doc: SGW-58552 Elewation Ground Surface 204.3 m amsl
Sonic Start

Sample Interval (it bgs)

Cetmnert Grout Surface Seal 0-2' bgs
12" Temporary Casing 0-11 9" bgs

g 58" Push Cazing 11.9-43" bgs
Bertonite Crumbles 2-240.5' bgs

7" Temporary Casing 43-160.3" bgs

E" Temporary Cazing 160.3-240.5" bgs

Samples
O  PHuL
@ CHFRC

Tatal Depth - 240.5' bgs

]

Mot to scale

n.0-z0
20-4.0
4.0-6.0
G.0-3.0
d.0-10.0
10.0-12.0
153.0-15.0

G1.0-63.0
TE.0-73.0
30.5-52.0
0.5 - 1252 [PMML)

15.5-16.5
1531.5-133.5

146.1-145.5
1507 - 165.7 (PRML)
171.0-175.0

1909 -1594.7F

2105 - 2255 (PHRL)
2250-227.0

2314 -23d.4

Figure 3-4. As-Built Design Diagram for Borehole C9513
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Note: Appendix B contains the complete geophysical log report.
Figure 3-5. Geophysical Log and Sample Depths for Borehole C9513
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Table 3-4. Radiological Contaminant Concentrations in Samples Collected from Borehole C9513

SGW-61596, REV. 1

Sample Depth Sample

Interval Number Am-241 C-14 Cs-137 Co-60 Eu-152 Eu-154 Eu-155 1-129 Np-237 Ni-63 Pu-238 Pu-239/240 Sr-90 Tc-99 H-3 U-233/234 U-235 U-238
(ft bgs) (HEIS #) (pCilg) (pCilg) (pCi/g) (pCi/g) (pCi/g) (pCi/g) (pCilg) (pCi/g) (pCi/g) (pCi/g) (pCi/g) (pCi/g) (pCilg) (pCilg) (pCi/g) (pCi/g) (pCilg) (pCilg)
0-2 B39WN2 0.0399 O.llJSS 0.0&07 0.0363 0.0349 0.0JS? 0.06132 O.llJlS 0.0357 6.38 0.0839 0.0352 O.]L.J47 0.378 0.612 0.0829 0.0336 0113
9.4 B39WN7 0.0325 0.l1J36 0.0554 0.0588 0.0885 0.(LJJQ7 0.0847 O.llJlZ 0.0304 781 0.0319 0.0385 0.t57 O.AL'.J15 0.637 0.205 0.0381 0.187
4-6 B39WP2 0.555 O.bS9 0.0514 0.0534 0.0312 0.0373 0.0317 O.:LLJ33 0.855 6.37 0.0894 0.0654 0.543 O.LA}Z 0.623 0.108 0.06173 0165
6-8 B39WP7 0.0642 O.llJS7 0.0336 O.(L)JZG 0.0822 0.0353 0.0687 0.%123 0.0806 707 0.0886 0.0849 O.llJS4 O.4L1103 0.629 0338 0.0397 0148
8-10 B39WR?2 0.0309 0.l1J36 0.0518 0.0558 0.0398 0.0367 0.06162 0.l1J35 0.0892 5.67 0.0853 0.0J?l O.bzl O.AL'.J77 0.644 0.137 0.0394 0.126
10-12 B39WR7 0.897 O.l1J35 0.0502 0.0568 0.0371 0.0312 0.0347 0.0327 0.0347 6.:111 0.0316 0.0315 0.1019 0.38 O.l7J46 027 0.0653 0271
13-15 B39WT?2 0.0692 O.llJSQ 0.0355 0.0546 0.0JZ4 0.0353 0.0844 0148 0.0809 6.&7 0.0329 O.llJOS O.llJSG O.4L1141 0.629 0.198 0.0387 0.146

B3DCFS 0.348 3.36 0.0364 0.06107 0.06312 0.l1J19 0.0536 188 0.681 605 0.621 O.GLSJOZ 534 3.54 2U7 501 0.644 156

o6 B3DCH3 0.624 3.82 0.0362 0.0329 O.]L.JOQ O.JL.J39 (EJ])-(% O.ElBJSZ 0.891 5.&6 O.lSJSS 0.302 322 3.&6 2(&.7 177 0.805 164

76- 79 B3DCHS 0.662 4.82 0.0322 0.0332 O.(l)J73 Ol.Jl 000)6(3;6 1.38 0.317 6.33 0.6)6 O.lGJGG 163 S.LZJLQ 26L‘>J.9 3.5 0425 1.96

90.5 - 92 B3DCJ3 0.621 482 0.0521 0.0534 0.0819 000;4;8 OUO)AIgl 0.871 0.622 602 0%05 0.869 518 3.&6 26.3 121 1 12
1155 - 116.5 B3F941 0.973 3.89 0.0374 0.0434 0.0956 0.11 0.0874 1.13 0.37 5.95 0.537 0.515 151 114 23.8 2.86 0.42 2.82
UA UA UA UA UA UA UXA UA UA UA UA UA UA BA UA A UA A

1315 - 1335 B3DCJ8 0.645 3.36 0.0343 0.0368 0.0339 0.]031 (l)J]).(Oé) 1.LZJLS O.ALlJ49 5.&9 0.607 0.386 1.34 2[;39 256.4 8.72 0827 10.7
146.1 - 148.8 B3DCK3 036 486 0.0313 0.0307 0.0362 0.0379 000)3225 104 0.661 6.613 0.377 0.677 1.67 2515 26.5 0.636 0.323 0.696
171-175 B3DCKS 0.391 4.&5 0.0345 0.0333 0.0391 0.]024 0.]015 083 O.ilJ48 6.&7 0.623 O.ZLlJZS 1.83 2L.J7 2(&.9 113 0.665 0858

190.9 - 194.7 B3DCL3 0.l7JGS 4.&3 O.(L)J41 0.0316 0.0362 O.]l.J42 O.]l.JO4 1.611 O.4L1J32 681 0.358 0.354 1.&5 3S4 26.3 0.912 0.368 063
995 - 997 B3DCLS 0.372 4.88 0.0362 0.0327 0.0331 0.t38 0.0339 0.341 0.626 6.&4 0.396 0.629 1.81 ZSY 28&.2 0.951 0.315 0.397
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Table 3-4. Radiological Contaminant Concentrations in Samples Collected from Borehole C9513

SGW-61596, REV. 1

Sample Depth Sample
Interval Number Am-241 C-14 Cs-137 Co-60 Eu-152 Eu-154 Eu-155 1-129 Np-237 Ni-63 Pu-238 Pu-239/240 Sr-90 Tc-99 H-3 U-233/234 U-235 U-238
(ft bgs) (HEIS #) (pCi/g) (pCi/g) (pCifg) (pCifg) (pCilg) (pCilg) (pCi/g) (pCi/g) (pCifg) (pCi/g) (pCilg) (pCilg) (pCi/g) (pCi/g) (pCi/g) (pCilg) (pCi/g) (pCi/g)
0.458 4.02 0.0365 0.0366 0.0785 0.125 0.0887 0.656 0.562 5.33 0.466 0.445 0.998 2.49 27.6 1.25 0.562 0.541
231.4-2344 B3DCM3 UA UA AU UA UA UA UA UA UA UA UA UA UA UA UA A A A

Note: Undetected radionuclide value reported is the minimum detectable concentration.

bgs = below ground surface
HEIS = Hanford Environmental Information System

Data qualifiers
A

= Do not use. Further review indicates the result is not valid

Discrepancy in chain-of-custody paperwork

R
] = Analyzed for but not detected
X

= Indicates a result-specific comment is provided in the data report or case narrative
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Table 3-5. Nonradiological Contaminant Concentrations in Samples Collected from Borehole C9513

SGW-61596, REV. 1

Sample
Depth Sample
Interval Number Al NH3 Sh As Ba Cd CI Cr Cu CN- F Cr(VI) Pb Mn Hg Ni NOsz NOz POs* Se Ag SOs* | Kerosene | TBP u
(ft bgs) (HEIS #) (Mo/kg) | (Mg/kg) | (a/kg) | (Malkg) | (Mg/kg) | (Markg) | (Mg/kg) | (Malkg) | (Mgr/kg) | (malkg) | (Mgrkg) | (Ma/kg) | (Ma/kg) | (Ma/kg) | (Ma/kg) | (Ma/kg) | (Malkg) | (Mg/kg) | (Malkg) | (Markg) | (ua/kg) | (Mgrkg) | (Markg) | (uglkg) | (Hg/kg)
B39WN2 180
0-2 B
B39WN3 8,320,000 365 470 7,100 | 111,000 100 1,300 12,000 | 18,600 120 1100 6,800 | 498,000 11 14,000 1370 194 2,500 1,500 180 2,000 2,600 49 650
D BN ubD D D BD BC D D U ' D DN U D ! U B D ubD B U U D
B39WN7 150
2-4 v
B39WNS 8,020,000 292 470 7,200 | 110,000 110 1,400 10,700 | 21,000 120 1.200 7,100 | 519,000 11 15,500 5310 194 2,400 1,500 190 4,600 2,600 49 850
D UN ubD D D BD BC D D U ' D DN U D ’ U B D ubD B U U D
B39WP2 180
4-6
B39WP3 6,970,000 292 480 7,300 | 120,000 110 1,600 8,600 19,800 120 910 5,100 | 658,000 11 12,300 6.200 191 2,000 1,400 190 5300 2,600 48 650
D UN ubD D D BD BC D D U B D DN U D ! U B D ubD ! ) U D
B39WP7 230
6-8 B
6,180,000 292 470 5,500 80,500 88 8,000 15,300 120 5,100 | 383,000 11 9,800 194 3,600 1,500 180 2,600 49 750
B39wP8 D UN ubD D D BD 7,500 D D U 1,400 D DN U D 17,300 U B D ubD 8,200 U UR D
B3OWR?2 150
8-10 v
8,080,000 328 450 7,700 | 129,000 130 10,900 | 21,600 120 6,100 | 656,000 11 14,100 194 4,300 1,600 180 4,900 2,600 49 2,100
B39WR3 D BN ubD D D D 7,300 D D U 1,500 D DN U D 19,000 U B D ubD B U U D
B39WR7 180
10-12 B
8,510,000 292 500 6,200 | 169,000 100 10,300 | 19,500 120 6,900 | 762,000 12 15,300 194 2,700 1,500 190 4,100 2,600 49 660
B39WR8 D UN ubD D D BD 3,400 D D U 1,300 D DN U D 14,200 U B D ubD B U ) D
B39WT2 150
13-15 Y
B39WT3 8,550,000 292 470 5,900 | 113,000 110 1,500 11,100 | 18,600 120 990 6,500 | 530,000 10 16,200 12000 194 3,200 1,400 190 4,500 2,600 49 650
D UN ubD D D BD BC D D U B D DN U D ' U B D ubD B ) ) D
307
B3DCF8 UXH
127
B3DCF9 U
534 1,070 2,030
B3DCHO 2,320 B 9,120 U UN 5,160
B3DCH1 5,340,000 1,460 470 3,900 62,000 56 13,800 | 11,200 110 4,100 | 255,000 34 10,600 440 74 3,400
6163 DA CA UDA DA DA DA DA DA UNA DA DA A DA BDA UDA DA
307
B38CH3 UXH
151
B3DCH4 U
518 1,090 2,060
B3DCH5 2,600 B 10,500 U UN 5,960
B3DCH6 5,050,000 1,460 470 3,400 55,200 56 11,500 | 10,200 110 3,700 | 269,000 34 82,00 530 75 3,100
DA CA UDA DA DA DA DA DA UNA DA DA A DA DA UDA DA
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Table 3-5. Nonradiological Contaminant Concentrations in Samples Collected from Borehole C9513

SGW-61596, REV. 1

Sample
Depth Sample
Interval Number Al NH3 Sh As Ba Cd CI Cr Cu CN- F Cr(VI) Pb Mn Hg Ni NOsz NOz POs* Se Ag SOs* | Kerosene | TBP u
(ft bgs) (HEIS #) (Mg/kg) | (Mg/kg) | (ug/kg) | (Mg/kg) | (ualkg) | (Ma/kg) | (Mg/kg) | (Mg/kg) | (Ma/kg) | (uglkg) | (Malkg) | (Mg/kg) | (Mg/kg) | (Mg/kg) | (ualkg) | (ualkg) | (Mo/kg) | (Mg/kg) | (Mg/kg) | (ua/kg) | (uglkg) | (alkg) | (ug/kg) | (Ma/kg) | (Hg/kg)
316
B3D3H8 UXH
B3DCH9 169
76-79
B3DCJ0 4,210 1,250 23800 | L1140 | 2080 14,800
B UN
BapcyL | 7+800.000 | 1580 480 6,300 | 91,700 82 17,100 | 12,500 | 120 5,500 | 356,000 | 10 15,400 610 77 7,100
DA CA BDA DA DA DA DA DA UNA DA DA UA DA DA UDA DA
351
B3DCJ3 UxH
B3DCJ4 1,590
90.5-92 729 1,920 | 1,260 | 2,390 3,870
B3DCJ5 2,770 5 B U UN B
B3pCys | 10800,000 | 2,550 870 | 11,000 | 129,000 | 130 73,100 | 20,400 | 130 13,200 | 510,000 | 13 16,600 1,300 76 32,700
D C BD D D D D D UN D D U D D BD D
310
B3F941 UXAH
B3F942 5,890
1o+ 1,650 402 1,510 | 1,120 | 2,130 4,220
116.5 , y , y ,
B3F43 BA BA UA UA UA A
B3F944 7,130,000 | 1,220 500 4,900 | 80,600 89 39,900 | 13,400 | 120 6,000 | 349,000 | 11 12,600 800 190 7,000
DA CA UDA DA DA BDA DA DA UA DA DNA UA DA UDA | UDA DA
318
B3DCJ8 OxH
B3DCJ9 6,090
1315 - D
1335 940 2,130 | 1,150 | 2,170
B3DCKO 6,050 B 5 U U 6,660
BapCKy | 13:100,000 | 1,700 500 9,300 | 130,000 | 180 61,800 | 25,400 | 120 11,600 | 427,000 | 11 25,300 1,300 180 36,800
D C uD D D D D D U D DN U D DA uD D
344
B3DCK3 UxH
B3DCK4 9,790
146.1 - D
148.8 375 1,790 | 1,200 | 2,260
B3DCK5 3,760 U B U % 10,200
B3DCKs | 13:900.000 | 1,950 550 7,100 | 153,000 | 160 84,700 | 28,500 | 130 14,300 | 555,000 | 12 26,800 1,800 210 1,100
D C uD D D D D D U D DN B D D uD D
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Table 3-5. Nonradiological Contaminant Concentrations in Samples Collected from Borehole C9513

SGW-61596, REV. 1

Sample
Depth Sample
Interval Number Al NH3 Sh As Ba Cd CI Cr Cu CN- F Cr(VI) Pb Mn Hg Ni NOsz NOz POs* Se Ag SOs* | Kerosene | TBP u
(ft bgs) (HEIS #) (Hg/kg) | (Mo/kg) | (Mg/kg) | (ng/kg) | (ug/kg) | (ug/kg) | (Mg/kg) | (Hg/kg) | (Hg/kg) | (Ho/kg) | (Mg/kg) | (narkg) | (ng/kg) | (hg/kg) | (Ma/kg) | (Hg/kg) | (Ha/kg) | (Mo/kg) | (Mo/kg) | (Markg) | (ug/kg) | (uglkg) | (uarkg) | (Mg/kg) | (Mg/kg)
332
B3DCK8 UXH
B3DCK9 5,770
171-175 872 1,630 | 1,210 | 2,290
B3DCLO 6,660 B U U U 5,320
B3DCL1 12,200,000 511 500 7,200 | 118,000 130 53,400 | 24,400 130 9,800 | 710,000 12 24,400 1,400 190 830
D BC ubD D D D D D U D DN U D D ubD D
306
B3DCL3 UXH
B3DCL4 1,150
P 352 1,120 | 2,130 2,880
194.7 , ) )
B3DCL5 3,080 U 15,000 U U B
B3DCL6 6,460,000 1,110 490 2,500 | 50,300 79 17,600 | 12,700 110 4,400 | 425,000 10 17,500 810 190 380
D C ub D D BD D D U D DN U D ub ub D
302
B3DCLS8 UXH
B3DCLY 1o
225 - 2ar 1,280 327 1,710 1,040 1,970 1,280
B3DCMO lB U ’B lU ’U lU
B3DCML1 4,690,000 535 440 1,600 28,300 54 10,400 | 11,500 110 3,000 | 222,000 10 12,700 730 170 260
D BC ubD BD D ubD D D U D DN U D ub ub D
303
B3DCM3 UXAH
B3DCM4 164
231.4 - U
2344 344 1,750 | 1,100 | 2,080 1,580
B3DCM5 2,570 U B U U B
B3DCMS6 7,990,000 1,090 190 980 107,000 59 17,500 | 17,700 110 3,400 | 496,000 10 23,900 780 180 330
D C ubD ub D ub D D U D DN U D ub ub D
Note: Blank cells indicate no result for sample number.
bgs = below ground surface
Cr(VI) = hexavalent chromium
TBP = tributyl phosphate
HEIS = Hanford Environment Information System

Data qualifiers

= analyzed for but not detected

X C XV ZIT OO >
1l

= discrepancy in chain-of-custody paperwork

=  analyte was detected at less than the quantitation limit but greater than the method detection limit
=  analyte was detected in both the sample and the quality control blank
= analyte was reported at a secondary dilution factor
laboratory holding time exceeded before the sample was analyzed
=  spike and/or spike duplicate recovery is outside control limits

= do not use; further review indicates the result is not valid

= indicates a result-specific comment is provided in the data report or case narrative

3-17



SGW-61596, REV. 1

This page intentionally left blank.

3-18



6T-€

Table 3-6. Organic Contaminant Concentrations in Samples Collected from Borehole C9513

Polychlorinated Biphenyls
Sample
Depth Sample Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor-
Interval Number MIBK 1016 1221 1232 1242 1248 1254 1260 1262 1268
(ft bgs) (HEIS #) (Hg/kg) (Mo/kg) | (Mg/kg) | (ng/kg) | (uglkg) | (Mg/kg) | (Morkg) | (ualkg) | (Mg/kg) | (Mg/kg)
10 10 10 10 10 8.6 8.6 8.6 8.6
B39WNS3 U U U U U U U U U
0-2
0.53
B39WN4 uT
10 10 10 10 10 8.6 8.6 8.6 8.6
B39WNE u u u u u U U U U
2-4
0.53
B39WN9 uT
10 10 10 10 10 8.4 8.4 8.4 8.4
B39WP3 U U U U U U U U U
4-6
0.55
B39wWP4 uT
10 10 10 10 10 8.7 8.7 8.7 8.7
B3PS U U U U U U U U U
6-8
0.53
B39WP9 uT
10 10 10 10 10 8.5 8.5 8.5 8.5
B39WRS U U U U U U U U U
o-10 0.51
B39WR4 uT
10 10 10 10 10 8.6 8.6 8.6 8.6
B39WRS U U U U U U U U U
10-12
0.5
B39WR9 uT
10 10 10 10 10 8.6 8.6 8.6 8.6
B3OWTS3 U U U U U U U U U
12-15 049
A
B39WT4 uT
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Table 3-6. Organic Contaminant Concentrations in Samples Collected from Borehole C9513

Polychlorinated Biphenyls
Sample
Depth Sample Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor-
Interval Number MIBK 1016 1221 1232 1242 1248 1254 1260 1262 1268
(ft bgs) (HEIS #) (Hg/kg) (Mo/kg) | (Mg/kg) | (ng/kg) | (uglkg) | (Mg/kg) | (Morkg) | (ualkg) | (Mg/kg) | (Mg/kg)
45-47.5 B39wvV1 (El_z
341 341 341 341 341 341 341 341 341
B3DCF8 U U U U U U U U U
61 -63
3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43
B3DCHS3 u u u u u u u u u
75-80 B39WX1 2_?
3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54
76-79 B3DCHS U U U U U U U U U
3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93
90.5-92 B3DCJ3 U U U U U U U U U
95 - 100 B39WY2 220[’)000
35 35 35 35 35 3.5 35 3.5 3.5
1155-1165 B3F941 UA UA UA UA UA UA UA UA UA
96,000
124.8-129.8 B39X19 DH
3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56
131.5-133.5 B3DCJ8 U U U U U U U U U
1405-1455 | B3oxas | 900,000
DH
3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.85
146.1 - 148.8 B3DCK3 U U U U U U U U U
650,000
154.9 - 159.9 B39X60 DTH
7,900
170.5-175.5 B39X75 DT
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Table 3-6. Organic Contaminant Concentrations in Samples Collected from Borehole C9513

Polychlorinated Biphenyls
Sample
Depth Sample Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor- | Aroclor-
Interval Number MIBK 1016 1221 1232 1242 1248 1254 1260 1262 1268
(ft bgs) (HEIS #) (ug/kg) (Hg/kg) | (Mg/kg) | (ug/kg) | (ng/kg) | (ugrkg) | (wglkg) | (ug/kg) | (Mglkg) | (Mg/kg)
3.73 3.73 3.73 3.73 3.73 3.73 3.73 3.73 3.73
171 -175 B3DCK8 U U U U U U U U U
16
190.4 - 195.4 B39X86 T
3.44 3.44 3.44 3.44 3.44 3.44 3.44 3.44 3.44
190.9 - 194.7 B3DCL3 U U U U U U U U U
214.9 - 219.9 B39XB4 0'35
3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42
225 - 227 B3DCL8 U U U U U U U U U
3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42 3.42
2314 -234.4 B3DCM3 UA UA UA UA UA UA UA UA UA

Note: Blank cells indicate no result for sample number.

bgs
MIBK =
HEIS =

Data qualifiers
A

D
H =
T
U

below ground surface

methyl isobutyl

ketone

Hanford Environmental Information System

discrepancy in chain-of-custody paperwork
analyte was reported at a secondary dilution factor
laboratory holding time exceeded before the sample was analyzed
spike and/or spike duplicate recovery is outside control limits
analyzed for but not detected
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Notes: The contaminant scale changes with each borehole. The ground surface elevation at borehole C9513 is 205.0 m (672.6 ft).

Appendix C contains the complete borehole core log report and photographs.

Figure 3-6. Composite Log Profile for Borehole C9513
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The contact with the Rtf is interpreted at 49 m (160 ft) bgs from the spectral gamma log response where
the potassium, uranium, and thorium return to a standard siliciclastic signature (all three components
roughly equal in proportion). The clay and silt content of the Rtf is high while the grain-size coarsens
downward to the Rwie contact at 59 m (195 ft) bgs. The Rwie is dominated by sandy gravel to gravel
with abundant silica cement. A 4.6 m (15 ft) thick interval (64 to 68.6 m [210 to 225 ft] bgs) of intact
cores from the Rwie was sent to PNNL for analyses. The X-Ray microtomography images show that
those cores are almost entirely sand, as displayed in Figure 3-7. The core from 69 to 70 m (225 to 230 ft)
bgs has 0.6 m (2 ft) of the same sand at the top, indicating that the sand sequence is approximately 5 m
(17 ft) thick. From 69 m (227 ft) bgs to TD of the borehole at 74 m (241 ft) bgs, the Rwie is
felsic-dominated silty sandy gravel to sandy gravel.

Figure 3-7. Microtomography Images of a Longitudinal Cross Section from
Borehole C9513, 67.8 to 68.1 m (222.5 to 223.5 ft) bgs

3.3 Borehole C9514 at the 216-S-21 Crib

Borehole C9514 is located at the 216-S-21 Crib. The Becker Hammer rig pushed 8.625 in. diameter
casing from ground surface to 13.4 m (44 ft) bgs and the sonic rig drilled 6 in. diameter casing to TD at
38.9 m (127.6 ft) bgs, as shown in Figure 3-8. Borehole C9514 was geophysically logged and final
sample depths were selected, as shown in Figure 3-9. The sediment samples were analyzed for COPCs, as
displayed in Tables 3-7 and 3-8, and the lithology was logged and plotted with mobile COPCs and
borehole geophysics, as shown in Figure 3-10.

Sediment samples collected from approximately 14 m (45 ft) bgs to approximately 29 m (94 ft) bgs had
elevated concentrations of nitrate that decreased with depth from 753,000 to 79,700 pg/kg.

The hexavalent chromium concentration was also significantly high (14,200 pg/kg) at 14 m (45 ft) bgs,
which was a high moisture silt layer in the Hf2. The highest concentration of technetium-99 (194 pCi/g)
was found in the silt layer at approximately 14 m (45 ft) bgs; concentrations decreased with depth to
67.9 pCi/g at 24 m (79 ft) bgs. Tritium was present in sediment samples throughout the vadose zone
deeper than 2.9 m (9.5 ft) bgs. The highest tritium concentration (208 pCi/g) was also found in the silt
layer at 14 m (45 ft) bgs; concentrations decreased to 15.5 pCi/g at 21 m (68 ft) bgs, increased to an
average of 155 pCi/g at 29 m (94 ft) bgs, and decreased again to 17.2 pCi/g at the bottom of the borehole
(approximately 38 m [124 ft] bgs). Borehole geophysical logs show cesium-137 contamination from
approximately 4.6 m (15 ft) bgs to approximately 18 m (60 ft) bgs.
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Borehole As-Built Diagram: 200-D%-1 Characterization

Ground Surface

Drilling Method:  Push/Sonic el Fame: 216-5-21 Crib
Orillirg Fluid: H/A Welll.0: 9514

Crrillers rame: Hin State Coordinates: M13d412

Drilling ComparuLayne/Cascade ESGEEE1S

Date Started: HF2016 Start Card #: KD

Dezign Doc: SGW-58552 Elevation Ground Surface 2023 m amsl
Sonic Start TN32006

Cemert Grout Surface Seal 0-2' bgs

2 58" Push Casing 0-44" bgs

4.0-6.0
T.0-30

153.0-15.0

Bertonite Crumbles 2-127 6' bgs

d44.1-d6.6

: BT.1-721
TT1-82.1

E" Tempoarary Cazing 44-127 6" bgs

[ 92.2-97.2

Samplez
O Pl
@  CHPRC

Total Depth - 127 6 bos

Mot to scale

(| fz.2-17.2

I 122.0-127.0

Figure 3-8. As-Built Diagram for Borehole C9514
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Note: Appendix B contains the complete geophysical log report.

Figure 3-9. Geophysical Log and Sample Depths for Borehole C9514
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Table 3-7. Radiological Contaminant Concentrations in Samples Collected from Borehole C9514

SGW-61596, REV. 1

Sample Sample
Interval Number Am-241 C-14 Cs-137 Co-60 Eu-152 Eu-154 Eu-155 1-129 Np-237 Ni-63 Pu-238 Pu-239/240 Sr-90 Tc-99 H-3 U-233/234 U-235 U-238
(ft bgs) (HEIS #) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg) (pCilg)
0.0833 0.343 0.0194 0.0399 0.0694 0.0384 0.0476 6.57 0.05771 0.0624 0.21 0.577 0.423 0.0495
41-6.6 B33XP6 U U 0.0392 U U U U U U U U U U U U 0.484
0.0646 0.34 0.0229 0.0208 0.0624 0.0654 0.0762 0.0359 6.27 0.0576 0.0481 0.187 0.586 0.564 0.053
7.0-95 B33XP7 U U U U U U U U U U U U U U U 0.187
0.0487 0.348 0.0214 0.0638 0.0686 0.0799 0.0881 0.0284 6.53 0.074 0.0758 0.203 0.5815 0.0515
13.1-15.6 B33XR0 U U 0.11 U U U U U U U U U U U 12.7 U 0.548
446 - 45.6 B36M84 0.102 0.629 0.428 0.0441 0.031 0.0398 0.041 0.117 0.0659 7.78 0.0613 0.0857 16.6 194 208 0.179 0.0416 0.181
U U U u u U u u
0.123 0.477 0.013 0.0124 0.0357 0.0407 0.0468 0.112 0.0671 7.07 0.0613 0.052 0.0351
67.8-69.5 B36M86 U U U U U U U U U U U U 7.62 147 155 0.152 U 0.218
0.103 0.465 0.0108 0.0126 0.0238 0.0381 0.0231 0.0855 0.0396 6.28 0.0534 0.0443 0.28 0.0425
78.3-79.8 B36M88 U U U U U U U U U U U U U 67.9 103 0.224 U 0.255
0.136 0.471 0.0121 0.0137 0.0271 0.0467 0.0258 0.0966 0.0746 7.43 0.0744 0.0533 0.339 1.07 0.0442
B36M90 U U U U U U U U U U U U U U 170 0.312 U 0.349
93.7-95.7
0.135 0.473 0.0103 0.012 0.0225 0.0388 0.0203 0.0813 0.0593 7.5 0.073 0.0663 0.216 -.974 0.0409
B36M92 U U U U U U U U U U U U U U 142 0.177 U 0.211
0.194 0.263 0.0122 0.0143 0.0275 0.0442 0.0268 0.0902 0.0448 6.82 0.0834 0.0709 0.224 0.867 0.0536
114.8 - 115-8 B36M94 U U U U U U U U U U U U U U 12.8 0.375 U 0.318
0.0907 0.26 0.0133 0.0143 0.0294 0.0468 0.0282 0.112 0.0356 7.23 0.0578 0.0777 0.232 0.0553
123.5-125 B36M96 U U U U U U U U U U U U U 2.67 17.2 0.182 U 0.21

Notes: Blank cells indicate no result for sample number.

Undetected radionuclide value reported is the minimum detectable concentration.
bgs = below ground surface

HEIS = Hanford Environmental Information System

Data qualifier:

U = analyzed for but not detected above limiting criteria
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Table 3-8. Nonradiological Contaminant Concentrations Collected from C9514
Sample | Sample
Intervals | Number Al NH3 Sb As Ba Cd Cl Cr Cu F Cr(VI) Pb Mn Hg Ni NOz NOz PO Se Ag SO4* |Kerosene| TBP u
(ftbgs) | (HEIS#) | (ug/kg) | (ug/kg) | (Mo/kg) | (Mg/kg) | (Mg/kg) | (ug/kg) | (Morkg) | (Mg/kg) | (Mg/kg) | CN- | (Mo/kg) | (M/kg) | (Molkg) | (Mg/kg) | (ug/kg) | (Mo/kg) | (ug/kg) | (Mo/kg) | (uglkg) | (Mo/kg) | (Mg/kg) | (Mo/kg) | (Hglkg) | (Mg/kg) | (Mg/kg)
1,800 880 256 1,500 4,600
B33XPO B B 34100 | gy B B
41-66
Baaxpq | 7130000 340 | 4500 | 90,100 | 110 8,400 | 14,500 | 130 5,600 12 | 11,000 1,400 | 200 380 52 450
D UN BD D BD D D U D U D BD BD U U BD
780 223 1,600 5,500
B33XP1 3,400 B 33200 | U3 , >
7.0-95
Baaxps | 10:200,000 340 | 6,000 | 119,000 | 120 14,200 | 20,600 | 120 7,200 11 | 16,400 1,000 | 200 360 50 600
D UN D D BD D D U D U D BD BD U U D
760 194 2,200
B33XP2 4,000 B 48700 | S 19,000
13.1- | gaapg | 3950000 | 827 | 320 | 5500 | 101,000 | 100 10,000 | 16,600 | 120 6,800 2200 | 13,100 1,700 | 120 360 49 | 1,100
15.6 D N UN D D BD D D U D D D BD U U U D
B33XR0 240
B
B36M84 29,000 550 | 14,200 7535000 735 1'630 9,600
446 -
456 Basigs | 12200000 1220 | 400 | 6,600 | 216000 | 140 35,900 | 21,600 | 130 7000 | 853000 | 2 | 17,300 2600 | 110 380 53 790
D N BD D DN D D D U D D 0 D D BD U U D
B36M86 2,800 30 | 230 292000 | 5o | 1,260 3,000
B B D U
67.8 -
69.5 Basmgy | 9:080,000 | 693 190 | 4,200 | 96,200 65 14300 | 14,700 | 120 4700 | 502,000 | 11 | 13,400 1,300 57 350 48 480
D N BD D D BD D D U D D B D D uD U U D
B36ME8 2,400 %20 150 226,000 | ;450 | 24800 1,900
U D UD B
78.3 -
9.8 B3sMao | 12400000 | 3650 | 370 | 5700 | 140,000 | 100 19,400 | 18,000 | 120 6,000 | 551,000 | 13 | 18,600 900 85 360 49 660
D N BD D D BD D D U D D B D BD BD U U D
1,400 150 624 1,720
B36M90 5 970 N 111,000 g A 2,500
BasMol | 8370000 | 839 | 340 | 6700 | 83600 89 11,600 | 14,000 | 120 8,000 | 394000 | 12 | 10,800 780 63 350 49 580
037 D N BD D D BD D D U D D B D BD BD U U D
95.7
150 624 1,630 2,000
B36M92 2,000 600 N 79,700 iy 5 5
BasMo3 | 11100000 1190 | 430 | 10200 | 122,000 | 110 16,900 | 19,600 | 120 10,400 | 558,000 | 12 | 15,900 1,200 67 360 49 730
D N BD D D BD D D U D D B D D BD U U D
B36M94 11,000 570 | 0 1550 | 6% 1,590 2,700
U U B
114.8 -
115-8 B3sMos | 10:500,000 | 1130 | 490 7,700 | 97,300 | 120 17,000 | 17,700 | 120 7,400 | 376000 | 12 | 17,800 1,600 65 360 49 760
D N BD D DN BD D D U D D U D D BD U U D
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Sample | Sample

Intervals | Number Al NH3 Sb As Ba Cd Cl Cr Cu F Cr(VI) Pb Mn Hg Ni NOz NOz PO Se Ag SO4* |Kerosene| TBP u

(ftbgs) | (HEIS#) | (ug/kg) | (Mg/kg) | (ng/kg) | (ug/kg) | (Mg/kg) | (Mg/kg) | (Mg/kg) | (Mg/kg) | (Mg/kg) | CN- | (ug/kg) | (Ma/kg) | (Hg/kg) | (Mg/kg) | (g/kg) | (uglkg) | (Hglkg) | (ug/kg) | (Mg/kg) | (Mglkg) | (g/kg) | (Mg/kg) | (Mg/kg) | (g/kg) | (Hg/kg)

1,700 150 624 1,960
B36M96 ' 670 18,100 ' 2,500

1235 - B U U B

125 B36MO97 10,000,000 | 1,340 420 5,500 96,000 180 16,800 16,900 | 120 7,900 317,000 12 19,000 1,500 95 360 50 790
D N BD D D D D D U D D U D D BD U U D

Note: Blank cells indicate no result for sample number.

bgs =
Cr(vl) =
HEIS =
TBP =

below ground surface

hexavalent chromium

Hanford Environmental Information System
tributyl phosphate

Data qualifiers

B =

D
N =
U

the analyte was detected at a value less than the contract required detection limit but greater than or equal to the instrument detection limit/method detection limit (as appropriate)
analyte was identified in an analysis at a secondary dilution factor

spike sample recovery is outside control limits

analyzed for but not detected above limiting criteria
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Appendix C contains the complete borehole core log report and photographs.
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The change from crib fill material to the gravel dominated Hf1 is estimated at 4.6 m (15 ft) bgs where
geophysical logs indicate cesium-137 contamination begins. The top of the Hf2 is estimated at 13 m

(43 ft) bgs where the character of the neutron moisture log changes. The Hf2 consists mostly of sand,
slightly silty sand, and silty sand with distinct 3 to 5 cm thick fining upwards bedding sequences. There
are three thin silt beds at 13.4 to 14.2, 20.5 to 20.7, and 28.5 to 28.7 m (44.1 to 46.6, 67.1 to 67.8, and
93.5 to 94.1 ft) bgs within the Hf2. The gravel content increases slightly with depth, up to 15% to 25%
subrounded to rounded pebble-sized gravels. At 35 m (115 ft) bgs there is a well-defined contact between
the Hf2 above and the CCU below. The contact is several centimeters thick, very fine-grained with dark
wood fragments and abundant iron-staining. Below the contact the CCU persists to TD of the borehole at
38.9 m (127.6 ft) bgs and is 100% silt, moist, nonplastic with sharp cross-bedded lamination structures,
occasionally interbedded with very-fine, iron-stained sand.
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4 Conclusions

Characterization boreholes C9512, C9513, and C9514 were drilled in the S Complex Area during

FYs 2016 and 2017 as part of the 200-DV-1 OU remedial investigation. The purpose of this
characterization was to identify the nature and extent of the contamination in the vadose zone at three
200-DV-1 OU waste sites in the S Complex Area. A phased approach was used to drill these boreholes to
prevent worker exposure to contaminated soil cuttings from a zone of high radiological contamination
that exists beneath most of the waste sites (approximately 4.6 to 15 m [15 to 50 ft] bgs). A Becker
Hammer rig was used for the first phase of drilling to push casing through the zone of high radiological
contamination. During the second phase of drilling, a sonic rig was used to drill from the bottom of the
high radiological contamination zone to TD. Sediment samples were collected in the shallow vadose zone
above 4.6 m (15 ft) bgs using split-spoon samplers and sleeves, and from the vadose zone below 15 m

(50 ft) bgs using continuous core. The sediment samples were analyzed for contaminants of potential
concern in accordance with the SAP (DOE/RL-2011-104) and SAP addenda (DOE/RL-2011-104-ADD1
and DOE/RL-2011-104-ADD2). Additionally, the cores were logged for geophysics and lithology. These
data will be integrated with other supporting information (e.g., hydraulic properties) as part of the
evaluation and update of the CSM supporting DOE/RL-2011-102, Remedial Investigation/Feasibility
Study and RCRA Facility Investigation/Corrective Measures Study Work Plan for the 200-DV-1 Operable
Unit.

PNNL-26208, Contaminant Attenuation and Transport Characterization of 200-DV-1 Operable Unit
Sediment Samples, identifies and evaluates attenuation processes and other factors that affect transport of
contaminants present in vadose samples from the Hanford Site. PNNL characterized two depth intervals
in borehole C9512 (216-S-9 Crib). Appendix D contains the report. Core samples from three depth
intervals in borehole C9513 (216-S-13 Crib), which was drilled in FY 2017, were provided to PNNL for
geochemical and physical characterization. The results are available in two PNNL reports issued in

FY 2018: PNNL-27524, Contaminant Attenuation and Transport Characterization of 200-DV-1 Operable
Unit Sediment Samples from Boreholes C9497, C9498, C9603, C9488, and C9513, and PNNL-27846,
Physical and Hydraulic Properties of Sediments from the 200-DV-1 Operable Unit.

The following lessons were learned during the implementation of the 200-DV-1 OU characterization
project:

¢ Intact soil cores are critical to capturing vadose zone heterogeneities, ground-truthing geophysical
logs, and reducing uncertainties in the nature and extent of contamination. Continuous intact cores
provide the sample material and flexibility needed to perform multiple phases of complex analyses
and address characterization data gaps.

e The focus of characterization should be establishing the nature, extent, fate, and transport of
contaminants. Therefore, a tiered/staged approach should be employed when determining whether
advanced analyses, such as contaminant leachability, should be pursued. In general, as the tier level
increases so does the level of sophistication in data collection.

— Tier 1 analyses define nature and extent of contamination by characterizing sediment and pore
water chemistry. The sample depths are selected based on specifications described in Section 2.2
of this report. Aliquots from each sample depth are saved. Determinations of whether the stored
aliquots should proceed to tier 2 or 3 analyses should be made by an integrated multi-disciplinary
project team.

— Tier 2 analyses investigate contaminant mobility (leaching) and are performed with consideration
of the geochemical and contaminant analysis of sediment and pore water.
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— Tier 3 analyses fill any data gaps (i.e., hydraulic properties, isotopic analyses, and microbial
studies).

The preliminary observations detailed in Chapter 3 were evaluated against data needs identified in
Table 4-1 from DOE/RL-2011-102.

e 216-S-9 Crib. The new characterization data from borehole C9512 aligned with the CSM that the
216-S-9 Crib has likely impacted groundwater in the past; iodine-129 was detected at low
concentrations in the two deepest samples, just above and within the CCUz. It appears that tritium
may have migrated from the crib as concentrations increased with depth to the CCUz. Nearly
49.5 million L (13.1 million gal) of waste containing 1,170 Ci of tritium was disposed to the crib

during operations. An updated CSM report will evaluate whether these contaminants (iodine-129 and

tritium) will infiltrate to groundwater beneath the CCU.

e 216-5-13 Crib. The new characterization data from borehole C9513 at the 216-S-13 Crib, which

received only 4.9 million L (1.3 million gal) of waste, identified significant concentrations of residual

hexavalent chromium, MIBK, uranium, and technetium-99 in the vadose zone. Uranium and
technetium-99 were only detected in sediments above the CCUc, indicating these mobile
contaminants have not yet reached the groundwater. Hexavalent chromium and MIBK have both
migrated through the CCUc and into the Rtf. An updated CSM report will evaluate whether these
contaminants will infiltrate to groundwater beneath the Rwie.

e 216-5-21 Crib. The new characterization data from borehole C9514 at the 216-S-21 identified

significant concentrations of nitrate, hexavalent chromium, technetium-99, and tritium in a silt bed at

approximately 13.7 m (45 ft) bgs. Concentration of all contaminants except tritium decrease with
depth indicating these mobile contaminants have not yet reached the groundwater. Tritium
concentrations vary throughout the borehole but decrease at and below the CCU. Approximately

87 million L (23 million gal) of waste containing 2,540 Ci of tritium was disposed to the crib. Further

evaluation of the impacts of disposal at the 216-S-21 Crib will be evaluated in the updated CSM
report.

The S Complex Area characterization data from this field summary report will be interpreted to
accomplish the following tasks:

e Refine the CSM for each waste site.

o Create a detailed three-dimensional geologic model and map of the S Complex Area with a focus on
the vertical heterogeneity observed in the continuous coring.

e Estimate key parameters (hydraulic properties, recharge rates, contaminant mass distribution,
desorption distribution coefficient values, etc.) for the fate and transport model.

e Evaluate published literature related to S Complex Area fate and transport studies to build a
comprehensive CSM.

The CSM resulting from these tasks will be updated and provided in a separate report.
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Borehole Drilling Summaries
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Table A-2. Borehole C9513 (216-S-13 Crib)
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IR LEXAN
ISample Depth Temperature
Date (ft bgs) Sample Method (°F) Recovery % HEIS number
Grab B39WN3, B39WN4, B39WN2
7/10/2017 0.0-2.0 N/A 100
B39WNS8, B39WN9, B39WN7
7/10/2017 20-4.0 N/A 100
B39WP3, B39WP4, B39WP2
7/10/2017 40-6.0 N/A 100
B39WP8, B39WP9, B39WP7
7/10/2017 6.0-8.0 N/A 100
B39WRS3, B39WR4, B39WR2
7/10/2017 8.0-10.0 N/A 100
B39WRS8, B39WR9, B39WR7
5/18/2017 | 10.0-12.0 N/A 100
B39WT3, B39WT4, B39WT2
5/18/2017 | 12.0-15.0 N/A 100
LEXAN™ liner 45.0 ft bgs = 87 B39WV0, B39WV1, B39WV2
7/10/2017 | 45.0-47.5 |Core 46.3 ft bgs = 89 100
47.5 ft bgs = 149
47.5 ft bgs = 84 B39wWVv4
7/10/2017 | 47.5-50.0 48.8 ft bgs = N/A 50
50.0 ft bgs =92
50.0 ft bgs = 104 B39WV6
7/10/2017 | 50.0 —55.0 52.5 ft bgs = 109 100
55.0 ft bgs = 159
55.0 ft bgs = 102 B39WV8
7/10/2017 | 55.0 -60.0 57.5 ftbgs =121 100
60.0 ft bgs = 151
60.0 ft bgs = 96 B39WWO
7/10/2017 | 60.0 -65.0 62.5 ft bgs = 103 100
65.0 ft bgs = 94
65.0 ft bgs =79 B39WW?2
7/11/2017 | 65.0-70.0 67.5ftbgs =77 100
70.0 ft bgs =92
70.0 ft bgs =76 B39wWw4
7/111/2017 | 70.0 - 75.0 72.5 ftbgs = 78 100

75.0 ft bgs = 113
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Date

ISample Depth
(ft bgs)

Sample Method

IR LEXAN
Temperature
(°F)

Recovery %

HEIS number

7/11/2017

75.0-80.0

7/11/2017

80.0-85.0

7/11/2017

85.0-90.0

7/11/2017

90.0-95.0

7/17/2017

95.0 -100.0

7/17/2017

100.0 - 105.0

8/22/2017

105.5-110.5

8/22/2017

110.5-1155

8/22/2017

115.6 - 120.6

8/22/2017

120.2 -125.2

8/23/2017

124.8 -129.8

8/23/2017

130.5-135.5

8/23/2017

135.2 -140.2

75.0 ft bgs =94
77.5 ft bgs = 96
80.0 ft bgs = 145

100

B39WX0,

B39WX1, B39WX3

80.0 ft bgs = 84
82.5 ft bgs = 89
85.0 ft bgs = 96

100

B39WX5

85.0 ft bgs = 105
87.5 ft bgs = 108
90.0 ft bgs = 150

100

B39WX7

90.0 ft bgs =83
92.5 ft bgs = 87
95.0 ft bgs = 96

100

B39WX9

95.0 ft bgs =74
97.5 ft bgs =76
100.0 ft bgs = 75

100

B39wY1
B39WY4

. B39WY2, B39WY3,

100.0 ft bgs = 87
102.5 ft bgs = 94
105.0 ft bgs = 85

100

B39WY6

105.5 ft bgs = 78
108.0 ft bgs = 83
110.5 ft bgs = 95

100

B39WY8

110.5 ft bgs = 89
113.0 ft bgs = 87
115.5 ft bgs = 100

100

B39X04,
B39X01,

B39X03, B39X02,
B39X00

115.6 ft bgs = 92
118.1 ft bgs = 92
120.6 ft bgs = 105

100

B39X10,
B39X07,

B39X09, B39X08,
B39X06

120.2 ft bgs = 94
122.7 ft bgs = 98
125.2 ftbgs = 111

100

B39X16,
B39X13,

B39X15, B39X14,
B39X12,

124.8 ft bgs = 81
127.3 ft bgs = 81
129.8 ft bgs = 100

100

B39X20,
B39X39

B39X19, B39X18,

130.5 ft bgs = 82
133.0 ft bgs = 82
135.5 ft bgs = 90

100

B39X41

135.2 ft bgs = 99
137.7 ft bgs = 86
140.2 ft bgs = 116

100

B39X43
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Table A-2. Borehole C9513 (216-S-13 Crib)

IR LEXAN
ISample Depth Temperature
Date (ft bgs) Sample Method (°F) Recovery % HEIS number
140.5 ft bgs = 89 B39X47, B39X46,B39X45
8/23/2017 [140.5- 1455 143.0 ft bgs = 90 100
145.5 ft bgs = 108
145.1 ft bgs = 104 B39X50
8/23/2017 [145.1 - 150.1 147.6 ft bgs = 102 100
150.1 ft bgs = 121
150.7 ft bgs = 106 B39X56, B39X55, B39X54,
8/23/2017 1150.7 — 155.7 153.2 ft bgs = 129 100 B39X53, B39X52
155.7 ft bgs = 136
154.9 ft bgs = N/A B39X64, B39X63, B39X62,
8/24/2017 [154.9 — 159.9 157.4 ft bgs = N/A 100 B39X61, B39X60, B39X59,
159.9 ft bgs = N/A B39X58
160.7 ft bgs = 75 B39X70, B39X69, B39X68,
8/28/2017 [160.7 — 165.7 163.2 ft bgs = 76 100 B39X67, B39X66
165.7 ft bgs = 87
165.3 ft bgs = 84 B39X72
8/28/2017 1165.3 -170.3 167.8 ft bgs = 88 100
170.3 ft bgs = 100
170.5 ft bgs = 86 B39X77, B39X76, B39X75,
8/28/2017 [170.5-175.5 173.0 ft bgs = 94 100 B39X74
175.5 ft bgs = 100
175.1 ft bgs = 92 B39X78
8/28/2017 [175.1-180.1 177.6 ft bgs = 92 100
180.1 ft bgs = 104
180.6 ft bgs = 86 B39X81
8/28/2017 1180.6 — 185.6 183.1 ft bgs = 92 100
185.6 ft bgs = 103
184.9 ft bgs = 143 B39X83
8/28/2017 [184.9 — 189.9 187.4 ft bgs = 115 100
190.9 ft bgs = 138
190.4 ft bgs = 75 B39X88, B39X87, B39X86,
8/29/2017 [190.4 — 195.4 192.9 ftbgs =75 98 B39X85
195.4 ft bgs = 97
194.7 ft bgs = 94 B39X90
8/29/2017 1194.7 — 199.7 197.2 ft bgs = 111 100
199.7 ft bgs = 102
200.5 ft bgs = 101 B39X92
8/29/2017 [200.5 - 205.5 203.0 ft bgs = 107 100

205.5 ft bgs = 122
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Date

ISample Depth

(ft bgs) Sample Method

IR LEXAN
Temperature
(°F)

Recovery %

HEIS number

8/29/2017

205.5-2105

8/30/2017

210.5-2155

8/30/2017

214.9-219.9

8/30/2017

220.5-2255

8/30/2017

2247 -229.7

8/31/2017

230.4-235.4

8/31/2017

235.5-240.5

205.5 ft bgs = 110
208.0 ft bgs = 113
210.5ft bgs = 145

100

B39X94

210.5 ft bgs = 86
213.0 ft bgs = 88
215.5 ft bgs = 102

100

B39XBO0, B39X99, B39X98,
B39X97, B39X96

2149 ftbgs =111
217.1 ft bgs = 89
219.9 ft bgs = 137

100

B39XB8, B39XB7, B39XB6,
B39XB5, B39XB4, B39XB3,
B39XB2

220.5 ft bgs = 86
223.0fthgs = 84
225.5 ft bgs = 89

100

B39XB2, B39XC4, B39XC3,
B39XC2, B39XC1, B39XCO

220.5ftbgs =91
223.0 ft bgs = 97
225.5 ft bgs = 152

92

B39XC6

230.4 ft bgs = N/A
232.9 ft bgs = N/A
235.4 ft bgs = N/A

100

B39XC8

235.5 ft bgs = 75
238.0 ftbgs = 78
240.5 ft bgs = 82

100

B39XDO

bgs
HEIS

below ground surface

Hanford Environmental Information System
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Stoller Newport News Nuclear

C9512
Log Data Report
Borehole Information
Log Date | 2016-07-28 | Filename | C9512_HG-NM_2016-07-28 | Site | 216-S-9 (200- DV-1)
Coordinates (WA StPlane) DTW? (ft) | None DTW Date 07/28/16
North (m) East (m) Drill Date TOC?Elevation Total Depth (ft)
N/A N/A 07/27/16 N/A 142.5
. f .
Diameter (in.)
Casing Type Drill Type Stickup (ft) | Outer | Inside Thickness(in.) | Top (ft) Bottom (ft)
Threaded Steel | Becker Hammer 0.3 8 5/8 7318 5/8 0.3 36.4
Threaded Steel Sonic 0.0 6 5 1/2 0.0 140.5
Borehole Notes

The onsite geologist provided thetotal depth and casing depth. A Becker Hammer push method was usedto 36.4 ft.
Subsequent drilling was conducted usinga Sonic method. The logging engineer measured casing stick-upand
casing diameters. No water existed inside the casing. The maximum logging depth achieved was 141 ft,
approximately 0.5 ft below casing. Zero reference is ground surface.

Logging System Gamma5Th Type 60% HPGe SGLS®
Effective Calibration Date | 03/19/15 Serial No. 54-TP13441B

Calibration Reference

HGLP-CC-115, Rev.

Logging Procedure

SGRP-PRO-0OP-53023, Rev. 0

Logging System

Gamma 1L

Type

60% HPGe SGLS

Effective Calibration Date

10/22/15

Serial No.

47-TP-32211A

Calibration Reference

HGLP-CC-130, Rev.

Logging Procedure

SGRP-PRO-0OP-53010, Rev. 0

Logging System

Gamma 1H

Type

NMLS*

Effective Calibration Date

10/21/15

Serial No.

H310700352

Calibration Reference

HGLP-CC-131, Rev.

Logging Procedure

SGRP-PRO-0OP-53016, Rev. 0

Logging System

Gamma 5Th

Type

60% HPGe SGLS

Effective Calibration Date

02/23/16

Serial No.

54-TP13441B

Calibration Reference

HGLP-CC-136, Rev.

Logging Procedure

SGRP-PRO-0OP-53023, Rev. 0

Logging System

Gamma 5Pb

Type

NMLS

Effective Calibration Date

04/15/15

Serial No.

H34055445

Calibration Reference

HGLP-CC-116, Rev.

Logging Procedure

SGRP-PRO-0OP-53024, Rev. 0

! depth to water inside casing

2 top of casing

3 Spectral Gamma Logging System
* Neutron Moisture Logging System
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Logging System

Gamma 5Pb

Type

NMLS

Effective Calibration Date

05/02/16

Serial No.

H34055445

Calibration Reference

HGLP-CC-140, Rev. Oa

Logging Procedure

SGRP-PRO-0P-53024, Rev. 0

SGLS Log Run Information
Log Run 1 2 Repeat 5 6 Repeat 9
HEIS Number 1019686 1019687 1019688 1019689 1019690
Date 12/02/15 12/02/15 04/20/16 04/20/16 07/28/16
Logging Engineer Spatz/Felt Spatz/Felt Spatz/Felt Spatz/Felt Spatz
Start Depth (ft) 0.0 27.0 30.0 34.0 34.0
Finish Depth (ft) 31.98 30.0 35.0 35.0 141.0
Count Time (sec) 100 100 100 100 200
Live/Real R R R R R
Shield (Y/N) N N N N N
MSA Interval (ft) 1.0 1.0 1.0 1.0 1.0
Log Speed (ft/min) N/A N/A N/A N/A N/A
C9512FTB2015 | C9512FTB2015 C9512FTB2016
Pre-Verification 1202AVO0CAB 1202AVO0CAB AL299CAB AL299CAB 0728AV00CAB
1 1 1
Start File ADO000000 BD002700 AL299000 AL299006 AD003400
Finish File AD003198 BD003000 AL299005 AL299007 AD014100
C9512FTB2015 | C9512FTB2015 C9512FTB2016
Post-Verification 1202BVOOCAA | 1202BVOOCAA AL299CAA AL299CAA 0728BVO0CAA
1 1 1
Depth Return Error (in.) N/A 2.0 high N/A 0.0 N/A
No fine gain No fine gain No fine gain No fine gain No fine gain
Comments adjustments adjustments adjustments adjustments adjustments
made made made made made
Log Run 10 Repeat
HEIS Number 1019691
Date 07/28/16
Logging Engineer Spatz
Start Depth (ft) 129.0
Finish Depth (ft) 141.0
Count Time (sec) 200
Live/Real R
Shield (Y/N) N
MSA Interval (ft) 1.0
Log Speed (ft/min) N/A
C9512FTB2016
Pre-Verification 0728AVO0CAB
1
Start File BD012900
Finish File BD014100
C9512FTB2016
Post-Verification 0728BVO0OCAA
1
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Log Run 10 Repeat
Depth Return Error (in.) 2.0 high
No fine gain
Comments adjustments
made
NMLS Log Run Information
Log Run 3 4 Repeat 7 8 Repeat 11
HEIS Number 1019692 1019693 1019694 1019695 1019696
Date 12/02/15 12/02/15 04/20/16 04/20/16 07/28/16
Logging Engineer Spatz/Felt Spatz/Felt Spatz/Felt Spatz/Felt Spatz
Start Depth (ft) 0.0 28.5 30.0 34.0 34.0
Finish Depth (ft) 32.01 31.51 35.5 35.0 141.0
Count Time (sec) 15 15 15 15 15
Live/Real R R R R R
Shield (Y/N) N N N N N
MSA Interval (ft) 0.25 0.25 0.25 0.25 0.25
Log Speed (ft/min) N/A N/A N/A N/A N/A
Preerification | 03 avoocasy | 200AvoncaBL | AMPICAB | AMHICAB | CooGh e
Start File ADO000000 BD002850 AH241000 AH241023 AD003400
Finish File AD003201 BD003151 AH241022 AH241027 AD014100
Post-Verification GO L S Re S AH2a1cAA AH241CAA | CO2F 20150
Depth Return Error (in.) N/A 0.5 high N/A 0.5 high N/A
Comments None None None None None
Log Run 12 Repeat
HEIS Number 1019697
Date 07/28/16
Logging Engineer Spatz
Start Depth (ft) 129.0
Finish Depth (ft) 141.0
Count Time (sec) 15
Live/Real R
Shield (Y/N) N
MSA Interval (ft) 0.25
Log Speed (ft/min) N/A
Pre-Verification (;%EélAZ\EOPOBCZXé‘iO
Start File BD012900
Finish File BD014100
Post-Verification %%%}32\/':0%%%3&?0
Depth Return Error (in.) 1.0 high
Comments None
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Stoller Newport News Nuclear

| ing C .
A centralizer was installed on the sondes for the first casing to 36.4 ft; no centralizer was used for the second casing

due to the small internal diameter. As a precaution, the sondes were covered in plastic sleeving to prevent potential
contamination of equipment for the second casingto 141 ft.

Pre- and post-survey verification measurements met the acceptance criteria for the established systems.

Analysis Notes

Analyst P.D. Henwood | Date | 09/22/16

Reference(s) SGRP-PRO-0OP-53040, Rev. 0; SGRP-PRO-OP-53051, Rev. 0; SGRP-PRO-OP-53052, Rev. 0

A casing correctionfora 5/8-in. thick casing was applied for the first Becker Hammer push to 36.4 ft and for
al/2-in. thick casing forthe remainder of the borehole drilled by the Sonic drill.

No water correction was necessary as water was notencountered.

SGLS spectrawere processed in batchmode in APTEC SUPERVISOR to identify individual energy peaks and
determine count rates. Concentrations fromthe SGLS were calculated in EXCEL templates identified as
5TB20150319, 5T20160223, and 1L.20151022 using an efficiency function and corrections for casingand dead time
as determined by annual calibrations.

An interpreted data set was created for this borehole. Depth overlaps were removed where two casings existed at
30, 34, and 35ft. This results in adata set whereonly one data point is presented for each depth.

NMLS data are reported in counts per second.

HGUs is an empirical unit of gamma activity proposedas a means to standardize gamma log response across
multiple logging systems with differentresponse characteristics. The HGU is defined in terms of measurements in
the Hanford Borehole Calibration Facility, and the magnitudeis selectedsuchthat 1 HGU is approximately
equivalentto typical Hanford background activity, based on data frombackground samples as reportedin
Hanford SiteBackground: Part 2, Soil Background for Radionuclides (DOE/RL-96-12).

Results and Interpretations
Cs-137 was detected in this borehole near thegroundsurfaceand from26 to 68 ft. A maximum concentration of
approximately 608 pCi/g was measured at 29 ft.

No other manmade radionuclides were detected. MDLs for processed uranium(Pa-234m [U-238] and U-235) that
are possible contaminants are plotted.

Casing joints are evident by reduced countrates for the moisture and gamma measurements at 5and 10 ft intervals
beginningat 41ft.

The neutron moisture log primarily responds to moisture present in the surrounding formation. In general, an
increase in count rate reflects an increase in moisture content. Moisture content may increase in sediments of
relatively high silt or clay content.

The manmade, KUT, and moisture repeat plots indicate that the respective s ystems were working properly.

®Hanford Gamma Unit
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Stoller Newport News Nuclear

List of Log Plots
Depth Referenceis groundsurface.

Manmade Radionuclides (0-160 ft)

Natural Gamma Logs (0-160 ft)

Combination Plot (0-120 ft)

Combination Plot (110-230 ft)

Combination Plot (0-160 ft)

Total Gamma & Moisture (0-160 ft)

Total Gamma & Hanford Gamma Unit (0-160 ft)
Repeat of Manmade Radionuclides (27-35 ft)
Repeat Sectionof Natural Gamma Logs (27-35 ft)
Repeat Sectionof Natural Gamma Logs (129-141 ft)
Moisture Repeat Section (28-35 ft)

Moisture Repeat Section (129-141 ft)
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C9512
Manmade Radionuclides

J

Stoller Newport News Nuclear

A Subsidiary of Huntington Ingalls Industries
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C9512

Total Gamma & Moisture
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’ Repeat of Manmade Radionuclides

Stoller Newport News Nuclear
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C9512
Repeat Section of Natural Gamma Logs
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Repeat Section of Natural Gamma Logs
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C9512
Moisture Repeat Section
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C9513
Log Data Report
Borehole Information
Log Date | 2017-09-05 | Filename | C9513_HG-NM_2017-09-05 Site | 200-DV-1
DTW? (ft) DTW Date DTW Source Drill Date Total Depth (ft) Depth Datum
Dry 09/05/17 SN3 08/31/17 240.2 Ground Surface
~asi f .
Diameter (in.)
Casing Type Drill Type Stickup (ft) | Outer Inside Thickness(in.) | Top (ft) Bottom (ft)
TerraSonic steel Sonic 0.5 12 10.88-11.5 0.25-0.56 -0.5 11.9
Steel Becker 0.2 8.625 7.511 0.557 -0.2 42.1
TerraSonic steel Sonic 0.2 7.05 6.22-6.50 0.25-0.42 -0.2 160.3
TerraSonic steel Sonic 0.2 6.0 5-5.5 0.25-0.5 -0.2 240.3

Borehole Notes

The onsite geologist provided thetotal depth and casing depth. The logging engineer measured casing stick-up.
Casing diameters are provided by the driller. The maximum logging depthachieved was 239 ft. Zero reference is

ground surface.
Logging was started after the second casing had been drilled. The logged interval to 11.9 ft was conducted inside
two casings.
. . f .
Logging System Gamma5Th Type 60% HP Ge SGLS?
Effective Calibration Date | 02/16/17 Serial No. 54-TP13441B

Calibration Reference

HGLP-CC-152, Rev. 0

Logging Procedure

SGRP-PRO-0OP-53023, Rev. 0

Logging System

Gamma 5Pb

Type

NMLS?

Effective Calibration Date

02/27/17

Serial No.

H34055445

Calibration Reference

HGLP-CC-153,Rev. 0

Logging Procedure

SGRP-PRO-0P-53024, Rev. 0

SGLS Log Run Information
Log Run 1 2 Repeat 5 6 Repeat 9
HEIS Number 1020010 1020011 1020012 1020013 1020014
Date 06/01/17 06/01/17 08/24/17 08/24/17 08/31/17
Logging Engineer Felt/McClellan Felt/McClellan Felt/Meisner Felt Felt/Meisner
Start Depth (ft) 0.0 37.01 41.0 130.0 158.0
Finish Depth (ft) 42.01 42.01 159.02 142.01 235.01
Count Time (sec) 200 500 200 200 200
Live/Real R R R R R

! depth to water inside casing

2 Spectral Gamma Logging System

% Neutron Moisture Logging System

B-18
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Log Run 1 2 Repeat 5 6 Repeat 9
Shield (Y/N) N N N N N
MSA Interval (ft) 1.0 1.0 1.0 1.0 1.0
Log Speed (ft/min) N/A N/A N/A N/A N/A
C9513FTB2017 | C9513FTB2017 | C9513FTB2017 | C9513FTB2017 | C9513FTB2017
Pre-Verification 0601AVOOCAB | 0601AVOOCAB | 0824AVOOCAB | 0824AVOOCAB | 0831AVO0CAB
1 1 1 1 1
Start File AD000000 BD003701 AD004100 BD013000 ADO015800
Finish File AD004201 BD004201 AD015902 BD014201 AD023501
C9513FTB2017 | C9513FTB2017 | C9513FTB2017 | C9513FTB2017 | C9513FT B2017
Post-Verification 0601BVOOCAA 0601BVOOCAA 0824BVOOCAA 0824BVOOCAA 0831BVOOCAA
1 1 1 1 1
Depth Return Error (in.) N/A 0.0 N/A 3.0 high N/A
c _ Fine gain No_ fine gain Gain adjustment No_ fine gain No_ fine gain
omments adjustment made adjustments after file 56 adjustments adjustments
after 29 ft made made made
Log Run 10 11 Repeat
HEIS Number 1020015 1020016
Date 08/31/17 08/31/17
Logging Engineer Felt/Meisner Felt/Meisner
Start Depth (ft) 235.0 230.0
Finish Depth (ft) 239.01 238.0
Count Time (sec) 200 200
Live/Real R R
Shield (Y/N) N N
MSA Interval (ft) 1.0 1.0
Log Speed (ft/min) N/A N/A
C9513FTB2017 | C9513FTB2017
Pre-Verification 0831AVO0CAB | 0831AVO0OCAB
1 1
Start File BD023500 CD023000
Finish File BD023901 CD023800
C9513FTB2017 | C9513FTB2017
Post-Verification 0831BVOOCAA | 0831BVOOCAA
1 1
Depth Return Error (in.) N/A 5.0 high
No fine gain No fine gain
Comments adjustments adjustments
made made
NMLS Log Run Information
Log Run 3 4 Repeat 7 8 Repeat 12
HEIS Number 1020017 1020018 1020019 1020020 1020021
Date 06/05/17 06/05/17 08/24/17 08/24/17 09/05/17
Logging Engineer Spatz/McClellan | Spatz/McClellan | Spatz/McClellan | Spatz/McClellan Felt
Start Depth (ft) 0.0 36.0 41.0 130.0 158.0
Finish Depth (ft) 42.76 42.0 159.02 142.01 239.02
Count Time (sec) 15 15 15 15 15
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Log Run 3 4 Repeat 7 8 Repeat 12

Live/Real R R R R R

Shield (Y/N) N N N N N

MSA Interval (ft) 0.25 0.25 0.25 0.25 0.25

Log Speed (ft/min) N/A N/A N/A N/A N/A

Pre-Verification C9513FPB20170 | C9513FPB20170 | C9513FPB20170 | C9513FPB20170| C9513FPB20170
605AV00CAB1 605AV00CAB1 824AVO0CAB1 824AVO0CAB1 905AV00CAB1

Start File AD000000 BD003600 AD004100 BD013000 AD015800

Finish File ADO004276 BD004200 AD015902 BD014201 ADO023902

Post-Verification C9513FPB20170 | C9513FPB20170 | C9513FPB20170 | C9513FPB20170| C9513FPB20170
605BVO0OCAAL | 605BVO0CAAL | 824BVO0CAA1L 824BVO0CAALl | 905BVO0CAAL

Depth Return Error (in.) N/A High 0.5 N/A 2.0 high N/A

Comments None None None None None

Log Run 13 Repeat

HEIS Number 1020022

Date 09/05/17

Logging Engineer Felt

Start Depth (ft) 225.0

Finish Depth (ft) 233.0

Count Time (sec) 15

Live/Real R

Shield (Y/N) N

MSA Interval (ft) 0.25

Log Speed (ft/min) N/A

Pre-Verification gggf\fg 0%2:;0

Start File BD022500

Finish File BD023300

Post-Verification ey o0

Depth Return Error (in.) 1.0 high

Comments None

. .
A centralizer was not installed on the SGLS and NMLS sondes. The sondes were enveloped in plastic sleevingto
prevent potential contamination.

Analyst P.D. Henwood | Date | 09721717
Reference(s) | SGRP-PRO-OP-53040, Rev. 0; SGRP-PRO-OP-53051, Rev. 0

A combined casing correction of 0.807-in. was applied to the SGLS data to 11.9 ft and 0.557-in. to 43 ft. Casing
corrections for a 1/4-in. thick casing were applied for the remainder of the borehole. No corrections were applied
for the thicker casing joints associated with the sonic casing where the maximum thickness varies from 0.42-in. to
0.5-in and results in lower concentrations at 10-ft intervals.

No water correction was applied in this borehole as groundwater was not reached.
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SGLS spectrawere processed in batchmode in APTEC SUPERVISOR to identify individual energy peaksand
determine count rates. Concentrations for the SGLS were calculated in an EXCEL template identified

as ftB20170216, using an efficiency function and corrections for casingand deadtime as determined by annual
calibrations.

Aninterpreted data set was created for this borehole. Depth overlaps fromconsecutive log runs or where two
casings existedwere removed from41 and 42 ft and from 158 and 159 ft. This results in a data setwhere only one
data point is presented for each depth.

NMLS data are reported in counts per second.

HGU* is an empirical unit of gamma activity proposed as a means to standardize gamma log response across
multiple logging systems with differentresponse characteristics. The HGU is defined in terms of measurements in
the Hanford Borehole Calibration Facility, and the magnitudeis selected suchthat L HGU is approximately
equivalentto typical Hanford background activity, based on data frombackground samples as reportedin
Hanford Site Background: Part 2, Soil Background for Radionuclides (DOE/RL-96-12).

Results and Interpretations

Cs-137 and manmade uranium (Pa-234 [U-238] and U-235) were detected in this borehole. Cs-137 was detected at
30, 31, 52, 53 and 55 ft. The maximum concentrationwas approximately 1 pCi/g at 30 ft.

Pa-234m was detected at 29and 30 ft, from 36 to 42 ft,and a few other intermittentdepth locations deeper in the
borehole. The maximum concentration was measured at 34 pCi/g at 38 ft. U-235 was measured at intermittent
depthsthroughout the borehole with a maximum concentration measuredat 3pCi/g at 42 ft in depth.

Radon inside the casing is evident from 115 to 160 ftin depth where the Bi-214 energy peaks (609and 1764 keV)
used to assay naturally occurring uraniumdiverge in concentration.

The neutron moisture log primarily responds to moisture present in the surrounding formation. In general, an
increase in count rate reflects anincrease in moisture content. Moisture contentmay increase in sediments of
relatively high silt or clay content. The depthinterval fromground surface to 12 ft was logged within two casings.

The manmade, KUT, and moisture repeat plots indicate that the respective systems were working properly. The
manmade repeat suggests some variation. The repeatdataacquired at 500 seconds rather than 200 seconds probably
reflect the most accurate concentrations.

List of Log Plots

Depth Referenceis groundsurface.

Manmade Radionuclides (0-160 ft)

Manmade Radionuclides (150-310 ft)

Natural Gamma Logs (0-160 ft)

Natural Gamma Logs (150-310 ft)

Combination Plot (0-120 ft)

Combination Plot (120-240 ft)

Combination Plot (0-250 ft)

Total Gamma & Moisture (0-160 ft)

Total Gamma & Moisture (150-310 ft)

Total Gamma & Hanford Gamma Unit (0-250 ft)
Manmade Radionuclides Repeat (36-43 ft)

Repeat Section of Natural Gamma Logs (37-43 ft)
Repeat Section of Natural Gamma Logs (130-143 ft)
Repeat Section of Natural Gamma Logs (230-238 ft)
Moisture Repeat Section (36-42 ft)

Moisture Repeat Section (130-142 ft)

Moisture Repeat Section (225-233 ft)

4Hanford Gamma Unit

B-21



SGW-61596, REV. 1

C9513
Manmade Radionuclides

]

(198)) yideQ

o o o o o o o
o o o o o o o o o o -~ N [sp] < 0 (o]
o ~ N ™ < T} © N~ (¢o} » ~ ~ ~ ~ ~ ~ ~
| | | | | | | | | | | | | | |
r+—Tr 7"+ 77 17—+ 1"+ 1"+ 17T1 777 17T 17T "7 T ""T T "1T"T" T T
— f | | f f f _ _ _ _ _ _ f f f —
f f f f f f _ _ _ _ _ _ f f f
< e e e L L e
> , , , , , , _ | _ _ _ | , , B _
Q f f f f f f _ _ _ _ _ _ f f @)
X - ——f———f———t———f———t———f———f——— F———F———F—————1 =
O | f f f f f f _ _ _ _ _ _ f f _
(o] | | f f f f _ _ _ _ _ _ f f o
”\IllLlllLlllL.llll..l -ttt -t - ——
L | | e | | | | | | | | | | |
D [ % | | | | | _ _ _ _ _ _ | | |
s -t -1 ot -1+ 44+ 4+ L+
N i oooooooo&ccooLoooowooooooooo«.ﬁo i i | _ _ _ _ _ i i i
I _ “ | “ | “ | OOJ.QOO #OQOODOOoomOw,oon_uOOOOL_OOcooiooconw,uocoﬁuioooow_uooooicooonwaeo oiLOQOqTDDOIiO« DO+LODO4Oq Oonir.mooo_oooc&ﬁooOOﬂOODOnwOOOOn_.DOQO
f [ o o o o _ f _ f _ _ | _ f _ f _ | _ | _ | _ _ | _ |
f f f f f f f _ _ _ _ _ _ _ f f
- f f f f f f f _ _ _ _ _ _ _ f f
> f f f f f f f _ _ _ _ _ _ _ f f
m | f f f | f f _ _ _ _ _ _ _ f f
— d-——"F -t ——FT———1— T -ttt == == ===
by f | | | f f f _ _ _ _ _ _ _ | f
m | f f f f f f f _ _ _ _ _ _ _ f f
ot | f f | f f f _ _ _ _ _ _ _ f f
~ f f f f f f f _ _ _ I e _ _ f f
© 'IILIIILIIIJfI —— 4 ———+ + +—ttrttr—t ] ———-
[ T R f A f f f _ _ _ _ _ | o _ f f
m | W 0PoPe00 J* oooooooonﬁoooo (o] Jﬁ ooooooc_..,irLQuaooooonivn.oocowoownfooooocooonﬁ 00 ozoomonwom.ooocscuxv oDooOooon*omooocoQQTDOOQoooonTQuo_uoo004_onQo_uoooon?oaoooooo_r
N f f f f f f f _ _ _ _ _ _ _ | f
| | || [ | [ [ | | | | | _ | | | | | | | | | | | | | | | |
= , _ , _ , _ , _ , _ , _ [ f [ f [ f [ f [ f _ f _ _ , _ , =
- f | f f | f _ _ _ _ _ _ _ f f =
T T T AR A
w f f f f f f _ _ _ _ _ _ _ f f
102 = e e
— f f f f f f _ _ _ _ _ _ _ f f =
N E | | | | | | _ _ _ _ _ _ _ | | =
© |- | f f f f f _ _ _ _ _ _ _ f f _
~ f | | f f f _ _ _ _ _ _ _ f f
e S o e e T S e
5 OE | | | | | | _ _ _ _ _ _ _ | | =
S: N~ - f f ; f f f _ _ _ _ _ _ _ f f -
3 I Gl R N SRS S0 OO SO SO USRS AURON NURP SRUO IS S S
£l TR S R i s G G Y s s
WM o o o o o o o o o o o o o o o (] o
Hm ~— N ™ < Ye] o N~ [e6] » m NH Q B M w Mhlu
@B =

(198)) ypdeq

o
<~
(o o]
©
o
=
O
< 2
N
o
_ o
o
| o
S
1o
Y
- O
N
o
~
=)
~
(82
=
O
o
(=}
=)
<~
o
=

pCi/g

Zero Reference - Ground Surface

B-22



235u (186 keV)

C9513
Manmade Radionuclides

SGW-61596, REV. 1
2%mpa (1001 keV)

Stoller Newport News Nuclear

¥Cs (662 keV)

A Subsidiary of Huntington Ingalls Industries

(198)) ydeQ

150

60

40
pCi/g
B-23

20

102

10

pCi/g

100

o o o o o o o o o o o o o o o
O N~ [¢e) » o — AN ™ < Yo «© N~ <o) (o] o
~ ~ ~ ~ N N AN N N N N N N N [sp]

| | | | | | | | | | | | | | |

r-+—r—r—1 17— 711 "+ 1/ "7 1*7%—17-1° 7" T "7 7T T 17T T T T T T T"7T"1I
= _ , , _ _ , _ _ , , _ _ , , _

_ , , _ _ , _ _ , , _ _ , , _
(e A I
| _ , , _ _ , _ _ , , _ _ , , o

_ , , _ _ , _ _ , , _ _ , , =)
-4ttt f+———t in -t ft——r——fF——————1-9 =

_ , , _ _ , _ _ , , _ _ , ,

_ , , _ _ , _ _ , , _ _ , , o
s S R O A
B _ , , _ _ , _ _ , , _ _ , , _
IS R T S N A TR A S R S B s
[coC000000 u)oooooogkooooq,o 00040600 00 , o ., OOOBO00 o 0_ o0 o i i | | i i |

00 0 e i i i e i i i i o W AN AU A S NN N N
, _ _ , _ _ , _ , , _ , _ _ , _ _ , _ , , _ , _ _ , _ _ , _ ,
_ , _ _ , , _ _ , , _ _ , _ _
- _ , _ _ , , _ _ , , _ _ , _ _

_ , _ _ , , _ _ , , _ _ , _ _

_ , _ _ , , _ _ , , _ _ , _ _

e e S A -ttt =t ——— == ===

_ f _ _ f f _ _ f f _ _ f _ _
| _ , _ _ , , _ _ , , _ _ , _ _

_ | _ _ , , _ _ , , _ _ , _ _

_ , _ _ , , _ _ , , _ _ , _ _
AR S S S A R S B R By
o _ , _ _ , , _ _ , , _ _ , _ _
daooooooonwoooooooooQOOQOOCGJO _ OOOOOOD,\_UOOOOOODOQ&OO.UOOODOO%OODDOOOGD&OGOOODO nroogomooo i i _ _ i _ _

_ , T _ , | _ _ | | _ _ | _ _

| _ | , | _ | _ | , | , | _ | _ | , | , | _ | _ | , | _ | _ |
= _ _ , _ , , _ , _ _ , _ _ , _ , , _ , _ [ , [ , , [ , [ [ =
— _ , , _ _ , _ _ , , _ _ , , _ —
[ _ f f _ _ f _ _ f f _ _ f f _ ]
| _ , , _ _ , _ _ , , _ _ , , _ _

_ , , _ _ , _ _ , , _ _ , , _
= AR R
— _ , , _ _ , _ _ , , _ _ , , _ ]
[ _ , , _ _ , _ _ , , _ _ , , _ _

_ , , _ _ , _ _ , , _ _ , , _
=
— _ , , _ _ , _ _ , , _ _ , , _ 3
— _ f f _ _ f _ _ f f _ _ f | _ .
— _ , | , , _ _ , ! _ -

q__uﬁ _ Qf ] H.JE _J_ o9 a_i__._ e __,H_W:”Q {o° j_g...._ﬁ‘”gm,u 090 ” | ” | _ | “ l fﬁ | fﬁ | “ l
o o o o o o o o o o o o o o o
O N~ 0 [} o — AN ™ < Yo «© N~ <o) (o] o
~ ~ ~ ~ N AN N N N N N N N N ™

150

(198)) ydeq

10-1

310
Zero Reference - Ground Surface



SGW-61596, REV. 1

C9513
Natural Gamma Logs

Stoller Newport News Nuclear

A Subsidiary of Huntington Ingalls Industries

(198)) yrdeQ

160

“Th (2614 keV)

o o o o o o
o o o o ~ N (3p] < Tp)
o N~ o] (@] ~ ~ -~ ~ -~ ~
| I | | | | | | |
et r -t 7 T ° T 7 © 1 1T T "I
| | _ | | _ f _ _
| | | _ f f _ f _ | |
| | _ f f _ | _ _
| | | f f _ | [ |
L e o T b e lelAel [ TIeg SR (VAT b e | TN TR TE TN T L
| | | | | | | [ !
| | | | | | 7 _ _
| | | _ f | _ f _ _ L
| | _ f f _ f _ _
| | _ | | _ f _ |
ﬁ 00 :A# “H_.nﬁ.un_._uw uﬁ._u,\—_.‘w q,.\.ﬂ.“.. .o...a,*.m. q,.\..._.wﬁ..u,.,‘._u.d_ﬁ .u..f,wLﬁ .u_.wg..,_.ﬂ g.n.w.#.n.m.ﬂ.ﬂ.,\_.n. 00 f * OC iau_\, i.ﬁum "..,..*._‘“ \,J.u.q_@u n_.%\.". eleld
8
3|5
X S5 =
S| o
f [ [ [ | I I _ f o f © c = _
0 1
- + o

1764 keV)

%(

23
Lol

o s
o " Rl

1 gl

“K (1461 keV)

(198)) yideq

-
o
I A I I A N R N N N R R = M
B [ [ I I 4 | | | | _ f _ _ f _ ]
—— 4t ——+——F— = —=&—=T ket + — g ——+——| ° |5
| | _ | | 4 .M.:,.L»-Ml!. .__-."MMWH, . #L A i H..;"HHE-'-..HH{E%{ o ,,"IWHMHMM-H— I—.%MHM-—“.— Wt et e —
ﬂlm o L| _ _| . .1 : & |-..m_ e .l--i| a H - o~ |r¢ a -~ .M, - t#l AV, ,‘L.h'r"!.lﬂ-.-h-.uf L —1 |
| ,rm,.lENud- “-Iid L AL i = _ i _ i N h
[ ..nu.-......ulnmn... - e e S A N S K A N A, N .
2 T 1 T 1 T 1 T 1 T | 1
f [ I | | | | | _ f _ _ f _ 2 2=
—— 4 ——+——F———— - —— b ——— — — — b — = —  — — b — { — —  — —
= f [ I | | | | | _ f _ _ f _ —
3 ,...::u,._.MV7.QCO..W,..&..L.\.,;u“wn.cn..u“_.vo.r. ,‘_.*.m..ur. ,‘.“_m“ .O,‘_.\T,.w....“u“".n Og¢ .,%‘:..: ”m:.__.‘_ le]s _“Tb..,..,D“_Um..ﬁ.v.;.w_‘,ﬁ.u“ ,n_q_w.u.n :“T u..ot.m_; alele R le]e L.Coh _L,(.un .x_%h;.;o&rw.m.q.._Or,.o..u&m.r U.u,*m.u ] * u....u\._..%in n.u“_h r..u,._......o O #O =l \..._,.T...u,! ‘_hr O
[ [ [ [ [ [ I [ [ [ _ _ f _ _
© & 8 € 8 8 R 8 8 8 2 & 8 § 8 8

N
o
o
-3
Q
o
[(=}
<
o
—
Q
Q
o~
o
(o]
N
o
I
< 2
Q
S a
0
o

Zero Reference - Ground Surface

B-24



SGW-61596, REV. 1

C9513
Natural Gamma Logs

Stoller Newport News Nuclear

A Subsidiary of Huntington Ingalls Industries

150

(198)) yrdeQ

“*Th (2614 keV)
g [

“°U (1764 keV)

—— 609 keV

[

[ radoninfiuence |

K (1461 keV)

150

(199)) ydeQ

|

|

[
o
re]
N

0

10 15 20 25
pCi/g

5

0

pCi/g

pCi/g

Zero Reference - Ground Surface

B-25



SGW-61596, REV. 1

0clL

oLl

0ol

06

ov

0¢

74

ol

90BlNG PUNOIL) - 80UBIBLSY 0187

sdo 6/10d
0G¢ 0S5z 0§k 0 sdo c | 0 | S0 | 00 6/10d 6/10d
_oom 00y 00€ 00¢ ooF_ ! ! _o 14 4 20l 10b o0l 0L 201
| O e A A T l ey 0k
| | | | L
i IR | R
o I I e A T T T T 0k
u L i | || Aex609 .
| | NN ¥9LL R
B EA | ool
i R -
[ T e | IR I | |||<+|||_|||_||II 06
| | | | i
| | i | , . , | , _ _ |
| | | | —
B i I S | S - n o8
Lf _ Lf ” (A8 LOOL) Bduyg, v
— i I e e e Y el By (A% 299) 8O, o [ 0L
L JE | | L | _ <
| _ | | | _ _ 2
R A | I B s
I HE _ | . | _—_— I R
f _ | | | Y o}
IR <A | E S | S o [T | S
At I | N NS | RN
usmcwmwmmﬂ\\ I\\\_\J\Lf\\\l IIIIWIIII IAV-L_\_ oy
, , n
s s T
- HE LS 1 B
| ,

T E L T
LS s NNk
| s
! - — _ | -1 | - A

_ | A | 7 | 7 | | _ | % | | 1T 1 1 0
ainsioy  ewweoeol (AN YL9Z) UL, (A ¥ILL) N, sepljonuoipey
ape-uep

10|d uonjeuiquio €1569

seutsnpuy sjjeu| uoiBununy jo Aseipisqng v

1Ra|any sMap uodmay Jajj01S

B-26



SGW-61596, REV. 1

() 74

0€e

(/44

(1] %4

0s1L

ovl

o€l

0clL

odo 6/10d - 90BlNG PUNOIS) - 90UdIBJeY 0lo7
0S¢ 0§z 0§k 0§ e’ 0 §0 00 5 sz oz s20 s o 6/10d
— T T T /od T T T T T T T .
9 14 4 0 20l 0l o0l 1-01 01
e _ — T ] =T ] M T T T T T ove
| 7 | (I | 7 | |
I A | T ¢ v« | R
| |
B = AT T 11— 0g
- _ | _I| N®X609 [ _ I | I
e I
R i I ! | T T s T T 0ee
- _ f AL | _ [ _ B f _ [
. o | ]
||||||| R B I R R e
_ } | _ _ _ | _ _ yz4
| | 7 1L 7 | L _ L | I
| 7 7 | _ _ :
R 0u v o
- | , . , | ] | (Ae¥ 981) Ngez -
“ H ” |n _h H (A8 L00L) Bduye, v
IS = ki I e 4 . T~ (Ae%299) sO, .« [ 06L
| _ f L , L _ O
| i | _ | ] 3
\\\\\\\\\\\\\\\\\\ (R SRR 40 AT DU SRR N AN AN NN NN ey
L | _ I A -
- dL [ _ L i T 9
| | | _ | o g o
R I B | s e
_
- | f B f | _ E— _ -
_ , , _ | ! _ _
R e | - e A
| |
| _ } i I L | L | _ _ _
_ I _ , , _ _
| L
o _ | —H _— L - W _ _ .
_ 7 | L
E0% i e e NI i uie S i i e i R
- _ ” . — | | L 4” | _ _
| L
B i b [ et : ——+ et ||||||._7.|||T|| o€l
= | wostasuEL || A B T
®OC®:={_ CODN._ | | |
_ % _ _ g _ 0 T ON—.
1 (A7192) ﬁ (N 79L}) : no ESE sapljonuoipey

8¢¢

1old :o_ﬂm:_n_ wo) €1596D

ﬁ'




SGW-61596, REV. 1

052
ove
0€e
0z
0Lz
002
061
08l
0Ll
09l
0sl

oorh
D

N

=0zl

/mho L
00l

06
08
0L
09
05
o
o€
0z
ol

sdo
0S€ 0SZ 06l

90BNG PUNOIL) - BOUBID}

0 6/10d

8y olaz

20l 0L o0l 1-01 z01

(}14

T T T T I T T T 1T T T T T ] U T T T
e | = | S I
TR T 1 u B ]

A 178, _ S I I [ R A R P« I L

C T ] C T T e T 00, v [ ¢
Sl rees - HEL L e oz
1 4% —=He A VOLL BT (A®X L00V) B, + |- OLE
Lo AL \\iLﬂ\\H 4 HL_1|L e+ (AM299) 805, = Il 0oz
T | e 10 —

. = ————— e —+ —— —————————t 06l
— u 1 | -1+ — | = e _ |
T e B - el e R UL
— 1 I e ]
g L_||| |\\Jf\\\u I N HJ_- S |77|l_ﬂ|u H||”|||“|||n||u| 0L
— — 5 ees0 == it [ e IR Rt Bk === s e ————————— 09l
= S K I P U= S I O A R

T s 4_|| L - T JE T et T i i s By
R < . ——— - —ydoporciy I ettt T R —————1—— orig
T | Sousnuuruopel B Y SN 5 R I A I A R S A BN
I , e , dE 1 T _ I ] OCls
41 B ”||||_ i YSSOS E S — f|||_r||L_|||| 02,
PR | JE db e 1 10 4L . | @
S S S, . * e SR NS ) S [ . B v Uy AN E | S [ R R o
— | —H | _ 4 1 &1 1 1 A | o
T o= 4!\\” |||||||| ”||||_| - _||7T|+ ||||| f|||n|||n|||| 001
— oz — b = a
T S e R S e | - e e e e B
T e e [ R I [t S e L
— : | 10 10 I=<=1 | | r N
|H||“||. S - T H||W|||“|||__||H| 0L
IHII"I |_t \\\\\\\\ W\\\H HIIIWIIII_I H\_\,a- \\W\\+\H H\\T\J\\.J\\Hw 09
||||_|| =N I N U PR DU Y S [ I B i||||_|| |‘_‘ - ‘i“F """ i“ _“f_“JW Om
R | JF | _ I I = I B e

S —— e s - 1 I e e e
T ! JF | _ EER R R -
||||_||_ S ) S e I S . A S A 1 0z
- | —H | _ D I -
—+—-1——1 ¢4 ] = e ——+— g~ —— ——— T||_|||_|||| 0l

[ 1 _ _ _ _ l o c L N L I | R T R T

aimsioN  ewwegelol (AN LIZ)UL,, (AN YILL) N, (AL

10|d uonjeuiquio €1569

ML) M,

sepljonuolpey
apeN-uep

seutsnpuy sjjeu| uoiBununy jo Aseipisqng v

1Ra|any sMap uodmay Jajj01S




SGW-61596, REV. 1

(193)) yrdaQ

500 |

400

250 350

150

50

cps

B-29

300
cps

200

o o o o
o o o o o o o S - o) ©
o ™ < Yo © N~ [¢6) » ~ ~— ~ ~—
T I B e e e e B —T g
| | _ | | _ _ | _ _ 2
, , | , , | | , | N -]
| | _ | | _ _ | _ | S|
| | _ | | _ _ | _ ! 2|
| | _ | | _ _ | _ I gl
o | 1lg 1 | | _ _ | _ ! o
Sttt
O 5 | g | | | | | | (W
= | R | | _ _ | _ ! !
= L | e 7 7 _ _ 7 _ _ _
- O , e , , _ _ , _ _ _
n = , Rii _ , , _ _ | _ ,
"~ f NIRRT f f _ _ , | _
o e R e X - R Y S YRR S
s | T RAL A Wi | ! !
| | _ _ _
| ! | _ |
0 | NN o
™ ©
| _ | _ _ | _ _ _
Rvm _ 11| I I T B B L 1|
va
(&) _ _ | _ L L T ] 1
(3] | | | _ | | _ | | |
L) | | ! | | _ _ ! | _ |
| | ! _ _ _ _ ! |
_— | | | | _ _ _ ! |
© 4 —_,—— ——— + —
- _ | | _ _ ! | _ _ ! ! | !
o £ _ | | _ _ ! | _ _ _ ! | !
= _ | | _ _ ! ! _ _ _ ! | ! ! "
m _ | | _ _ ! _ _ _ ! ! | | ! !
I O ) A N I L S/ SN VNS .|y VA | (N S S R
O | | | | | _ _ 4 § |/ | |
= _ | | _ _ _ ! | | | ! _
SH _ | | _ _ _ _ ! ! | | _ _
o _ | | _ ! _ _ _ ! ! | | ! !
= _ | _ _ | _ _ _ ! ! | | _ _
I PP N A S
_ | _ _ ! _ _ _ ! ! | | | _
. | | _ _ ! _ _ _ ! ! | | ! _
£ I/ P N NI NI SN NP NI VO VIS O A A Y
%: _ | | 1 _ 1 1 _ _ _ _ | | _ _
2L ° e & & &S 3 3 R S S S 2 S 3 g 3 3
=:
e (yo3}) yideQ
a3

100
Zero Reference - Ground Surface



SGW-61596, REV. 1

C9513
Total Gamma & Moisture

Stoller Newport News Nuclear

(193)) yrdaQ

Moisture

Total Gamma

Subsidiary of Huntington Ingalls Industries
150

(198)) Ydeg

310

300 400 500 |
cps

200

100

250 350

150

50

cps

Zero Reference - Ground Surface

B-30



(393)) ydag

10

HGU

SGW-61596, REV. 1

C9513

500 |

400

B-31

Total Gamma & Hanford Gamma Un

J

Stoller Newport News Nuclear

o o o o
-~ N o <
o ™ ™ ™
| 7 [ R
_ ﬁ T T T 1 711 1T
_ 7 T R T
o _ 7 I N B
c _ 7 N
2 | | o
® _ , [ I
= _ | o
c | , o
®© | 7 I
O |_|||f||f|||_||_|||" f ”III_II_IIIWIIWIII_II_IIAII_IIAIIﬂIAII_IIJIIﬂIJllﬂl|
] T T O O O O
_ | _ _ | | |
= s Y (N A N (N AN K N A EN IR S I B
@®© O A (N A AN (N AN A N S K KN S I B
T I T T (N (Y Y N (N N I SN NN K N B
(Y [ (N AN N (N AN KN N A K RN RN I B
R S N N P e N T T R N
| ] |
L
T T T 1 T 1 T T 1 T 1 T T T 1 T
I I _ I I I 7
o I _ - I o 7
o I _ |y | [ o 7
o I _ . - o 7
S N + A . S N —
© S T (A N N TR ER S ) O 1L N A I I B
e S T [ A IR SRR SO E O A W I ¥ N I I R
i A A D T A R} A I B B 4 ¥ R i R Y R R E I B
m [ N N T I NPy Ny O SR S I S 1 A N R TR ¥ S N N A I I B
I ™ U it | I N Y.l S S e O A e I
O T ANy SR AL
S o0 [ A E E IR R S S T T R R
o) I N I N N A e JUL T IAN
— | R e e e R T B L Pt e w
IRV 1 N A A B S A TR A (A €
| 1 (A IR AR SN I [ Y A A
1R 1 A (N Y (N (N R AN AN B N
T T T N [ A N (Y AN K AN SN I B
I T I O O O O
—r T 1 T T 1T 1T T T 1T T T T T T T T T T 7T 1
°°2883%838R8838288888R888EELEE S
(198)) yideQ

A Subsidiary of Huntington Ingalls Industries

300
cps

200

100
Zero Reference - Ground Surface



SGW-61596, REV. 1

C9513
Manmade Radionuclides Repeat

"

Stoller Newport News Nuclear

A Subsidiary of Hunting

2%mpa (1001 keV) 5 (186 keV)

“'Cs (662 keV)

ton Ingalls Industries

36

(198)) ydeq

43

A Repeat Data |

(198)) ydeq

_ _ _ _
_ _ _ f f _
B | | | I | 4 |
_ _ _ I _ [ _
l | | | l | | | | | l | | |
_ _ _ [ _ f _
= | [ | I | [ | [ [ I | [ | H
= _ f f f f f =
— _ f f f f I ]
- _ f f f f AN —
<
_ f f f f f o
= I I A= I I A I A =
= ! , , , ! 5 =
= ! , ! , , I c —
— _ , , , , B3 ]
! | | | | 9
- —— e A e A S B L A —
— ® —
= _ , , , , 3 =
— _ f f f f f @ -
— _ f f f f (4 .
B _ f f | f f N
| | | | | | |
_ f f f f f
(o] N o] (o] o ~ AN
™ ™ ™ ™ < < <

10

102 10° 10¢ |

10

pCi/g

40 60

20

pCi/g

pCilg

Zero Reference - Ground Surface

B-32



SGW-61596, REV. 1

C9513

N y <
{ / )
Stoller Newport News Nuclear

(199)) ndeQ
<t

N 0] [¢2] ~ [9\] (32
(a2} [ap] [ap] < < <
| | _ o
I T I T _ o
B _ _ _ , _ n
_ _ _ , _
S| _ | _ | _ 0
e -~
X
n J 2
O © Q
o o
| |
! R SO B Lo 4 [ ey IS o
© _ _ _ , | 5 S
ENF | | | ﬁ 12
S | | | | L 1§ -
© & ©
(O] T T T T T | -
- _ _ _ , _ _
© L _ _ _ , R | ]
- _ _ _ , | _
UW _ _ _ , | s
wied -~
X
©
4
Z O 1
Y ™~
(o BENES e
57 1
..mv. o
o o
(7p)
©
]
Q >
pe
X
QO -~ o
X o (&)
<t o
$1|
LN - E
i 9 _ _ _ , _ .
EAE _ _ _ f ! _
H _ | _ , _
| | | | | -
E o~ o) D o - N ®
: o ™M ™ < < < <

(188}

yidaq

pCi/g

Zero Reference - Ground Surface

B-33



SGW-61596, REV. 1
C9513
Repeat Section of Natural Gamma Logs

130
131
132
133
———1 134
13
————1 138
139
—— - 140
141
— - 142
143

pCi/g

22TH (2614 keV)

U (1764 keV)

pCi/g

—
>
()
X
<
%; D e T T T T T |
X _ _ | | _ |
TR _ | | | | _ |
£il 00l _e
mw% | | | f | f | | | | [ f -
g5 | _ _ _ | _ | _ _ _ _ _ | B
=: | | | , | , | | | | [ ,
EE
m.m | _ | _f | fﬁ | * | _ | _f ©
wI: o — o ™ < 0 © ~ o o o - I ™
= © e e e e e 2 o e 2 3 3 3 3
e (yo3)) yideq

pCi/g
B-34

Zero Reference - Ground Surface



pCi/g

SGW-61596, REV. 1

C9513
Repeat Section of Natural Gamma Logs

Stoller Newport News Nuclear

4
(1034 yideq

o — AN (a2} o] O N~ (e o]
(s2] (a2} (s2] (a2} (s2] (<2) [s2] (a2}
AN (V] N N N N N AN (V]
| | _ ©
_ _ _ _ _ _ T -
_ _ _ _ _ _ |
— _ _ _ _ _ _ | |
> _ _ _ _ _ _ |
[0} _ _ _ _ _ _ | o
X dm———— - - t—————— - —————— —————— — =
< _ _ _ _ _ _ |
— | _
© _ _
) ! _ .
el e e S - i e _ |||||| — o
= m |
(V]
Q _ _ .
_ |
| o
..nm o
©
T Q _
_ 5 |
| w |
— | |
W _ o _
——————— 4ttt —— +————t+———r——— | —
= _ < _
<t _ _
n_m | |
|
A\ R S e e S = e B -
=) -
[e0]
QT |
N
|
|
o
T _ N
_ |
_ | ]
A~ | |
> _ _ o
Q 4 t+ = | -
— i
© i
3 _
m“. |||||||||||||| e [— — — — — — ”_m
X ‘ _ _
=S _ _ |
g _ _ | ]
g _ _ “
| |
3 _ _ ©
: o © N~ 0
32 ™ [sp] ™ (a2}
m N (V] (qV] AN

[
0.0

1.5

1.0

0.5

pCi/g

pCi/g

Zero Reference - Ground Surface

B-35



SGW-61596, REV. 1

36

(198)) ydeQ

MoisAture

C9513
Moisture Repeat Section

A Repeat Data

36

Stoller Newport News Nuclear
A Subsidiary of Huntington Ingalls Industries

(198)) ydeq

Depth overlap in two casings

200

150

100

50

cps

Zero Reference - Ground Surface

B-36



SGW-61596, REV. 1

130

(198)) yideQ

C9513
Moisture Repeat Section
Moisture

A Repeat Data

130

m
Stoller Newport News Nuclear

A Subsidiary of Huntington Ingalls Industries

(198)) ydeq

350

250

150

50

cps

Zero Reference - Ground Surface

B-37



(198y) ydeQ

350

SGW-61596, REV. 1

C9513
Moisture Repeat Section

Stoller Newport News Nuclear

A Subsidiary of Huntington Ingalls Industries

Lo © I~ 28] D o ~ N
N N N N N ™ ™ ¢}
N N N N N N N AN
| | | | | |
I | I | | I
_ ! _ ! _ ||
_ ! ! ! | | &
o _ ! ! ! ! 1| Q
_ ! _ | ! | &
| | | | | | 8
O-—————- 4-——————- to—————— o Fo————— F——————— H &
> | |
D _
L2 _
Q !
= _

225

(198)) yideQ

250

150

50

cps

Zero Reference - Ground Surface

B-38



S

Stoller Newport News Nuclear

GW-61596, REV. 1

C9514
Log Data Report
Borehole Information
Log Date | 2016-07-25 | Filename | C9514 HG-NM_2016-07-25 | Site | 216-S-21 (200-DV-1)
Coordinates (WA StPlane) DTW! (ft) N/A DTW Date 07/21/16
North (m) East (m) Drill Date TOC?Elevation Total Depth (ft)
N/A N/A 07/21/16 N/A 127.6
Casing Information
Diameter (in.)

Casing Type Drill Type Stickup (ft) | Outer | Inside Thickness(in.) | Top (ft) Bottom (ft)
Threaded Steel | Becker Hammer 0.2 8 5/8 7318 5/8 -0.3 44
Threaded Steel Sonic -15 6.0 5.0 1/2 +1.5 1275

Borehole Notes

Drill depth and casing depth were provided by the wellsite geologist. A Becker Hammer push method was usedto
44 ft. Subsequentdrilling was completed usinga Sonic drilling method to total depth. Casing stick up and diameter
were measured by thelogging engineer. The maximum logging depth achieved was 127.26 ft. Zero reference is

ground surface.
| ing Equi Lo .
Logging System Gamma5Th Type 60% HPGe SGLS®
Effective Calibration Date | 02/23/16 Serial No. 54-TP13441B
Calibration Reference HGLP-CC-136, Rev. 0 Logging Procedure | SGRP-RRO-OP-53023, Rev.0
Logging System Gamma 5Pb Type NMLS*
Effective Calibration Date | 04/15/15 Serial No. H34055445
Calibration Reference HGLP-CC-116, Rev. 0 Logging Procedure | SGRP-PRO-OP-53024, Rev.0
Logging System Gamma5Th Type 60% HPGe SGLS
Effective Calibration Date | 02/23/16 Serial No. 54-TP13441B
Calibration Reference HGLP-CC-136, Rev. 1 Logging Procedure | SGRP-RRO-OP-53023, Rev.0
Logging System Gamma 5Pb Type NMLS
Effective Calibration Date | 05/02/16 Serial No. H34055445
Calibration Reference HGLP-CC-140, Rev. Oa Logging Procedure | SGRP-PRO-OP-53024, Rev.0
Logging System Gamma 5Cb Type HRLS
Effective Calibration Date | 07/30/15 Serial No. 39A314
Calibration Reference HGLP-CC-123, Rev. 0 Logging Procedure | SGRP-PRO-OP-53050, Rev.0

! depth to water inside casing

2top of casing

3 Spectral Gamma Logging System
* Neutron Moisture Logging System
® High Rate Logging System

A SUBSIDIARY OF HUNTINGTON INGALLS INDUSTRIES

2439 Robertson Drive ¢ Richland, WA 99354 « Telephone (509) 946-6455 «

www.stoller.com
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SGLS Log Run Information
Log Run 1 2 3 4 Repeat 11
HEIS Number 1019653 N/A 1019654 1019655 1019662
Date 04/11/16 04/11/16 04/11/16 04/11/16 07/25/16
Logging Engineer Spatz Spatz Spatz Spatz Felt
Start Depth (ft) 0.0 21.0 29.0 39.0 42.0
Finish Depth (ft) 24.01 30.02 43.0 42.0 126.01
Count Time (sec) 100 20 100 100 200
Live/Real R R R R R
Shield (Y/N) NA NA NA NA N
MSA Interval (ft) 1.0 1.0 1.0 1.0 1.0
Log Speed (ft/min) NA NA NA NA NA
Pre-Verification C9514FThb20160 [ C9514FTh20160 | C9514FTh20160 | C9514FTh20160 | C9514FTh20160
411AVO0CAB1 | 411AVO00CAB1 | 411AVO00CAB1 411AVO0CAB1 | 725AV00CAB1

Start File AD000000 BD002100 CD002900 DD003900 AD004200
Finish File AD002401 BD003002 CD004300 DD004200 AD012601
Post-Verification EVOOCAAL EVOOCAAL EVOOCAAL EVOOCAAL BV0Ocaal
Depth Return Error (in.) NA NA NA high 2 1/2 NA

No fine gain No fine gain No fine gain No fine gain No fine gain
Comments adjustments adjustments adjustments adjustments adjustments

made made made made made

Log Run 12 Repeat
HEIS Number 1019663
Date 07/25/16
Logging Engineer Felt
Start Depth (ft) 91.0
Finish Depth (ft) 100.01
Count Time (sec) 200
Live/Real R
Shield (Y/N) N
MSA Interval (ft) 1.0
Log Speed (ft/min) NA
Pre-Verification ggg;@z&tgﬁéﬁo
Start File BD009100
Finish File BD010001
Post-Verification BVOOCAA1L
Depth Return Error (in.) high 3

No fine gain
Comments adjustments

made

A SUBSIDIARY OF HUNTINGTON INGALLS INDUSTRIES

2439 Robertson Drive ¢ Richland, WA 99354 « Telephone (509) 946-6455 «
www.stoller.com
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NMLS Log Run Information
Log Run 5 6 Repeat 9 10 Repeat
HEIS Number 1019656 1019657 1019660 1019661
Date 04/11/16 04/11/16 07/21/16 07/21/16
Logging Engineer Spatz Spatz Mc'\(;llzilslgr?;ll:elt Felt
Start Depth (ft) 0.0 37.0 42.0 111.0
Finish Depth (ft) 43.25 42.0 127.26 120.0
Count Time (sec) 15 15 15 15
Live/Real R R R R
Shield (Y/N) NA NA NA NA
MSA Interval (ft) 0.25 0.25 0.25 0.25
Log Speed (ft/min) NA NA NA NA
Pre-Verification C9514FPb20160 | C9514FPb20160 | C9514FPb20160 | C9514FPh20160
411AVO00CAB1 | 411AVO0CAB1 | 721AVO0CAB1 | 721AVO0CAB1
Start File AD000000 BD003700 AD004200 BD011100
Finish File AD004325 BD004200 AD012726 BD012000
Post-Verification BVOOCAA1L BVOOCAA1L BV0Ocaal BV0Ocaal
Depth Return Error (in.) NA high 1/2 NA high 2
Comments None None None None
HRLS Log Run Informatjon

Log Run 7 8 Repeat
HEIS Number 1019658 1019659
Date 04/11/16 04/11/16
Logging Engineer Spatz/Felt Spatz/Felt
Start Depth (ft) 22.0 23.0
Finish Depth (ft) 29.0 24.0
Count Time (sec) 300 300
Live/Real R R
Shield (Y/N) NA NA
MSA Interval (ft) 1.0 1.0
Log Speed (ft/min) NA NA
prevertatn | ST ST
Start File ADO002200 BD002300
Finish File AD002900 BD002400
Post-Verification BVOOCAAL BVOOCAAL
Depth Return Error (in.) NA high 1/2

No fine gain No fine gain
Comments adjustments adjustments

made made

A SUBSIDIARY OF HUNTINGTON INGALLS INDUSTRIES

2439 Robertson Drive ¢ Richland, WA 99354 « Telephone (509) 946-6455 «
www.stoller.com
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Stoller Newport News Nuclear

. .
A centralizer was installed on the sondes during logging of the first casing string. No centralizer was used during

logging of the second casing string due to the smaller internal diameter of the casing. The sondes were sleevedin 4
mil plastic duringeach log run ofthe second casingstring in order to prevent potential contamination of equipment.

Pre- and post-survey verification measurements met the acceptance criteria for the established systems.

Analysis Notes

Analyst K. J. Felt |Date |09/16/16
Reference(s) | SGRP-PRO-OP-53040, Rev. 0; SGRP-PRO-OP-53051, Rev. 0

SGLS spectrawere processed in batchmode in APTEC SUPERVISOR to identify individual energy peaksand
determine count rates. Concentrations were calculated in an EXCEL template identified as ftb_20160223 CC136,
using an efficiency functionand corrections for casing and dead time as determined duringannual response checks.

A casing correction fora 5/8-in. thick casing was applied for the first Becker Hammer push to 43 ft. A correction
for a1/2-in. thick casing was applied for the remainder of the borehole drilled by the Sonic drill.

NMLS data are reportedin counts per second.

An interpreted data set was created for this borehole. Log run 2was not used due tothe shorter count times
associated with the log run as well as the availability of HRLS data in that depth interval. Generally, 20 second
count times with the SGLS are used to define an interval of high activity that will be subsequently logged with the
HRLS. Where two casings and depth overlaps occur at 42 and 43 ft, values collected duringlogging of the first
casing string havebeenretained and data fromthe second casing string have beenremoved fromthe final
interpreted dataset.

The HGUS® is an empirical unit of gamma activity proposed as a means to standardize gamma log response across
multiple logging systems with differentresponse characteristics. The HGU is defined in terms of measurementsin
the Hanford Borehole Model Facility, and the magnitude is selected such that LHGU is approximately equivalent to
typical Hanford background activity, based on data frombackgroundsamples as reported in Hanford Site
Background Part 2, Soil Background for Radionuclides (DOE/RL-96-12).

Results and Interpretations
Cs-137 was detected at 1, 14, and 16 ft, as well as nearly continuously from21 to 56 ft. A maximum concentration

of approximately 37,500 pCi/g was measured at 24 ft. Though not detected, MDLs are plotted for processed
uranium(Pa-234m [U-238] and U-235).

Casing joints are evident by reduced countrates for the moisture and gamma measurements at 10-ft intervaks
beginningat 47 ft.

The neutron moisture log primarily responds to moisture present in the surrounding formation. In general, an
increase in count rate reflects an increase in moisture content. Moisture content may increase in sediments of
relatively high silt orclay content.

The manmade, KUT, and moisture repeat plots indicate that the respective systems were working properly.

® Hanford Gamma Unit

A SUBSIDIARY OF HUNTINGTON INGALLS INDUSTRIES

2439 Robertson Drive *Richland, WA 99354 « Telephone (509) 946-6455 «
www.stoller.com
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List of Log Plots
Depth Referenceis groundsurface.

Manmade Radionuclides (0-160 ft)

Natural Gamma Logs (0-160 ft)

Combination Plot (0-120 ft)

Combination Plot (110-230 ft)

Combination Plot (0-130 ft)

Total Gamma & Moisture (0-160 ft)

Total Gamma & Hanford Gamma Unit (0-160 ft)
Repeat Section of Manmade Radionuclides (38-43 ft)
Repeat Sectionof Natural Gamma Logs (38-43 ft)
Repeat Section of Natural Gamma Logs (90-101 ft)
Moisture Repeat Section (36-43 ft)

Moisture Repeat Section (110-121 ft)

A SUBSIDIARY OF HUNTINGTON INGALLS INDUSTRIES

2439 Robertson Drive ¢ Richland, WA 99354 « Telephone (509) 946-6455 «
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Summary

Contaminants disposed of at the land surface must migrate through the vadose zone before entering
groundwater. Processes that occur in the vadose zone can attenuate contaminant concentrations during
transport through the vadose zone. Thus, quantifying contaminant attenuation and contaminant transport
processes in the vadose zone, in support of the conceptual site model (CSM) and fate and transport
assessments, is important for assessing the need for, and type of, remediation in the vadose zone and
groundwater. The framework to characterize attenuation and transport processes provided in U.S.
Environmental Protection Agency (EPA) guidance documents was used to guide the laboratory effort
reported herein.

The 200-DV-1 Operable Unit (OU) is in the process of characterizing the vadose zone to support a
remedial investigation and feasibility study. Through a data quality objectives process, specific
200-DV-1 waste sites were selected for evaluation of attenuation and transport processes for mobile
uranium, technetium-99 (Tc-99), iodine-129 (1-129), chromium, and nitrate contaminants. The specific
elements of the laboratory effort were selected to provide data and associated interpretation to support the
following three objectives:

o Define the contaminant distribution and the hydrologic and biogeochemical setting
¢ Identify attenuation processes and describe the associated attenuation mechanisms

¢ Quantify attenuation and transport parameters for use in evaluating remedies

These objectives are elements of the framework identified in EPA guidance for evaluating Monitored
Natural Attenuation (MNA) of inorganic contaminants, and they directly support updating the CSM for
these waste sites (and generally for the Hanford Central Plateau). Importantly, the information supports
defining suitable contaminant transport parameters that are needed to evaluate transport of contaminants
through the vadose zone and to the groundwater. This type of transport assessment supports a coupled
analysis of groundwater and vadose zone contamination. The laboratory study information, in
conjunction with transport analyses, can be used as input to evaluate the feasibility of remedies for the
200-DV-1 OU. This remedy evaluation will be enhanced by considering these study results that improve
the understanding of controlling features and processes for transport of contaminants through the vadose
zone to the groundwater.

The laboratory study described in this report was conducted using the samples shown in Table ES-1
for the selected waste sites in the S- and T-Complexes of the 200-DV-1 OU. The laboratory study
included categories of individual analysis and experiments derived from EPA guidance for MNA of
inorganic contaminants. Sediment characterization included determining contaminant concentrations
(and oxidation state for some contaminants), concentrations of important geochemical constituents,
microbial ecology relevant to contaminant attenuation, physical properties, and pore-water oxygen and
hydrogen isotopes. Additional information to help assess attenuation processes included sequentially
applying increasingly harsh extraction solutions to the sediment and measuring contaminants and
geochemical constituents in the extractions (sequential-extraction analysis). This technique helps
interpret the distribution of contaminants among mobile, partially mobile, and functionally immobile
phases in the sediments. The character of iron and manganese phases in the sediments was also
determined in relation to their role in redox reactions. Several types of methods were applied to evaluate
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transport characteristics and to develop transport parameters for contaminants. Where existing
contaminant concentrations were high enough to enable testing, batch and soil-column leaching
experiments were conducted that are used to evaluate and quantify contaminant release rates. Because
several samples had low existing contaminant concentrations, spiked-contaminant experiments were used
in batch and soil-column tests to estimate the linear equilibrium partitioning coefficient (Kg), an important
parameter for transport assessments.

Table ES.1. Samples included in the laboratory study.

Nominal Depth Interval

Waste Site Borehole Geologic Unit (ft bgs)
216-T-19 (T-19) C9507  Cold Creek Unit silt 92-96
216-T-19 (T-19) C9507  Cold Creek Unit caliche (high carbonate) 102-106
216-T-19 (T-19) C9507  Ringold formation 137-140
216-T-25 (T-25) C9510  Hanford Formation/Cold Creek Unit silt transition 112-115
216-S-9 (S-9) C9512  Hanford Formation 62-65
216-S-9 (S-9) C9512  Hanford Formation/Cold Creek Unit silt transition 122-125

Interpretation of this laboratory study can be considered from several perspectives relevant to
supporting 200-DV-1 OU activities. Results for each contaminant were evaluated across all of the
samples to identify contaminant-specific conclusions and to enable consideration of how results from this
study may be relevant to other waste sites. Results were also evaluated with respect to conclusions
relevant to the specific waste sites included in the study. Lastly, study results were evaluated with respect
to updating CSMs and future evaluation of remedies, including the associated fate and transport
assessment needed as a basis for remedy evaluation.

The data and information from this laboratory study were interpreted to support the following
conclusions for each contaminant included in the study.

e Uranium

— Uranium concentrations were low in most samples; therefore, a significant fraction of the
uranium may be associated with natural background concentrations.

— The dominant form of uranium was as U(VI), supporting the conclusion that little uranium
reduction has occurred in these samples.

— For samples where uranium concentrations were elevated, only a small fraction of the uranium
was present in the agueous phase or in a form that would be transported in the aqueous phase
under equilibrium partitioning conditions. Most of the uranium was associated with precipitates,
and transport of uranium would be controlled by dissolution processes. This type of slow-release
transport behavior was observed in the batch and soil-column leaching experiments for samples
with higher uranium concentration.

— Uranium Ky values were varied across the different samples tested, with the highest K4 value
associated with the sample of the high carbonate Cold Creek Unit (CCU) material. Thus, in
transport assessments, selection of a Ky value for uranium should consider spatial variation of the
Kq value based on lithologic units and carbonate content. The CCU samples show the highest K4
values for uranium. Thus, carbonate content and smaller particle sizes are important to consider
for uranium Ky. Organic carbon content did not appear to be important, but was generally low in
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all samples. In terms of desorption versus adsorption Kq values, there was no clear trend across
all of the samples.

e Jodine

1-129 concentrations in the vadose zone were non-detect for all samples. Total iodine
concentrations were moderate and suitable for conducting attenuation and transport studies.
Because total iodine and 1-129 form the same chemical species, attenuation and transport
behavior for total iodine and 1-129 will be the same.

Total iodine speciation in the agueous phase was mostly dominated by iodide. However,
sequential extractions showed only a small fraction of the iodine was present in the aqueous
phase or in a form that would be transported in the aqueous phase under equilibrium partitioning
conditions. Most of the iodine was associated with precipitates (likely carbonates), and transport
of iodine in these precipitates would be controlled by dissolution processes. Speciation was not
possible in the carbonate precipitate extractions for the sequential extraction procedure, but it is
likely that the iodine present in these extractions was iodate because scientific literature has
shown co-precipitation of iodate and carbonates. The leaching experiments showed some slow-
release behavior of iodine that may be associated with these carbonate precipitates.

Total iodine Kq4 values show minimal sorption of iodide and moderate sorption of iodate. lodate
Kq values varied across the different samples tested, with the highest K4 values associated with
the samples with high carbonate concentrations. Thus, in transport assessments, selection of a Kq
value for iodate should consider spatial variation of the Ky value based on carbonate content.
Unlike uranium, the higher iodate Kq values are not all associated with CCU material (smaller
particle sizes). Organic carbon content did not appear to be important, but was generally low in
all samples. Transport of iodide and iodate through the vadose zone will be different, and
speciation should be considered when conducting transport assessments. Desorption K values
were mostly higher than adsorption K values in the batch experiments that were conducted.

e Tc-99

Tc-99 was not detected in any of the samples.

Tc-99 K, values determined in spiked-contaminant tests were minimal to low, and values varied
slightly across the different samples tested. However, the nominal retardation value for Tc-99
from these data would be close to 1. In batch testing, some of the desorption Ky values for Tc-99
were higher than the corresponding adsorption Ky values. Chemical reduction during the
experimental timeframe (up to 56 days total) may have contributed to the higher apparent
desorption Ky values, noting that reduction of Tc-99 by Hanford sediments has been observed in
the laboratory.

e Chromium

Cr(V1) was not detected in most samples and, when detected, was present at a low concentration.
Total chromium measured in acid extractions was likely from natural background.

Cr(VI) Kq values determined in spiked-contaminant tests were low, and values varied slightly
across the different samples tested. The measured Ky values generally increased with experiment
time (from 1 to 28 days). It is possible that all or some of this increase was due to Cr(VI)
reduction, which has been observed in laboratory experiments with Hanford sediment.
Desorption Ky values from batch experiments were all higher than adsorption values. However,
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some of the concentration changes in the batch desorption experiments (up to 56-day duration)
may have been due to some Cr(VI) reduction.

o Nitrate

Nitrate concentrations were high in all of the samples. Two samples showed very low nitrite
concentrations as a potential indicator of denitrification. However, nitrite concentrations were 4
to 5 orders-of-magnitude lower than nitrate concentrations, indicating that minimal reduction had
occurred.

Nitrate behavior in leaching experiments showed rapid elution, consistent with a minimal K4
value. The nominal retardation value for nitrate from these data would be close to 1.

The following conclusions were developed for the specific boreholes/waste sites analyzed in this

study.

e T-19

Samples for the laboratory study from the T-19 waste site (borehole C9507) were of CCU silt,
CCuU caliche, and Ringold (silty, sandy gravel) materials. These samples were from locations
well below the historical waste discharge and did not show signs of altered biogeochemistry
induced by the waste discharge, other than the presence of contaminants. Nitrate concentrations
were similar in all of the samples, indicating that waste fluids had penetrated to at least the depth
of the lowest sample. The pore-water pH was consistent with a carbonate-saturated system. The
highest uranium and (total) iodine concentrations were in the CCU caliche (high carbonate)
material, suggesting that uranium and iodine accumulated in this zone as the waste solution
passed through. Accumulation could be expected based on the observed high Kq4 value in this
unit and the potential formation of uranium- and iodine-carbonate precipitates. Thus, the CCU is
an important unit at this waste site for controlling contaminant transport. Tc-99 was not detected
in any of these samples. Cr(VI) was only detected at a very low concentration near the detection
limit in the CCU caliche sample.

Based on the data collected in this laboratory study, the following attenuation processes are
important at this waste site. Sorption processes are important for uranium and iodate, and to a
lesser extent for chromate and Tc-99. Formation of uranium- and iodate-carbonate precipitates
also appears to be an attenuation mechanism in T-19 borehole samples. Minor indications of
reduction were observed in one T-19 sample, and the potential for reduction through biotic or
abiotic (e.g., ferrous iron) mechanisms is present, though it would likely have limited effect on
future contaminant migration.

e T-25

The sample for the laboratory study from the T-25 waste site (borehole C9510) was of CCU silt
materials. The sample was from a location well below the historical waste discharge and did not
show signs of altered biogeochemistry induced by the waste discharge, other than the presence of
contaminants. The presence of high nitrate concentration indicates that waste fluids had
penetrated to at least the depth of the sample. The pore-water pH was consistent with a
carbonate-saturated system. The CCU silt had high carbonate content, though not as high as the
CCU caliche sample from the T-19 site. Uranium and total iodine were present at low
concentrations, though concentrations were sufficient for assessment of leachability. High Ky
values were measured for uranium and iodine, similar to the high K4 values measured for the T-
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19 CCU caliche sample that also had a large fraction of carbonate. Accumulation could be
expected based on the high observed Ky value in this unit and the potential formation of uranium-
and iodine-carbonate precipitates. Thus, the CCU silt is an important unit at this waste site
controlling contaminant transport. Tc-99 and Cr(VI) were not detected in any of the samples.

— Based on the data collected in this laboratory study, the following attenuation processes are
important at this waste site. Sorption processes are important for uranium and iodate, and to a
lesser extent for chromate and Tc-99. Formation of uranium- and iodate-carbonate precipitates
also appears to be an attenuation mechanism in T-25 borehole samples. The potential for
reduction through biotic or abiotic (e.g., ferrous iron) mechanisms is present, though it would
likely have limited effect on future contaminant migration.

e S-9

— Samples for the laboratory study from the S-9 waste site (borehole C9512) were of sandy
Hanford Formation and transition from Hanford to CCU silt materials. These samples were deep
below the historical waste discharge and did not show significant signs of altered
biogeochemistry induced by the waste discharge, other than the presence of contaminants.
However, the upper sample showed indication of potential reductive activity that, along with the
very high nitrate concentration, may indicate some waste solution effects at this depth. Nitrate
concentration was very high in the upper sample (the highest concentration of all samples in the
laboratory study), and was at a moderately high concentration in the lower sample, indicating that
waste fluids had penetrated to at least the depth of the lowest sample. The pore-water pH was
consistent with a carbonate-saturated system. The uranium concentration in the lower sample
was low, but was an order of magnitude higher than the uranium concentration in the upper
sample. Neither sample appeared to be elevated in carbonate. Tc-99 and Cr(VI) were not
detected in any of the samples.

— Based on the data collected in this laboratory study, the following attenuation processes are
important at this waste site. Sorption processes are important for uranium and iodate, and to a
lesser extent for chromate and Tc-99. Formation of uranium- and iodate-carbonate precipitates
also appears to be an attenuation mechanism in S-9 borehole samples. Minor indications of
reduction were observed in one S-9 sample and the potential for reduction through biotic or
abiotic (e.g., ferrous iron) is present, though it would likely have limited effect on future
contaminant migration.

The study provided a set of data that addressed the study objectives and can support future evaluation
of remedies, including MNA, and the associated fate and transport assessment that is needed as a basis for
remedy evaluations. The first objective was to jointly evaluate contaminant concentrations and the
biogeochemical and hydrologic setting for these data. This information provides a baseline for
interpreting attenuation and transport studies. As noted, there were significant variations in transport
parameter values and some attenuation mechanisms linked to specific sediment characteristics (e.g.,
carbonate content). For scaling and use of this information in fate and transport assessments, these
variations should be considered in light of the sample properties. For this study, the sample properties
were strongly linked to the sediment units sampled rather than waste stream properties. Thus, scaling and
use in future efforts can translate the attenuation and transport information from this laboratory study to
other waste sites based on the distribution of similar sediment units (e.g., the CCU silt and CCU caliche).
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Another objective of the study was to identify attenuation processes that appear to be active in these
samples and that will affect contaminant transport through the vadose zone. Sorption processes are
important for uranium and iodate, and to a lesser extent for chromate and Tc-99. Carbonate content
appeared to be important for uranium and iodate Ky. Accumulation in carbonate precipitates was
identified as an attenuation mechanism for uranium and iodate. Slow release of uranium and total iodine
was evident in leaching experiments. Geochemical signatures of reducing conditions were minimal or
non-existent in the samples. However, there was indication of potential catalysts for reductive processes,
including the presence of microbes and reduced iron and manganese phases. These reductive catalysts
may be responsible for some of the difficult-to-extract contaminant phases (e.g., precipitated phases)
observed in sequential extraction analysis. Attenuation mechanisms relevant to chromium and Tc-99
(other than sorption) could not be fully assessed because of the low/non-detect concentrations of these
contaminants.

A key objective of the study was to quantify attenuation and transport parameters to support
parameterization of fate and transport assessments. This type of assessment will be needed to evaluate
transport of contaminants through the vadose zone, to evaluate the coupled vadose zone-groundwater
system, and to assess the need for, magnitude of, and/or design of remediation. The contaminant- and
sample-specific values from stop-flow portions of soil-column experiments, batch leaching, and K
experiments provide a set of information that can be directly used to develop transport parameters. Soil-
column effluent concentration data can also be compared to one-dimensional simulations to assess fate
and transport model configurations for K, or for surface complexation models.

Collectively, the information from this laboratory study can be considered in terms of updating the
CSM for contaminants in the vadose zone. It can also provide input to describing the coupled vadose
zone-groundwater system that needs to be considered for remedy determinations. CSM elements from
this laboratory study are listed below. These elements will need to be incorporated with other data
collected during the 200-DV-1 OU remedial investigation as part of updating the CSMs for the 200-DV-1
OU component waste sites.

o Sequential extraction experiments (and more coarsely indicated by comparison of water- and acid-
extraction contaminant data) show that only a small fraction of the uranium and iodine mass in
samples is in a mobile form that would transport under equilibrium-partitioning conditions. Leaching
experiment results confirmed that slow-release processes affect the transport of these contaminants.
The relative amount of uranium and iodine mass in the mobile versus functionally immobile phases
affects the potential for future mass discharge from the vadose zone to the groundwater.

o Laboratory data suggest that formation and dissolution of uranium- and iodate-carbonate precipitates
is a potential attenuation mechanism affecting the relative mobile and immobile mass fractions and
the transport characteristics of uranium and iodine.

o Attenuation and sorption are not uniform in the vadose zone, especially for uranium and the iodate
form of iodine. Lithology (e.g., the presence and extent of layers such as the CCU) and carbonate
content affected the transport parameter values for these contaminants.

o For the waste sites included in this study, the effects of waste chemistry (e.g., altered sediment pH or
biogeochemistry), other than contaminant concentrations, did not penetrate deep into the vadose zone.
The biogeochemical signature of samples shows that transport evaluation at these waste sites will not
need to include properties modified by waste chemistry for the deep portion of the vadose zone.



SGW-61596, REV. 1

o While the CSM should acknowledge the potential for transformation processes (e.g., biotic or abiotic
reduction), minimal evidence was observed that these processes are active. However, biotic and
abiotic transformation may have occurred in the past and contributed to the currently observed
contaminant distribution within the sediment and pore water.

e Oxygen and hydrogen isotope data were collected and primarily show correlation to regional
precipitation with some variations from evaporative and condensation processes.

o It will be important to incorporate variations in physical property data into the CSM to augment
existing data and correlate to indirect measures of lithology (e.g., geophysical logging). Some
additional hydraulic property data were collected for this laboratory study and will be documented in
a separate report.

This laboratory study extended the characterization of the 200-DV-1 OU to include identification and
guantification of contaminant attenuation processes and parameters that will be needed to evaluate
transport of contaminants through the vadose zone into the groundwater. The data generated in this
laboratory study enable the site CSMs and transport analyses to be updated to reflect the observed
contaminant behavior. In addition, the laboratory study was structured to address the information
requirements for considering MNA as all or part of a remedy (i.e., EPA’s guidance document Use of
Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites') and can
be used as part of the technical defensibility for identifying attenuated transport through the vadose zone
within the remedial investigation and feasibility study for the 200-DV-1 OU.

LEPA. 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund
Sites. OSWER Directive 9283.1-36, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency
Response, Washington, D.C.
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1.0 Introduction

Contaminants disposed of at the land surface must migrate through the vadose zone before entering
groundwater. Processes that occur in the vadose zone can attenuate contaminant concentrations during
transport through the vadose zone. Thus, quantifying contaminant attenuation and contaminant transport
processes in the vadose zone, and the resulting temporal profile of contaminant discharge to the
underlying groundwater, are important for assessing the need for, and type of, remediation in the vadose
zone and groundwater. This type of information will enhance the existing conceptual site models (CSMs)
for the 200-DV-1 Operable Unit (OU) (Serne et al. 2010; CHPRC 2015a,b) in support of fate and
transport analysis and remedy evaluation.

Contaminant transport through the vadose zone beneath aqueous waste disposal sites is affected by
two types of attenuation processes: (1) attenuation caused by advective and dispersive factors related to
unsaturated water flow and (2) attenuation caused by biogeochemical reactions and/or physical/chemical
interaction with sediments (e.g., phenomena such as sorption, solubility control, and decay/degradation
that slow contaminant movement relative to water movement). Figure 1 summarizes the types of
attenuation mechanisms that may affect contaminant transport in the vadose zone. Note that Figure 1
includes waste fluid properties and chemistry because wastes at Hanford were typically released directly
to the vadose zone and attenuation may be affected by the nature of the waste material (e.g., Szecsody et
al. 2013; Truex et al. 2014).

Waste Fluid Properties Waste Chemistry Abiotic/Microbial Processes

— —  ——

Advective and Dispersive Processes || Decay/Degradation Sorption Solubility

Figure 1. Attenuation mechanisms (green font) for inorganic contaminants in the vadose zone and
factors that can impact attenuation (black font) (Truex et al. 2015a).

A framework to characterize these attenuation and transport processes is provided by U.S.
Environmental Protection Agency (EPA) guidance document Use of Monitored Natural Attenuation for
Inorganic Contaminants in Groundwater at Superfund Sites (EPA 2015). Additional information about
vadose zone attenuation processes reported by Truex and Carroll (2013) and Truex et al. (2015a) is also
relevant for characterization of the vadose zone. These documents point to approaches that can be
applied to identify and describe transport parameters for a vadose zone site.

The 200-DV-1 OU project is in the process of characterizing the vadose zone to support a remedial
investigation and feasibility study (DOE 2012, 2016). Through a data quality objectives process, specific
200-DV-1 waste sites were selected for evaluation of attenuation and transport processes for mobile
uranium, technetium-99 (Tc-99), iodine-129 (1-129), chromium, and nitrate contaminants. These waste
sites were selected based on the following factors:

e Waste stream inventory (radiological and/or chemical component)

¢ Waste stream differentiation (acid/base, volume, unique characteristics)
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o Disposal type (crib, trench, french drain, reverse well, etc.)

o Potential to obtain parameters from significant (site-specific) geologic units to fill data gaps in
transport parameters

The data quality objectives process also identified that the characterization of attenuation and
transport processes needed to include the following activities:

Evaluate contaminant and geochemical constituents in the samples

Identify interactions of contaminants with sediments

Quantify contaminant mobility

Evaluate factors controlling contaminant mobility

This report provides information for analyses on sediment samples from the S-Complex and T-
Complex portions of the 200-DV-1 OU. The samples were collected from the three borehole locations
depicted in Figure 2. Detailed description of these waste sites and boreholes is contained in the 200-DV-1
OU characterization planning documents (DOE 2012, 2016) and will be compiled in future 200-DV-1
characterization reports. This report focuses only on description of the analyses conducted on the samples
selected to assess attenuation and transport processes.
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Figure 2. Location of waste sites and boreholes where samples were obtained for this laboratory study
(adapted from DOE 2012).

This characterization information will be used to refine CSMs by enhancing the understanding of
controlling features and processes for transport of contaminants through the vadose zone to the
groundwater. The characterization approach was developed based on EPA (2015) guidance, identifying
specific objectives (Section 2.0) and types of laboratory analyses (Section 3.0) to conduct on sediment
samples. This report provides results and interpretation of these laboratory analyses from analysis of
samples collected in fiscal year 2016 (Section 4.0), recommendations for future analyses on these and
other samples (Section 5.0), and conclusions with respect to how these results are important for the
remedial investigation/feasibility study for the 200-DV-1 OU and associated contaminant fate and
transport assessment (Section 7.0). Quality assurance applied for this work is described in Section 6.0.
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2.0 Objectives

The specific types of data identified for inclusion in the laboratory study reported herein will provide
data and associated interpretation to support the following three objectives. These objectives are elements
of the framework identified in the EPA guidance (EPA 2015) for evaluating Monitored Natural
Attenuation (MNA) of inorganic contaminants, which directly supports development of suitable
contaminant transport parameters.

o Define the contaminant distribution and the hydrologic and biogeochemical setting
¢ |dentify attenuation processes and describe the associated attenuation mechanisms

o Quantify attenuation and transport parameters for use in evaluating remedies

These overall objectives led to a series of laboratory analyses designed to provide suitable data and
information. A phased approach was used for this effort to progressively gather more detailed
information based on initial results. This progressive/tiered approach is consistent with EPA MNA
guidance.

The information from these analyses will be used as input to evaluate the feasibility of MNA and

other remedies for the 200-DV-1 OU. The information from these analyses will also be used as input to
refine the CSM for the targeted vadose zone sites.
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3.0 Approach

Samples for the laboratory analyses were collected by CH2M Hill Plateau Remediation Company
(CHPRC) as part of the drilling campaign for the 200-DV-1 OU remedial investigation. Sets of samples
for each borehole included multiple sample intervals as potential targets for the analyses. The sample
handling procedures used upon sample delivery to the laboratory are described in Section 3.1. This
section also describes the selection of the specific sample intervals and the analyses selected for these
sample intervals. Laboratory and experimental methods were derived from the approaches described in
Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites
(EPA 2015). The laboratory analysis methods are presented in Section 3.2.

3.1 Sample Handling and Selection of Samples Intervals and
Associated Analyses

Pacific Northwest National Laboratory (PNNL) and CHPRC jointly selected samples for testing
through meetings that were held after all of the samples for a borehole were collected. The selected
samples from boreholes C9507, C9510, and C9512 are listed in Table 1. The samples were in 12-inch-
long liners within a 5-ft-long sonic core, except for samples B35461 and B35463 from the C9507
borehole (at the T-19 waste site). Sample B35461 was from the Ringold unit, where the sample recovery
was poor. CHPRC and PNNL identified a 5-ft liner with approximately 2 ft of the liner containing
sample material suitable for the laboratory analyses. The 2-ft section of this liner was received by PNNL.
This 2-ft-long portion of liner was cut into four 6-in. lengths and distributed for different types of
analyses. CHPRC and PNNL identified another 5-ft liner, sample B35461, with approximately 2 ft of the
liner containing an apparently intact sample suitable for intact hydraulic property measurement. The 5-ft
liner was received by PNNL. This liner was processed for intact hydraulic property assessment (along
with another sample), which will be described in a separate report.

The liner samples were shipped from the drilling site to the PNNL 331 Building, where they were
inspected, the chain of custodies were completed, and the samples were placed in a refrigerator (4°C).
Once selected, the sample liner for use in isotopic analyses was frozen, except as noted in Table 1 where a
subsample of liquid from a liner containing saturated sediment and free liquid was collected and frozen as
the sample for isotopic analysis. The nominal liner sample disposition plan within a 5-ft core sample is
shown in Figure 3. Target 5-ft cores selected for testing generally divide liners for specific types of tests
according to this plan. However, the plan was modified in some cases depending on the observed sample
recovery and initial inspection of material type within the liners by the PNNL-CHPRC technical team.
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Table 1. Sediment samples selected for analyses.

Borehole and Borehole Nominal Geologic Depth Interval
Liner Designation ID Sample ID Unit (ft bgs) Analysis (report section)
T19 core 14A C9507 B35432 CCUz 92.1-93.1 3.2.6
T19 core 14C C9507 B35434 CCuUz 94.1-95.1 3.2.2,3.2.3,324,325
T19 core 14D C9507 B35435 CCUz 95.1-96.1 3.2.1 (intact analysis,
separate report)
T19 core 16A C9507 B35441 CCUc 102.4-103.4 3.2.6
T19 core 16B C9507 B35442 CCUc 103.4-104.4 3.2.1
T19 core 16C C9507 B35443 CCUc 104.4-105.4 3.2.2,3.2.3,3.24,3.25
T-19 Ringold C9507 B35461/B36H08 Ringold 137.6-138.1 323,324,325
T-19 Ringold C9507 B35461/B36H08 Ringold 138.1-138.6 323,324,325
T-19 Ringold C9507 B35461/B36H08 Ringold 138.6-139.1 321
T-19 Ringold C9507 B35461/B36H08 Ringold 139.1-139.6 322,326
T-19 Ringold C9507 B35463 Ringold 142.6-147.7 3.2.1 (intact analysis,
separate report)
T-25 core 14A C9510 B361M7 H2/CCUz transition 112.3-113.3 3.2.6
T-25 core 14B C9510 B361M9 H2/CCUz transition 113.3-114.3 3.2.1
T-25 core 14C C9510 B361N1 H2/CCUz transition 114.3-115.3 3.2.2,3.2.3,3.24,3.25
S-9 core 8A C9512 B36173 H1/H2 62.2-63.2 3.2.6
S-9 core 8B C9512 B36175 H1/H2 63.2-64.2 3.2.1
S-9 core 8C C9512 B36177 H1/H2 64.2-65.2 3.2.2,323,324,325
S-9 core 20A C9512 B361D9 H2/CCUz transition 122-123 3.2.6
S-9 core 20B C9512 B361F1 H2/CCUz transition 123-124 321
S-9 core 20C C9512 B361F3 H2/CCUz transition 124-125 3.2.2,3.2.3,3.24,3.25
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Figure 3. Nominal schematic of analysis on specific core intervals.
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3.2 Laboratory Methods

Laboratory analyses were selected to evaluate attenuation processes and other factors affecting fate
and transport of contaminants in the vadose zone. These analyses were based on the characterization
approaches described for evaluating MNA of inorganic contaminants (EPA 2007a,b, 2010, 2015). The
analyses were selected to provide data to support interpretation of contaminant behavior in the vadose
zone, and will be used in conjunction with additional information produced by CHPRC as part of their
related characterization efforts at these and other vadose zone boreholes. The laboratory experimental
effort was organized using the following specific analysis objectives, which are related to the overall
objectives described in Section 2.0. The subsequent sections describe the laboratory methods applied for
each of the analysis objectives.

Analysis Objectives

1. Characterize the physical aspects of the sample that are used to evaluate pore water flow and provide
the sediment information needed to interpret and scale biogeochemical analysis results.

2. Characterize the microbial ecology in the samples, focusing on identification of the microbial
phenotypes that are present. This information will be used to interpret (1) microbial processes that
can directly affect the chemical form of the contaminant, (2) the microbial community’s relation to
geochemical processes affecting sediment surface phases and contaminant chemical form, and
(3) microbial processes related to sequestration or accumulation of contaminants.

3. Characterize the contaminant concentration, distribution, and, where appropriate, the oxidation-
reduction state and chemical form in the pore water and on sediment surfaces. This information
allows interpretation of contaminant mobility in the context of the biogeochemical system data.

4. Characterize the geochemical conditions in the pore water and on sediment surfaces to facilitate
interpretation of attenuation and transport processes. Information about elements and compounds in

the samples enables evaluation of biogeochemical processes related to the contaminant chemical form

and mobility.

5. Characterize the contaminant mobility using tests that impose specific conditions, and collect
temporal data for interpreting the mobility of the contaminant (e.g., by quantifying the rate of
contaminant transfer to the aqueous phase).

6. Determine the oxygen and hydrogen isotopic signature of the pore water for use in comparing to
existing data that may enable the source of the pore water within the sample to be evaluated.

3.2.1  Analysis Objective 1. Physical Characterization

Standard physical sediment analysis methods shown in Table 2 were applied as needed to meet

analysis objective number 1. Because of the long duration required for determining unsaturated hydraulic

properties, results of the hydraulic property evaluation will be presented in a separate report.
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Table 2. Physical sediment analysis methods.

Required Data Method Basis
Moisture content ASTM D2216-10
Intact-core dry bulk density, particle density and porosity ASTM D7263-09, D854-14
Intact-core air permeability ASTM D6539-13
Core particle size by sieve (4, 2, 1, 0.5 mm sieves) ASTM D6913-04
Core particle size by laser diffraction (< 0.5 mm) ASTM D4464-15
Lithology, texture, petrologic composition (sand, gravel, basalt, Geologist inspection of borehole samples

quartz) and photos

3.2.2  Analysis Objective 2: Microbial Ecology

Microbiological and molecular analyses performed on the soil samples are listed in Table 3. Two
categories of analyses were applied to evaluate the microbial ecology of the samples. The first category is
based on applying an extract of the sample to different types of microbial culturing media. Microbial
growth for these culturing media is measured and used to interpret the phenotypes of microbes present in
the sample. The second category is based on extracting genetic material from the sample, identifying the
genetic sequences present, and comparing these sequences to sequences in published databases to identify
the microbes present at the genus or species level.

Methods for enumeration of total microbial numbers, bacterial density, and total heterotrophs were
based on methods contained in the Standard Methods for the Examination of Water and Wastewater, 22™
Edition (Rice et al. 2012). Modifications for methods included verification of electron acceptor
utilization using methods from the literature. The quality approach used for gene quantification was
based on a guidance document from the EPA (2004).

Table 3. Microbiological and molecular methods.

Required Data Method Basis
Total microbial numbers APHA SM 9216A
Total heterotrophs APHA SM 9221C

Nitrate — Callos et al. 1999
Iron — Gould et al. 2003
Manganese — Grebel et al. 2016
Bacterial density APHA SM 9215A
Total heterotrophs
Anaerobic heterotrophs
Nitrate-reducing bacteria
Iron-reducing bacteria
Manganese-reducing bacteria

Overall phylogenetic diversity Argonne National Lab Next Generation Sequencing Core
Gene sequence information Facility Quality Assurance Policy
Bacterial identification Benson et al. 2015; Rehm et al. 2013; O’Leary et al. 2015;

Cole et al. 2013
APHA is American Public Health Association.
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3.2.3 Analysis Objective 3: Contaminant Concentration, Distribution and
Oxidation-Reduction State

Contaminant data were interpreted based on the elements and compounds present in the sample pore
water or on sediment surfaces. Contaminant information was obtained by the analyses listed in Table 12
(Section 3.2.7). However, specific types of extractions were applied to provide material for analysis. The
type of extraction and the concentration of the contaminant were both needed to interpret the contaminant
conditions. Extractions applied to evaluate the contaminant conditions are listed in Table 4. In addition,
alkaline extraction was conducted on sediment samples by EPA Method 3060A to provide material for
analysis of chromium.

Table 4. Extraction methods for contaminant analysis.

Required Data Method Basis
Water extraction (1:1 sediment:H,0) Um et al. 2009 and Zachara et al. 2007
Acid extraction (1:3 sediment:H,0, 8M Um et al. 2009 and Zachara et al. 2007
HNO3)
Sequential extractions: Gleyzes et al. 2002; Beckett 1989; Larner et al. 2006;
Artificial groundwater Sutherland and Tack 2002; Section 3.2.3.1

lon exchangeable
pH 5.0 acetate
pH 2.3 acetic acid
Oxalate, oxalic acid
8M HNO3, 95°C
1000-hour carbonate extraction Zachara et al. 2007; Kohler et al. 2004; Section 3.2.3.2

3.2.3.1 Sequential Extractions

Six sequential liquid extractions were conducted on a sediment sample. Extraction 1 is the aqueous
contaminant fraction, extraction 2 is the adsorbed contaminant fraction (ion exchangeable), extraction 3 is
the “rind-carbonate” contaminant fraction, extraction 4 is the total carbonate contaminant extraction
fraction, extraction 5 is the Fe-oxide contaminant fraction, and extraction 6 is defined as the hard-to-
extract contaminant fraction. These sequential extractions were conducted at a 1:2 sediment:liquid ratio
at room temperature (20°C to 25°C). The extractions used reagents 1 through 6 defined below.

o Reagent 1 - Artificial groundwater:

Concentration

Constituent (mM)
H,SiOs*nH,0, silicic acid 0.2
KCI, potassium chloride 0.11
MgCQO3, magnesium carbonate 0.15
NaCl, sodium chloride 0.26
CaS0,, calcium sulfate 0.49
CaCOs, calcium carbonate 15

Once the chemicals dissolved, an excess of calcium carbonate (CaCOs) was added to the solution and
allowed to mix. After approximately 1 week, excess CaCO; was filtered out using a 0.45-um filter.

o Reagent 2 - 0.5 mol/L Mg(NQOs),: 128.2 g Mg(NQ3),#6H,0 + 30 uL 2 mol/L NaOH to pH 8.0,
balance deionized (DI) H,O to 1.0 liter
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e Reagent 3 - Acetate solution: 136.1 g sodium acetatee3H,0 + 30 mL glacial acetic acid (17.4
mol/L), pH 5.0, balance DI H,O to 2.0 liters

e Reagent 4 - Acetic acid solution: concentrated glacial acetic acid, pH 2.3; 50.66 mL glacial acetic
acid (17.4 mol/L) + 47.2 g Ca(NOs),*4H,0, pH 2.3, balance DI H,0 to 2.0 liters

¢ Reagent 5 - Oxalate solution: 0.1 mol/L ammonium oxalate, 0.1 mol/L oxalic acid; 9.03 g
anhydrous oxalic acid + 14.2 g ammonium oxalate*H,0, balance DI H,O to 1.0 liter

¢ Reagent 6 - 8.0 mol/L HNOj3: 502 mL conc. HNOs (15.9 mol/L) + 498 mL DI H,0O

In the first extraction, 6 mL of artificial groundwater (reagent 1) is mixed with 3.0 (£0.5) g of
sediment for 50 minutes in a centrifuge tube. The tube is then centrifuged at 3000 rpm for 10 minutes,
and liquid is drawn off the top of the sediment and filtered (0.45 um) for analysis. Extractions 2 and 3 are
conducted with the same procedure except using reagents 2 and 3, respectively. The fourth extraction
uses the same procedure except with a contact time of 5 days and with use of reagent 4. The fifth
extraction is conducted the same as extraction 1 except using reagent 5. In the sixth extraction, 6 mL of
nitric acid (reagent 6) is added to the sediment and mixed for 2 hours at 95°C. The tube is then
centrifuged at 3000 rpm for 10 minutes, and liquid is drawn off the top of the sediment and filtered
(0.45 pm) for analysis.

3.2.3.2 1000-hour Carbonate Extraction

A carbonate solution (0.0144M NaHCO; + 0.0028M Na,COs (pH 9.3); 2.42 g NaHCO; + 0.592 ¢
Na,CO; + balance DI H,O to 2.0 liters) is used for the 1000-hour carbonate extractions (Kohler et al.
2004). Sediment (3.0 £ 0.5 g) and 6.0 mL of the carbonate solution were placed in 45-mL Teflon or
polycarbonate centrifuge tubes, mixed for 1000 hours at 6 rpm, and centrifuged at 3000 rpm for
10 minutes, and liquid was drawn off the top of the sediment and filtered (0.45 um) for analysis.

3.2.4  Analysis Objective 4. Geochemical Conditions

Geochemical conditions were interpreted based on the elements and compounds present in the sample
pore water or on sediment surfaces. The geochemical information was obtained by the analyses listed in
Table 12 (Section 3.2.7). However, specific types of extractions are applied to provide material for
analysis. The type of extraction and the concentration of the element/compound were both needed to
interpret the data in terms of the geochemical conditions. Extractions applied to evaluate the geochemical
conditions are listed in Table 5.
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Table 5. Extraction methods for geochemical analysis.

Required Data Method Basis
Water extraction (1:1 sediment: H,O) Um et al. 2009 and Zachara et al. 2007
Acid extraction (1:3 sediment:H,0, 8M Um et al. 2009 and Zachara et al. 2007
HNO3)
Sequential extractions: Gleyzes et al. 2002; Beckett 1989; Larner et al. 2006; Sutherland and
Artificial groundwater Tack 2002; Section 3.2.3.1

lon exchangeable
pH 5.0 acetate

pH 2.3 acetic acid
Oxalate, oxalic acid
8M HNO;3, 95°C

1000 h carbonate extraction Zachara et al. 2007; Kohler et al. 2004; Section 3.2.3.2
Iron/Mn phase extractions: Heron et al. 1994; Chao and Zhou 1983; and Hall et al. 1996; Section
lon exchangeable Fe(ll), Mn, 3.24.1

Oxide/sulfide,

Total Fe(ll), Fe(l11), Mn,
Amorphous- Fe(l1l), Mn-oxides,
Crys.-Fe(ll1), Mn-oxides

3.2.4.1 Iron and Manganese Extractions

Iron extractions were conducted to quantify ferrous iron, ferric iron, and manganese, which are

solubilized by different solutions. These extractions were conducted in an anoxic chamber.

For the first extraction, sediment samples (2.0 £ 0.5 g) were mixed with 10.0 mL of ion exchange
(1.0 M CacCl,) solution for 50 minutes at 6 rpm, centrifuged (3000 rpm, 10 minutes), and filtered
(0.45 um). The solution was then analyzed for Fe(ll) and Mn.

For the second extraction, sediment samples (2.0 = 0.5 g) were mixed with 10.0 mL of 0.5M HCI for
24 hours at 6 rpm, centrifuged (3000 rpm, 10 minutes), and filtered (0.45 pm). The solution was then
analyzed for Fe(Il) and Mn.

For the third extraction, sediment samples (2.0 + 0.5 g) were mixed with 10.0 mL of 5M HCI for 24
hours at 6 rpm, centrifuged (3000 rpm, 10 minutes), and filtered (0.45 um). The solution was then
analyzed for Fe(Il) and Mn. The solution was also analyzed for total Fe.

For the fourth extraction, sediment samples (2.0 £ 0.5 g) were mixed with 10.0 mL of 0.25M
NH,OH<HCI solution for 30 minutes at 50°C, centrifuged (3000 rpm, 10 minutes), and filtered (0.45
pm). The solution was then analyzed for total Fe and Mn.

For the fifth extraction, sediment samples (2.0 £ 0.5 g) were mixed with 10.0 mL of dithionite-citrate-
bicarbonate solution (0.3 mol/L Na-citrate, 1.0 mol/L NaHCOj3, and 0.06 mol/L sodium dithionite),
mixed for 30 minutes at 80°C, centrifuged (3000 rpm, 10 minutes), and filtered (0.45 um). The
solution was then analyzed for total Fe and Mn.
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3.2.5 Analysis Objective 5: Contaminant Release Rate from Sediment and
Mobility

Contaminant mobility was evaluated for some sediment samples (B35434, B35443, and B361N1;
Table 1) in batch and soil-column leaching tests that impose specific conditions and collect temporal data.
These tests expose contaminated sediment to an aqueous solution (simulated groundwater) and measure
changes in contaminant concentration over time under flowing or quiescent (batch) conditions (Table 6).
For the column tests, sequential extractions for contaminants (Section 3.2.3) were conducted on the post-
test sediments from the column for comparison to the pre-leaching results obtained on the sediments.
Because contaminant concentrations in some of the samples were low, and to augment the batch and
column leaching data, spiked contaminant experiments (batch and column) were also conducted for all of
the samples (Table 6). Contaminant and other geochemical constituent information from samples
collected during the tests were obtained by the analyses listed in Table 12 (Section 3.2.7).

Table 6. Contaminant mobility tests.

Required Data Method Basis
Batch-leaching test Szecsody et al. 1994; Section 3.2.5.1
1-D soil-column test Qafoku et al. 2004; Szecsody et al. 2013; Section 3.2.5.2
Spiked-contaminant tests Section 3.2.5.3

3.2.5.1 Batch-Leaching Test

Batch experiments used 50 g of sediment and 200 mL of air-saturated artificial groundwater placed in
a 250-mL polyethylene centrifuge bottle. The bottle was placed on a slow (12-rpm) linear mixer with
supernatant samples taken at 1, 10, 30, 100, 300, 1000 hours for analysis of the target contaminants.
Sampling consisted of (a) centrifuging the bottle at 3000 rpm for 10 minutes, (b) removing 5.0 mL from
the bottle, and (c) filtering the liquid (0.45 um).

3.25.2 Soil-Column Test

Soil-column experiments were conducted with one-dimensional, vertical, bottom-up flow of injected
simulated groundwater solution through contaminated sediment. The concentration of contaminant in the
effluent was measured. A non-sorbing, non-reactive tracer (bromide ion) was included in the injection
solution and its breakthrough was measured to assess column flow dynamics. The flow rate was set to
achieve a residence time of between 1 and 4 hours. Sampling frequency in the effluent was varied based
on typical contaminant elution dynamics with more dynamics present at earlier times (fewer pore
volumes).

Stop-flow events ranging from 10 to 1000 hours were conducted, during which the flow rate of
solution through the column was stopped to provide time for contaminants present in one or more surface
phases on the sediment surface to partition into pore water (i.e., diffusion from intraparticle pore space, or
time-dependent dissolution of precipitated phases, and/or desorption). Operationally, initiating a stop-
flow event involves turning off the pump and plugging both ends of the column (to prevent water
movement out of the sediment column). Ending a stop-flow event involves reconnecting the column to
the pump, turning on the effluent sample collector, and then turning on the pump. The calculation of the
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contaminant release rate from sediment (ng contaminant/g of sediment/day) uses the contaminant effluent
concentration before and after the stop-flow event, and the duration of the stop-flow event.

3.2.5.3 Spiked-Contaminant Tests

One objective of the 200-DV-1 OU vadose zone characterization program is to determine the
attenuation/transport parameters that can be used to evaluate contaminant transport. In some cases,
contaminants were present in samples in sufficient concentration that batch and column leaching
experiments (Sections 3.2.5.1 and 3.2.5.2) could be used to estimate transport parameters such as the
linear equilibrium partitioning coefficient (Kq) or other types of parameters that describe contaminant
transport behavior (e.g., based on modeling analysis of the results). However, some samples lacked
sufficient contaminant concentrations to conduct these leaching tests. For this reason, PNNL and CHPRC
determined that batch and column tests using samples spiked with contaminants should be conducted on
all of the sediment samples to provide a dataset useful for estimating the K  value or other types of
parameters that describe contaminant transport behavior (e.g., based on modeling analysis of the results).
Samples selected for the spiked-contaminant tests are listed in Table 7.

Table 7. Samples selected for spiked-contaminant analyses.

Borehole and Borehole Depth Interval
Liner Designation ID Sample ID Geologic Unit (ft bgs)
Spiked-Contaminant Batch Testing
T19 core 14C C9507 B35434 CCUz 94.1-95.1
T19 core 16C C9507 B35443 CCUc 104.4-105.4
T-19 137-139 C9507 B35461/B36H08 Ringold 137.6-138.6
T-25 core 14C C9510 B361N1 H2/CCUz transition 114.3-115.3
S-9 core 8C C9512 B36177 H1/H2 64.2-65.2
S-9 core 20C C9512 B361F3 H2/CCUz transition 124-125
Spiked-Contaminant Soil-Column Testing
T19 core 14C C9507 B35434 CCUz 94.1-95.1
T-19 137-139 C9507 B35461/B36H08 Ringold 137.6-138.6
S-9 core 20C C9512 B361F3 H2/CCUz transition 124-125

Specific chemical species of the contaminants were used in the adsorption/desorption Ky
measurements. For Tc-99, TcO4 was used. For iodine, both 1" and 103” were used. Uranyl nitrate was
added to provide uranium. For Cr, CrO,* was used. Stable I-127 at low concentrations was used as a
surrogate for 1-129 in these experiments.

Batch experiments used the solutions listed in Table 8 and Table 9.
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Table 8. Vadose zone pore-water simulant recipe (from Serne et al. 2015). Adjust pH to 7.0 to 7.2 with

sodium hydroxide or sulfuric acid.

Concentration

Constituent (mM)
CaS04*2H,0 12
NaCl 1.7
NaHCO; 0.4
NaNO; 3.4
MgSO, 2.6
MgClz*GHZO 2.4
KCI 0.7

Adjust pH to 7.0 to 7.2 with sodium

hydroxide or sulfuric acid

Table 9. Artificial (Hanford) groundwater.

Conc.

Constituent (mM)
H,SiOs*nH,0, silicic acid 0.20
KCI, potassium chloride 0.11
MgCO3, magnesium carbonate 0.15
NaCl, sodium chloride 0.26
CaS0,, calcium sulfate 0.49
CaCOs, calcium carbonate 1.50

For the Table 9 solution, the reagents were added to DI water. Once the chemicals dissolved, an

excess of calcium carbonate (CaCOs) was added to the solution to equilibrate with calcite while stirring.
After approximately 1 week, excess CaCO; was filtered out using a 0.45-um filter. The final pH was 7.5.

85,000, 170,000, and 850,000

After the solutions are prepared, they were spiked to reach targeted concentrations of contaminants
(Table 10). Additional concentrations were tested for sediments B35434 and B35461 (see parentheses,
Table 10). For Tc-99, 5, 10, and 50 pg/L equate to 85,000, 170,000, and 850,000 pCi/L, respectively.

Table 10. Contaminants and spike concentrations.

Contaminant Concentration in

Contaminant Concentration in

Simulated Groundwater

Contaminant Simulated Pore Water
Tc-99 50 pg/L (5, 10 pg/L)

Cr 500 ug/L (100, 1000 ug/L)

U 500 ug/L (100, 1000 pg/L)

I 100 pg/L (500, 1000 pg/L)

105 100 pg/L (500, 1000 pg/L)

50 pg/L (5, 10 pg/L)
500 pg/L (100, 1000 ug/L)
500 pg/L (100, 1000 ug/L)
100 pg/L (500, 1000 pg/L)
100 pg/L (500, 1000 pg/L)
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Spiked-contaminant batch adsorption/desorption experiments were conducted in 50-mL
polypropylene centrifuge tubes at room temperature (~22°C). The experiments were performed at a
solid-to-solution ratio of 2:3. The supernatant was sampled (filtered through a 0.45-um filter membrane)
for contaminant analysis (Table 11) at 1, 7, and 28 days of equilibration, with the experimental tubes
mounted horizontally on an orbital shaker at the slowest rotation speed possible. Batch experiments were
conducted in duplicate for each sampling time, each contaminant (*TcOy, I, 103, U, and CrO,%), and
each of the two solutions.

Table 11. Batch test supernatant analyses (specific methods per Table 12, Section 3.2.7).

Data and Instrumentation Constituents Analyzed
Metals by ICP-OES Al, Ba, Ca, Fe, K, Mg, Mn, Na, Si, Sr, Cr
U, Tc-99 by ICP-MS U, Tc-99
lodine by ICP-MS lodide, iodate, and total iodine
Anions by ion chromatography Br-, Cl-, F-, NO5* NO,, PO,3, 50,2
Aqgueous pH by electrode pH
ICP is inductively coupled plasma; MS is mass spectrometry; OES is optical emission
spectroscopy.

The desorption portion of the experiment was conducted by adding an amount of unspiked solution to
each of the centrifuge tubes that was equal to the amount of supernatant removed. The tube was vortexed
to mix well, equilibrated on an orbital shaker, and resampled at 28 days.

Soil-column experiments were conducted with one-dimensional, vertical, bottom-up flow of injected
simulated groundwater solution through the sediment. The breakthrough of contaminant concentration at
the effluent was compared to the influent contaminant concentration and the breakthrough of a non-
sorbing, non-reactive tracer (bromide ion). These data can be analyzed by one-dimensional flow analysis
to estimate an adsorption Ky. After contaminant breakthrough, the influent solution was switched to
contaminant-free solution. The subsequent elution of contaminant and decrease of the contaminant
concentrations in the effluent were then tracked. These data can be analyzed by one-dimensional flow
analysis to estimate a desorption Ky. One duplicate column experiment (using the same sediment) was
conducted for each batch of 20 samples.

3.2.6  Objective 6: Oxygen and Hydrogen Isotopic Signature of the Pore Water

Isotopic analysis for oxygen and hydrogen can be applied for water samples. Within the vadose zone,
however, much of a sample’s water remains bound to the surfaces of soil particles or contained within
pore spaces, making isotope measurement challenging. An extraction procedure was used to
guantitatively remove water from solid soil samples and ensure minimal isotopic fractionation during the
extraction and collection process.

A vacuum distillation apparatus was applied for extraction. This apparatus was constructed based on
slightly modified versions of those discussed in West et al. (2006) and Goebel and Lascano (2012). In
brief, a soil sample is added to one end of the system and then frozen to prevent water migration out of
the material. Once a vacuum is established, the sample is heated to drive off the native water, which is
collected into a cryogen trap cooled by liquid nitrogen. Once the extraction is complete, the water is
removed from this cryogen trap and its isotopic content can be analyzed on a separate instrument, offline
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from the extraction system. Extracted water extracted was analyzed for isotopic ratios using a PNNL
operating procedure (OP-DVZ-AFRI-002) for the analytical instrument.

3.2.7 Chemical Analysis Methods

Standard chemical analytical methods were applied to quantify elements and compounds that are
present in extraction solutions and temporal samples from the tests described in Section 3.2, as shown in
Table 12.

Table 12. Chemical analyses.

Analysis® Hold Time Constituents Analyzed Method Basis
Metals by ICP-OES 6 months Al, Ba, Ca, Fe, K, Mg, Mn, EPA 6010D
Na, Si, Sr, Cr
U, Tc-99 by ICP-MS 6 months U, Tc-99 EPA 6020B
lodine species by ICP-MS 6 months lodide, iodate PNNL-ESL-ICPMS-
iodine
Kinetic phosphorescence 6 months Ui Brina and Miller 1992
analysis
Cr(VI) 24 hrs Cr(VI) Hach 8023
Fe(ll) 24 hrs Fe(ll) Hach 8147
Br by electrode 28 days Br EPA 9211

Anions by ion chromatography  Nitrate, nitrite: each  CI', F, Br, NO;” NO,, PO,>,  EPA 9056A
48 hr; PO,: 48 hr SO~

pH by electrode Immediate (12 hr) pH EPA 9040C
Specific conductance (SpC) by  Immediate (12 hr) SpC EPA 9050A
electrode

Total carbon (TC) and total 28 days TCand TIC EPA 9060A

inorganic carbon (T1C)®

(@) Analyses were for aqueous samples except as noted footnote b.
(b) TC and TIC were also analyzed directly on sediment samples as an information-only analysis using
manufacturer procedures (SHIMADZU SSM-5000A procedure).
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4.0 Results

The laboratory analysis data are described below and interpreted in relation to the three main
objectives of the work (Section 2.0). These objectives were developed to be consistent with EPA
guidance for evaluating natural attenuation of contaminants, and to provide data and parameters that
support contaminant fate and transport assessments. The sections below present the data for each of the
three objectives. Quantification of hydraulic properties for selected samples is also being conducted to
support these objectives. However, because of the long-term nature of those tests, results of hydraulic
property evaluation will be provided in a separate report.

In Section 4.1, contaminant distribution data are presented in the context of the hydrologic and
biogeochemical setting. This information enables the data collected in this effort to be linked with the
200-DV-1 OU characterization data compiled by CHPRC. Collectively, this information is a foundation
for interpreting contaminant distribution, correlations between contaminant data and other types of data,
and the sediment conditions relevant for interpreting attenuation and transport parameters.

Section 4.2 presents and interprets data in terms of identifying contaminant attenuation processes and
the types of attenuation mechanisms that are suggested by these data. Some of these data quantify how
contaminants are distributed in different phases within the vadose zone. This distribution provides input
to interpretation of attenuation processes and contaminant mobility. Other data quantify contaminant
mobility based on batch or column experiments that measure the release rate of contaminants from a
sediment sample. Data quantifying the type and content of iron and manganese in the sediment are also
provided because several of the targeted contaminants are sensitive to redox reactions and iron oxides are
important for contaminant sorption.

Section 4.3 presents data and interpretations that support quantification of attenuation and transport
parameters. Batch and column experimental data provide information to estimate contaminant
partitioning and Kinetically controlled release rates from sediments. Because contaminant concentrations
were low in many of the sediment samples, results of spiked-contaminant experiments (batch and column
tests) are presented with quantification of contaminant partitioning from these tests. This report provides
an initial interpretation of attenuation and transport parameters. The data will also be useful for additional
interpretation by others through modeling of the results.

4.1 Contaminant Concentrations and Hydrologic and
Biogeochemical Setting

Several types of data provide information about the contaminant concentrations and the hydrologic
and biogeochemical setting for the sediment samples. Contaminant and geochemical constituent
concentrations were measured for sediments using water, acid, and/or alkaline extractions, where
appropriate. Microbial ecology was evaluated to identify the number and types of organisms present and
to provide information about the types of reactions they may catalyze. Characterization of iron and
manganese was conducted to assess the potential for redox reactions and iron-oxide sorption. Oxygen
and hydrogen isotopes were measured as a potential means to distinguish different sources of pore water.
Sediment physical properties were measured, photographs of the sediments were taken, and geologic
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material was classified. Collectively, this information defines the foundation for scaling and interpreting
attenuation and transport parameters for field applications.

411 Contaminants and Geochemical Constituents

Baseline analyses and associated sediment extractions are shown in Table 13. In these samples,
analyses for Tc-99 and 1-129 were all non-detect with nominal detections limits of 17 and 1.25 pCi/qg,
respectively. The full set of contaminant data collected for the sediment samples is shown in Table 14.
Note that for the purpose of evaluating iodine attenuation and transport behavior, this project used total
iodine data because its concentration is above the method detection limit. The samples were also
analyzed to determine the iodide and iodate concentrations in the sample because the transport properties
of iodide and iodate are different (e.g., Zhang et al. 2013; Truex et al. 2016). Unfortunately, matrix
interferences rendered determination of the speciation difficult, with results only reportable for two of the
samples. Chromium concentrations as measured by alkaline extraction or water extraction were low.
Only one sample had detectable Cr(V1) in the water extract and this value was near the detection limit.
Total chromium measurements for the water extract were non-detect for this same sample, although the
detection limit was higher than for the Cr(VI) measurement; dilution had to be applied for total chromium
measurement because of the high nitrate concentration in the samples. Data for geochemical constituents
are listed in Table 15.

Table 13. Baseline contaminant concentrations.

Technetium-99  Uranium  lodine-129  Chromium Nitrate
Sample Sample pCi/g dry ug/kg dry  pCi/g dry ug/kg dry ug/kg dry
Name Location (acid) (acid) (water) (alkaline) (water)
C9507-B35434 T19 14C (CCUz2) ND 784 ND 848 77,200
C9507-B35443 T19 16C (CCUc) ND 3890 ND ND 83,600
C9507-B35461 T19 138 ND 320 ND ND 95,800
(Ringold)
C9510-B361N1 T2514C ND 490 ND ND 6330
(H2/CCU)
C9512-B36177 S-9 8C (H1/2) ND 268 ND 657 235,000
C9512-B361F3 S-9 20C (H2) ND 293 ND ND 9350
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Contaminant concentrations in all of the samples were low except for moderate uranium
concentrations in one sample and high nitrate concentrations in all samples (although some samples had
much higher nitrate concentrations than other samples). Total iodine concentrations were moderate.
Although total iodine is not an identified contaminant of potential concern, its transport behavior is
expected to be the same as 1-129 and was of interest to enable evaluation of transport behavior and
parameters in these samples. Cr(V1) concentrations were low or not detectable. Chromium (total) was
measured in acid extractions and is likely natural chromium present in the sediment.

Because of the very low contaminant levels in three of the samples (B35461, B361F3, and B36177),
soil-column leaching studies were not conducted on these samples. Even though it was determined that
soil-column leaching could provide useful information for the other three samples (B35434, B35443, and
B361N1), contaminant concentrations in these samples were low to moderate. Thus, spiked-contaminant
studies were conducted for all of the samples. The sample with moderate uranium concentration was
from a portion of the CCU with a high carbonate concentration. High carbonate concentration may have
acted to retain uranium contamination as it migrated into this unit through formation of uranium
carbonate compounds. Sequential extraction tests described in Section 4.2 provide more information in
relation to the phase distribution of uranium contamination and other contaminants.

Geochemical indicators identified by the EPA MNA guidance are those associated with formation of
categories of precipitates that may affect contaminants, those associated with contaminant sorption (e.qg.,
iron oxides), and those associated with redox processes. Geochemical indicators are also used for joint
interpretation with biological characterization data (see Section 4.1.2). Geochemical data show similar
conditions in all samples except for higher carbonate content in samples B35443 (the highest content by a
significant amount) and B361N1, as indicated by high calcium concentrations in the acid extractions (and
high magnesium for B35443) and by the high total inorganic carbon in the sediment analyses.
Contaminants affected by carbonate concentration include uranium, iodine (iodate species), and Cr(VI)
(in the form of chromate). Two of the samples (B35434 and B36177) showed minor indications of
geochemically reduced conditions due to low sulfate concentrations and the presence of nitrite. Iron and
manganese concentrations in the water extracted for these samples were non-detect, although iron and
manganese could have been oxidized and precipitated as oxides during sample collection and handling.
Nitrite and sulfides would be more resistant to oxidation and may be remnant indicators of geochemically
reduced conditions in these samples. Reductive processes affect the fate and transport of uranium, Tc-99,
Cr(V1), iodine, and nitrate. Organic carbon was present in samples B35443, B361F3, and B36177,
though at generally low concentration. Organic carbon is important to consider in conjunction with the
biological system. These geochemical data will be considered with respect to interpreting the other types
of characterization data discussed below.

4.1.2 Microbial Ecology

The microbial ecology in the samples was evaluated using several types of analyses. Culturing
techniques provide information about the phenotype of microbes that are present and able to actively use
specific types of electron acceptors when electron donors are present. The data provide an estimate of the
population of each phenotype (i.e., nitrate reducers). However, the data do not indicate how active the
microbes are in situ, but indicate what types and existing populations of microbes can be active (i.e., are
present and alive). This information is important because use of electron acceptors such as nitrate, iron,
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and manganese by microbes changes the redox state and related chemical form of these materials. These
changes affect how these chemicals interact with contaminants or, in the case of nitrate, reduce its
concentration as a contaminant. Many microbes capable of using these electron acceptors have also been
shown to transform radionuclides, such as TC-99, uranium, and iodate. Genetic evaluation tools were
also applied. These tools compare genetic material from the sample to known bacterial phyla to identify
the microbes in the samples. By knowing the microbial phyla, literature information can be used to assess
what general type of reactions these microbes may catalyze.

Table 16 shows the results of sediment characterization using culturing techniques. Overall
distribution of phyla within four of the samples is shown in Figure 4. Two of the samples, both from
borehole S-9, did not show a response in the genetic analysis.

Table 16. Microbial phenotype results showing ability of bacteria to grow on a variety of electron
acceptors. Values indicate number of cells/g of sediment tested.

Colony
Borehole Depth Forming
Sample ID Designation (ft bgs) Oxygen Nitrate Iron Manganese Units

C9507- T19 14C 94.1-95.1 1,100 > 1,100,000 > 1,100,000 460 0
B35434 (CCU2)
C9507- T19 16C 104.4-105.4 460,000 > 1,100,000 1,100,000 20,000 4,100,000
B35443 (CCUc)
C9507- T19 138 138 240 11,000 > 1,100,000 > 1,100 0
B35461 (Ringold)
C9510- T25 14C 114.3-115.3 > 1,100 > 1,100,000 1,100,000 > 1,100 172,667
B361N1 (H2/CCU)
C9512- S-9 8C (H1/2) 64.2-65.2 > 1,100,000 210,000 1,100,000 240 117,000
B36177
C9512- S-9 20C (H2) 124-125 2,100 240,000 21,000 43,000 1,776,667
B361F3
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Figure 4. Relative abundance of bacterial phyla based on the 16S rRNA gene.

Most probable number (MPN) analysis was performed using a range of common electron acceptors
that may be found in the Hanford vadose zone, either as natural constituents of the minerals present (e.g.,
iron and manganese) or as contaminants (nitrate) introduced to the environment during waste disposal
activities. Total heterotrophs (provided as colony forming units) are another measure of aerobic bacteria
that may grow better on a solid surface. Bacteria in sediment from sample B35434 showed low numbers,
while in sample B35443, numbers of aerobic bacteria were high (4 x 10° to 4 x 10°). Number of aerobic
heterotrophs in the Ringold sediments (sample B35461) dropped to zero for total heterotrophs and 2.4 x
10° for MPN. Bacterial numbers in sample B35434 and sample B35461 may be low compared to the
number in sample B35443 because more moisture was present in sample B35443 (see Table 16). In
addition, TOC was highest in sample B35443, indicating bacteria may have had a potential carbon source
or that bacteria may have already grown on these sediments. Low bacterial numbers in sample B35461
may have also been affected by the non-standard core handling (e.g., storage at room temperature for a
period before shipment to the laboratory).

When compared to negative controls to which no sediment was added, sediment samples from
boreholes T19 (B35434 and B35443) and T25 (B361N1) showed cell densities for bacteria using nitrate
as the electron acceptor in numbers greater than 1 x 10° bacteria/g of sediment. Samples from the S9
borehole (B36177 and B361F3) showed slightly lower cell density at ~2.3 x 10° cells/g of sediment.
High numbers of bacteria able to grow in the presence of nitrate as a potential electron acceptor is not
surprising because high concentrations of nitrate were found in the sediments when extracted with water
(Table 14).
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In addition, growth was noted in treatments containing ferric iron as the electron acceptor, with
bacterial numbers exceeding 1 x 10° cells/g of sediment in most cores. Numbers of bacteria were only
2.1 x 10" for sample B361F3. Chemical analysis used to determine whether growth was associated with
reduction of the electron acceptor present indicated that bacteria were able to grow using nitrate as an
electron acceptor, but reduction to ferrous iron did not occur during growth on ferric iron with the
exception of sample B361F3, indicating that the bacteria may have been growing under fermentative
conditions. Extraction of ferrous and ferric iron (Table 17) showed higher levels of ferrous iron,
indicating that reduction events may have occurred previously. These results may explain why iron
reduction was not noted in most of the MPN tests containing ferric iron. Of the electron acceptors tested,
treatments with manganese showed the least growth, but the number of manganese reducers was the
highest in sample B35443, which also showed the highest moisture. In addition, this sample contained
the most Mn(IV) (Table 18), compared to the other samples tested.

Figure 4 shows that samples from all depths for borehole T19 (samples B35434, B35443, and
B35461) show a microbial community dominated by Proteobacteria, indicating that there is likely a range
of facultative anaerobes that should have the ability to use various inorganic, metal, and radionuclides as
electron acceptors. There are also significant numbers of Actinobacteria and Firmicutes, which also
contain facultative members. These phyla are also significant because when adverse conditions such as
decreased water are encountered, they can form spores that allow for survival for long periods.
Facultative anaerobes are able to grow in oxic as well as anoxic environments using alternate electron
acceptors such as nitrate. Phyla found in the samples also contain many bacterial species that are capable
of contaminant transformation, which ultimately could affect fate and transport. A diverse, more evenly
distributed community was present in the sample analyzed from borehole T25 (sample B361N1). This
sample also had Proteobacteria, which represented approximately 15% of the total community.
Interestingly, the T25 sample (B361N1) also contained a significant percentage of Archaea, which have
not commonly been encountered in Hanford sediments.

4.1.3 Iron and Manganese Characterization

Iron and manganese exist in multiple redox states and chemical forms in the subsurface. The relative
distribution of iron and manganese in different forms provides insight into the sorptive and reactive
capacity of the sediments. A series of extractions with measurement of iron and manganese was
conducted to characterize the sediments using extraction techniques identified in scientific literature (and
referred to in EPA MNA guidance [EPA 2015]).

Table 17 and Table 18 show the results of the extractions and iron and manganese analyses,
respectively. For context, the information is also plotted, showing the relative portions of different iron
forms and the relative amount of redox-active iron and ferrous iron phases (Figure 5a) and Mn phases
(Figure 5b).
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Table 17. Ferrous and ferric iron phases in sediments based on liquid extractions.

Fe''CO,, Other Total
Sample Sample ads. Fe" FeS Fe" am. Fe"'  crys. Fe"'  Other Fe""  Fe'™!"
Name Location (mg/g) (mg/g) (mg/g) (mg/g) (mg/g) (mg/g) (mg/g)
C9507- T1914C < 1.20E-3 0.316 5.25 0.0195 0.549 13.8 19.4
B35434 (CCUz)
C9507- T1916C <1.20E-3 <1.20E-3 7.24 < 1.20E-3 0.061 6.90 14.1
B35443 (CCUc)
C9507- T19 138" < 1.20E-3 3.92 5.50 0.1852 0.327 19.2 28.6
B35461 (Ringold)
C9510- T2514C <1.20E-3 <1.20E-3 9.57 0.0086 0.286 13.8 23.4
B361N1 (H2/CCU)
C9512- S-98C <1.20E-3 0.991 4.18 0.0414 0.228 11.1 16.3
B36177 (H1/2)
C9512- S-920C < 1.20E-3 1.22 4.98 0.0382 0.640 14.6 20.8
B361F3 (H2)
C9512- S-9 20C < 1.20E-3 1.22 4.80 0.0351 0.632 13.9 19.9
B361F3 (H2)
ads. = adsorbed, am. = amorphous, crys. = crystalline
Table 18. Manganese phases in sediments based on liquid extractions.
crys. Other Total
Sample Sample ads. Mn"  Mn"CO; am.Mn™V  Mmn'"*V Mn'*V Mn'*V
Name Location (mg/q) (mg/q) (mg/q) (mg/q) (mg/q) (mg/g)
C9507- T19 14C 4.71E-03 0.155 9.20E-02 1.35E-02 0.045 0.306
B35434 (CCUz)
C9507- T19 16C < 1.20E-3 2.78E-03 1.93E-03 5.66E-03 0.153 0.163
B35443 (CCUc)
C9507- T19 138 1.86E-03 0.133 7.89E-02 < 1.20E-3 0.117 0.328
B35461 (Ringold)
C9510- T25 14C < 1.20E-3 3.07E-02 6.02E-02 1.91E-03 0.140 0.232
B361N1 (H2/CCU)
C9512- S-98C < 1.20E-3 0.145 1.52E-01 < 1.20E-3 < 1.20E-3 0.246
B36177 (H1/2)
C9512- S-920C < 1.20E-3 0.120 7.02E-02 < 1.20E-3 0.077 0.267
B361F3 (H2)
C9512- S-9 20C < 1.20E-3 0.116 6.73E-02 < 1.20E-3 0.072 0.255
B361F3 (H2)

ads. = adsorbed, am. = amorphous, crys. = crystalline

D-47



SGW-61596, REV. 1

1T19 T19 T19 T25 S9 s9 1T19 T19 T19 T25 S9 S9
30-| 14Cc 16C 138 14C 8C 20C 114C¢ 16C 14C 8C 20C
CCUzCCUc| R | HZ2, H1, (dup) 0.3 (dup.)

CCu Hz2 H2

X
T

Iron (mg/g)
Mn (mg/g)

—
T

[ion exch. Mn"

M ion exch. Fe" B am. Fe™ M Mn"coz
[ Fecos, Fes W crys. Fe™ [ am. Mnn;{ww
O other Fe" B other Fe™ E crys. Mn VY
Il other Mn
(@) (b)

Figure 5. Iron (a) and manganese (b) surface phase distributions in sediments, based on liquid
extractions.

Iron and manganese extractions were conducted to characterize the potential for contaminant redox
reactions in the sediments. Sediments contained a total of 14 to 28 mg/g extractable iron, based on a
3-week 5M HCI extraction. Hanford, Ringold, and Cold Creek formation sediments contain a mixture of
mafic (i.e., sediments derived from basalt) and granitic minerals, with mafic minerals (pyroxenes,
amphiboles) and clay minerals containing significant Fe and Mn phases (Table 19). The amorphous and
crystalline ferric iron oxide extractions (orange and light red, Figure 5a) show that a small fraction of the
total ferrous iron in the sediment is more readily dissolved oxides (and available for microbial iron
reduction), whereas the majority of ferrous iron was likely in pyroxene and amphibole phases. Ferrous
phases accounted for 25% to 40% of the total iron (green bars in Figure 5a), with little adsorbed ferrous
iron (dark green, see Table 17), minor ferrous iron in carbonates/sulfides (light green), some of which is
redox reactive, and the remaining ferrous iron in unidentified phases (likely in clays). Although all of
these sediments are from the vadose zone, some abiotic reduction can occur under water-saturated
conditions (Szecsody et al. 2014) due to the availability of ferrous iron from carbonates/sulfides.
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Table 19. Summary of Hanford mineralogy (after Xue et al. 2003).

Both Fm Hanford Fm Ringold Fm
Mineral Formula (% wt) (% wt) (% wt)
Quartz SiO, 37.7+124 38.4+12.8 37.03+£12.4
Microcline KAISi;Oq 17.0+6.7 15.3+4.4 18.7+8.0
Plagioclase ~ NaAlSi;Og-CaAl,Si,0g 18.7+7.7 222+72 155+6.8
Pyroxenes (Ca,Mg,Fe)Si,04 3.03+5.99 5.01+7.83 1.14+2.52
Calcite CaCO; 497 +7.19 1.91+1.71 0.68 + 0.92
Magnetite FesO, 5.09 + 4.37 4.46 +4.12 5.68 + 4.63
Amphiboles  Ca,(Mg, Fe, Al)s (Al, Si)g02(0H), 5.55 + 5.97 5.46 + 5.67 5.64 + 6.40
Apatite Cay(PO4)s(OH), 0.60 + 1.04 0.52+0.92 0.67 +1.16
Mica® (K, Na,Ca)(Al, Mg, Fe),.3 2.07 £4.47 2.46 £3.74 1.71+5.15
(S1,Al)4019(0, F, OH),

llmenite FeTiO, 2.51+2.66 1.28+1.51 3.67 £ 3.00
Epidote {Ca,}{AlFe**}[O|OH|SiO,Si,0;] 1.65+2.98 1.78 +£3.75 1.52+2.14

(a) Muscovite, biotite, phlogopite, lepidolite, clintonite, illite, phengite

Although the total manganese (Il and 1V) extracted from the sediment (0.16 to 0.33 mg/g) was ~1-2%
of the total iron in the sediment, there was a greater fraction of potentially redox reactive Mn"". The
fraction of ion exchangeable Mn" was small (ranging from below detection limits to 4.7 pg/g), but the
Mn" associated with carbonates (0.003 to 0.16 mg/g) was significant. Mn" phases were 20% to 55% of
the total Mn.

4.1.4  Oxygen and Hydrogen Isotopes

Isotopic analysis for oxygen and hydrogen are developed and applied for multiple purposes (Prudic et
al. 1997). For instance, the stable isotopes of water (5°H [deuterium] and 820 [18-oxygen]) can be used
to assist with tracking of underground contaminant plumes or linking a source to a measured water
sample. For the 200-DV-1 OU, the pore water in the vadose zone is a mixture of water from previous
natural recharge and the anthropogenic water discharges of waste streams. Isotopic data was collected to
assess whether the signatures from different areas can be correlated to mixtures of different types of water
sources. As shown in Table 20, this section includes data for sediment samples collected from the S- and
T-Complexes (borehole C9507 [T-19 waste site], borehole C9510 [T-25 waste site], and borehole C9512
[S-9 waste site]). To assist interpretation, plots include data for sediment samples from the B-Complex
(Szecsody et al. 2017, borehole C9552 [BY Cribs waste site], borehole C9487 [B7-AB waste site], and
borehole C9488 [B-8 waste site]) and for water samples from the perched-water aquifer in the B-Complex
(Lee etal. 2017).
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Table 20. Sediment samples selected for analyses and isotope data values (outliers removed).

Depth
Borehole and Borehole ~ Sample Nominal Interval Data 50 8°H

Liner Designation ID ID Geologic Unit (ft bgs) Source (%) (%0)

T19 14A C9507 B35432 CCUz 92.1-93.1 This report  -19.36 (2.0) -145.5 (7.8)

T19 16A C9507 B35441 CCUc 102.4-103.4 Thisreport  -17.54 (1.0) -135.1 (6.0)

T-19 Ringold C9507 B35461 Ringold 139.1-139.6 Thisreport  -15.33 (0.3) -123.9 (1.1)

T-25 14A C9510 B361M7 H2/CCUz 112.3-113.3 This report  -17.16 (0.2) -138.0 (0.9)

S-9 8A C9512 B36173 H1/H2 62.2-63.2 Thisreport  -21.05 (2.7) -146.7 (11.5)

S-9 20A C9512 B361D9 H2/CCUz 122-123 This report  -20.54 (1.1) -143.5 (6.2)

BY Cribs 13A C9552 B341B1 H2 102.2-103.2 Szecsody et -13.48 (0.2) -128.3 (1.0)
al. (2017)

BY Cribs 18A C9552 B341C1 H2 127.3-128.3 Szecsody et -15.13 (1.1) -134.9 (3.3)
al. (2017)

BY Cribs 19A C9552 B341C3 H2 132.1-133.1 Szecsody et -14.18 (0.4) -130.3 (0.9)
al. (2017)

BY Cribs 30A C9552 B34H74 CCuUg 192.2-193.2 Szecsody et -16.43 (0.9) -145.0 (5.7)
al. (2017)

B7-AB 17A C9487 B34WB1 H2 132.1-133.1 Szecsody et -19.24 (0.1) -143.3 (0.1)
al. (2017)

B7-AB 35D C9487 B34WHS8 H2/CCUz 220.0-221.0 Szecsodyet -18.11(1.8) -141.8 (9.7)
al. (2017)

B7-AB Opt. 12C C9487 B354L1 CCUz 227.2-227.7 Szecsody et -16.19 (0.5) -127.0 (1.4)
al. (2017)

B7-AB Opt. 14C C9487 B354M3 CCUz 232.0-233.0 Szecsodyet -17.73(0.9) -135.4 (3.5)
al. (2017)

B-8 37B C9488 B355L8 CCUz 2225-2255 Szecsodyet -16.09 (0.9) -129.4 (5.6)
al. (2017)

Perched Water NA NA Well Samples NA Leeetal. Lee etal. Lee et al.

(2017) (2017) (2017)

Isotopic ratios for deuterium and 18-oxygen are reported in delta (8) notation, defined as

6= ( Rsa 1) 1000
~ \Rstd X
where R is the ratio of the abundance of the heavy to light isotope (i.e. ?H/*H, *80/*°0), sa denotes the
sample, and std indicates the standard (McKinney et al. 1950). Delta values are reported in per mil (%o),
with 8°H and 80 values relative to Vienna Standard Mean Ocean Water (8°H = 0%o, 520 = 0%o).

Isotopic analysis for oxygen and hydrogen are typically plotted as shown in Figure 6, which also
shows the global meteoric water line (Craig 1961), an assembled regional meteoric water line (Graham
1983), and the rough isotope region reported for Columbia River surface water at this location (Spane and
Webber 1995) for comparison to the values of water extracted and measured in this study. Error bars
correlate to the standard deviation resulting from a minimum of triplicate extraction replicates each
isotopically analyzed using multiple analytical replicates (n>9). All data is shown in Figure 6a while
Figure 6b contains a culled data set in which a Modified Thompson Tau test was used to eliminate
outliers in the data that may have resulted from a combination of inherent sample heterogeneity and/or
inefficient water extraction. Note that while this statistical application may have reduced the size of
associated error bars, the overall trends discussed below remain intact. As such, the additional data
discussion is based on the revised data set resulting from the statistical rejection of outlier data points (at
the 95% confidence interval). In addition to the vadose zone sediment samples analyzed, isotopic ratios
are plotted for water extracted from the perched-water aquifer in the B-Complex (errors bars correlate to
the standard deviation of the analytical replicates, n>9).
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The global meteoric water line (Craig 1961) shows the average relationship, worldwide, between 5°H
and 8'%0 in natural terrestrial waters (e.g., rivers, lakes) and precipitation. The deviation between the
local and global meteoric water lines is attributed to evaporative processes coupled to the typically short
precipitation durations and semi-arid nature of the local region (Graham 1983). There is overlap between
the local meteoric water correlation for each of the extracted water samples and nearly all of the perched
water samples, suggesting close connection between regional precipitation and the samples. There is also
an interesting relationship between the data from boreholes containing three or more data points (C9507,
C9552 [Szecsody et al. 2017], and C9487 [Szecsody et al. 2017]). In each of these cases, the data show
strong correlation between the two isotopes (R® of 1.00, 0.97, and 0.91 respectively) as would be
expected, and the linear fit to each of these data sets show a show respective slopes of 5.46, 5.74, and
5.62. These relationships show strong connection to both previous measurements of vadose zone water
(DePaolo et al. 2004; identified a slope of ~5) and to the regional meteoric precipitation line (slope of
~5.8). More revealing, however, is the offset between sample data sets whereby samples from C9552
(Szecsody et al. 2017) are noticeably shifted to the right in the isotope plots, likely indicating more
extensive evaporation history in these samples than in the others.

A trend was observed between the measured vadose zone samples and depth (Figure 7), but there are
different behaviors of this trend in different boreholes. For instance, in the T- and S-Complex samples,
the total data set displayed a correlation with R? of only 0.42; removal of just point B361D9 increased this
correlation to R? of 0.96 and the three samples within core C9507 T19 also showed a strong correlation
with depth (R? of 0.96). The trend toward isotopic enrichment (less negative values) with increased
sample depth apparent in the vadose zone samples is qualitatively consistent with the observations of
Hearn et al. (1989), who cited upwelling of isotopically enriched deeper waters for this trend in their
analyses. However, the much shallower nature of these samples (<45 m compared to >1200 m) combined
with the nature of vadose versus groundwater samples make it difficult to invoke a similar mechanism
here. It is possible, however, that barometric mixing effects (similar to those described by Spane [1999])
induced mixing of underlying groundwater vapor with overlaying vadose zone water.

In contrast, DePaolo et al. (2004) suggest that strong evaporative effects in upper Hanford soil
columns can create significant (e.g., 2-6 %o shift in '°0) isotopic enrichment in resulting vadose zone
moisture. This mechanism likely helps explain the enriched isotope values observed in samples from
C9552 and C9488 (Szecsody et al. 2017). This effect is generally confined to only the upper couple
meters (or less) of soil. While slight isotopic enrichment may be expected compared to precipitation
values below this surface enrichment, that process would not account for the more depleted values being
found at shallow depths within the C9507 (T19) borehole. In a core exhumed from the 200 West Area in
1999, DePaolo et al. (2004) also observed a negative isotopic anomaly in water extracted from a surface
to groundwater depth profile. They attributed this excursion to leaking industrial process water that
subsequently focused at the boundary of a coarser grained layer underlain by a finer grained layer. While
a similar mechanism considered here would be consistent with the negative isotopic values observed in
sample B35432, a more continuous depth profile would be required to validate this hypothesis.
Interestingly, samples B35441 (Szecsody et al. 2017), B35461/B36H08, and B361M7 (Szecsody et al.
2017) are consistent with the absolute isotopic values DePaolo et al. (2004) observed in their study, but
samples including B36173 and B361D9 (both from borehole C9512 S9) are isotopically depleted in
comparison to this previous study. Winter precipitation is known to have a more depleted isotopic
composition but ranges around a 820 of ~ -18%o and 8°H of ~ -138%. (DePaolo et al. 2004), so
seasonality on its own cannot explain these data.
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These observations are more confounding in that evaporative enrichment (e.g., observed by DePaolo
et al. [2004] and Singleton et al. [2004]) typically propagates down core, thus isotopically enriching the
entire core. Evidence of this is seen in the perched water data whereby these samples show isotopic
enrichment consistent with near-surface evaporative processes (Lee et al. 2017). A potential hypothesis
for explaining the depletion of the C9512 S9 samples may rest in release of industrial condensate
generated from intentional evaporitic enrichment of wastes to reduce their volumes. As noted in
DOE/RL-92-93 (DOE 1992), such condensate would exhibit an isotopic depletion as an inverse to the
enrichment observed in residual fluid following evaporation (as would be required by conservation of
mass). Discharge of industrial condensate in the vicinity of C9512 S9 could potentially explain both the
inherent depleted isotopic content of these samples as well as the deviation of these samples from the
more generalized correlation between §'°0 versus depth; large-scale release of industrial condensate
would likely overprint existing isotopic trends within the vadose depth profile. In support of this, there is
noted historical release of process condensate from the D-2 receiver tank within the 202-S Building that
resulted from condensation of evaporate used to concentrate decontamination waste at this location (DOE
2016). The sharp negative isotope deviation in vadose zone water within this location could represent an
isotopic signature of this process that may be a useful for tracking regional migration of the resulting
plume. A similar process may also contribute to the most extreme isotopic signature within the C9507
T19 borehole, notably B35432, as there was noted release of process and steam condensate from the 242
T evaporator in this region but also release of additional tank waste and waste supernate (DOE 2016). It
is unclear whether a similar mechanism can explain the depleted isotope signatures in C9487 (specifically
B34WBL1 [Szecsody et al. 2017]), but it remains a leading hypothesis regarding the extracted water in this
sample having an isotopic composition more depleted than annual precipitation extremes or observed
groundwater.

The isotope measurements of the S- and T-Complex samples were plotted against measured nitrate
concentrations (Figure 8). Two immediate features were observed. First, there is a linear relationship
between the nitrate concentration and isotope data that also correlates to increasing depth in the borehole.
The patterns seen in C9507 T19 are in contrast to the data from C9512 S9, however, which shows
minimal variation in isotope values or nitrate over a fairly large vertical column (~60 ft).

Taken together, the stable isotope data provide a few interesting observations on these systems. First,
most boreholes having multiple data points show covariance of the two measured isotopes, suggesting
strong input from regional precipitation (e.g., C9507 T19, C9487 [Szecsody et al. 2017], C9552
[Szecsody et al. 2017], and the suite of perched water samples [Lee et al. 2017]). While each of these
data sets shows isotopic signatures associated with evaporation, samples from C9552 (Szecsody et al.
2017) show a significant increase in this feature, suggesting a stronger evaporative history than in the
other samples. In contrast to evaporative enrichment, some samples show negative isotope excursions
suggestive of inclusion of condensate-derived moisture in the vadose zone. While this is most notable in
samples B36173 and B361D9, the mechanism may also help explain observations from samples from the
C9507 T19 and C9487 (Szecsody et al. 2017) boreholes.
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Figure 6. Isotope data for vadose zone sediment and perched water analyses. (A) Data resulting from the
full data set. (B) Data refined by a Modified Thompson Tau test to remove outlier points

(continued on next page). Depiction of winter precipitation is after DePaolo et al. (2004) with
a nominal value of 6180 of ~ -18%o and 62H of ~ -138%o.
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Figure 6 (continued). Isotope data for vadose zone sediment and perched water analyses. (A) Data
resulting from the full data set. (B) Data refined by a Modified Thompson Tau test to remove
outlier points. Depiction of winter precipitation is after DePaolo et al. (2004) with a nominal
value of 3180 of ~ -18%o and 62H of ~ -138%o.
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Figure 7. 80 relating to sample depth, average local winter precipitation, and local shallow
groundwater within the Hanford Site: (A) sample data from the T- and S-Complexes, and (B)
sample data from the B-Complex.
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Figure 8. Correlation of isotopic (8°H and 8*0) analysis and measured nitrate concentration from T- and
S-Complex samples.

415 Sediment Physical Characterization

Physical characterization was conducted to define the hydrogeologic context for the observed
contaminant and biogeochemical data. Fundamental information includes a geologist log and associated
core pictures, and sediment physical properties (particle size distribution, particle and bulk density,
moisture content, and porosity). Air permeability was measured to provide an indication of relative
differences in permeability between samples. Detailed hydraulic characterization, including saturated and
unsaturated hydraulic properties, was also conducted, but will be described in a separate report. The
physical data reported here are descriptive for each individual sample. However, full interpretation is best
conducted by considering the data for these samples in the context of data from other samples in the
vadose zone. That broader interpretation will be conducted by CHPRC as part of their overall CSM
efforts for the 200-DV-1 OU.

Core pictures are shown in Figure 9 through Figure 13. The geologist logs for these samples are
included in Appendix A. Table 21 is a summary of the physical sediment characterization for these
samples. Plots of the particle size distributions are shown in Figure 14 through Figure 18. Note that the
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physical properties for two additional samples (B35435 and B35463, Table 1) will be determined and
reported as part of the hydraulic property analysis report

AT

.-Q" sl L I.’-'

Figure 9. Photograph of sample B35442 (Core C9507, liner 16B, CCUc sediment sample).

Figure 10. Photograph of sample B35461 (Core C9507, Ringold sediment sample).
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Figure 12. Photograph of sample B36175 (Core C9512, liner 8B, H1/H2 sample).
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Figure 13. Photograph of sample B361F1 (Core C9512, liner 20B, H2/CCUz sample).

Table 21. Summary of measured physical properties.

T19 16B T19 138 T25 14B S-98B S-9 20B
(CCUc) (Ringold) (H2/CCuU) (H1/2) (H2)
C9507- C9507- C9510- C9512- C9512-
Column Parameters Units B35442 B35461 B361M9 B36175 B361F1
Diameter cm 8.89 8.89 8.89 8.89 8.89
Length cm 30.897 15.75 30.4754 30.685 29.257
Core volume mL 1917.833 977.631 1891.663 1904.674 1816.035
Gravimetric moisture content a/g 0.154 0.027 0.064 0.025 0.030
Volumetric moisture content ~ m%m? 0.270 0.059 0.132 0.044 0.050
Bulk density glem® 1.754 2.215 2.066 1.747 1.639
Particle density glem? 2.739 2.754 2.739 2.624 2.652
Porosity m*/m® 0.360 0.196 0.246 0.334 0.382
Air permeability darcy 0.053 0.059 3.935 0.779
Gravel % 36.317 77.589 11.545 1.308 0.530
Sand % 40.309 15.729 59.354 90.109 81.081
Silt % 16.612 5.601 21.647 8.569 18.328
Clay/mud % 6.763 1.082 7.456 0.015 0.062
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Figure 14. Particle size distribution of sample B35442 (Core C9507, liner 16B, CCUc sediment sample).
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Figure 15. Particle size distribution of sample B35461 (Core C9507, Ringold sediment sample).
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Figure 16. Particle size distribution of sample B361M9 (Core C9510, liner 14B, H2/CCUz sample).
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Figure 17. Particle size distribution of sample B36175 (Core C9512, liner 8B, H1/H2 sample).
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Figure 18. Particle size distribution of sample B361F1 (Core C9512, liner 20B, H2/CCUz sample).

The physical data characterize the basic hydrogeologic setting for each sample. The set of samples
analyzed for this report represents a diverse set of hydrogeologic settings relevant to contaminant
attenuation and transport in the Hanford Central Plateau vadose zone and important lithologic features for
each targeted borehole (waste site). Additional information on hydraulic properties and physical
properties for two additional samples will be reported separately.

4.2 Observation of Attenuation Processes

Identifying attenuation processes involves collecting data that can be used to demonstrate whether
contaminants have interacted with sediments in a way that changes their mobility. One type of data is
from sequential extractions (Table 22). In this process, a sediment sample is sequentially exposed to
harsher extraction solutions and the contaminant concentration in each solution is measured. These data
show how the contaminant mass in a sediment sample is distributed among water and different sediment-
associated phases. Analysis for geochemical constituents was also conducted for each extraction solution
to help interpret the types of sediment constituents mobilized or dissolved by each solution for the
specific sediment sample. Speciation of iodine as iodide and iodate was also measured. However,
interference from the matrix hindered iodine speciation analyses other than from the first extraction
solution.
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Table 22. Sequential extraction of contaminants from sediment samples.

Extraction Solution

Hypothesized Targeted Sediment

Components

Interpreted Contaminant Mobility of
Extracted Fraction

Color
Code

Aqueous: artificial
Hanford groundwater
lon exchange:

1M Mg-nitrate
Acetate pH5: 1 hour in
pH 5 sodium acetate
solution

Acetate pH 2.3:
1 week in pH 2.3 acetic
acid

Oxalic acid: 1 hour

8M HNOg3: 2 hours in
8M nitric acid at 95°C

Contaminants in pore water and a

portion of sorbed uranium
Readily desorbed contaminants

Contaminants associated with
surface exposed carbonate
precipitates and other readily
dissolved precipitates
Dissolution of most carbonate
compounds, and sodium
boltwoodite (a hydrous uranium
silicate)

Dissolution of iron and
manganese oxides

Dissolves most phases that
contained anthropogenic
contaminants

Mobile phase

Readily mobile through equilibrium
partitioning

Moderately mobile through rapid
dissolution processes

Slow dissolution processes for
contaminant release from this fraction;
mobility is low with respect to
impacting groundwater

Slow dissolution processes are
associated with contaminant release;
mobility is very low with respect to
impacting groundwater

Very slow dissolution processes are
associated with contaminant release;
functionally immobile; some or all of
the contaminants in this phase may be
naturally occurring.

Table 23 and associated Figure 19 through Figure 21 show the sequential extraction contaminant

results for each sample for uranium, total iodine, and chromium. There was no extractable Tc-99
contamination in these samples. lodine speciation for the first extraction is shown in Table 24.

Geochemical constituents released in each extraction solution are shown in Figure 22 and in Figure 23.
Interpretation of geochemical constituents accounted for the types of ions added as part of some of the

extraction solutions (e.g., magnesium) and the effect of acidic conditions on some of the chemical
analyses (e.g., iodine).
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Uranium in Sequential Extractions
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Figure 19. Uranium sequential extraction results. Note that leaching experiments were not conducted for
samples T-19 Ringold (C9507-B35461), S-9 8C (C9512-B36177), or S-9 20C (C9512-

B361F3).
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Figure 20. lodine sequential extraction results. Note that leaching experiments were not conducted for
samples T-19 Ringold (C9507-B35461), S-9 8C (C9512-B36177), or S-9 20C (C9512-
B361F3).
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Figure 21. Chromium sequential extraction results.
Table 24. lodine speciation.
lodate lodide Total lodine
Sample Name Sample Location (ug/L) (ug/L) (ug/L)
C9507-B35434 T19 14C (CCUz) 0.827 ND 1.24
C9507-B35443 T19 16C (CCUc) 3.76 13.4 18.6
C9507-B35461 T19 138' (Ringold) 0.817 4.24 5.84
C9510-B361N1 T25 14C (H2/CCU) 1.31 3.35 5.04
C9512-B36177 S-9 8C (H1/2) ND ND 1.19
C9512-B361F3 S-9 20C (H2) ND ND 1.3

ND is not detected.
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Figure 22. Cations measured in sequential extraction solutions. Note that metals are not reported if the
extraction solution contained that metal (Ca for extraction 4, Mg for extractions 2 and 3, and

Na in extractions 3 and 4).
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Figure 23. Major and trace cations/metals measured in sequential extractions: (a) Ca, (b) Mg, (c) Sr, (d)

Na, (e) K, (f) Ba, (g) Fe, (h) Mn, (i) Si, (j) Al, and (k) Si/Al ratio. The sediment sample
codes are F41 = C9507-B35434, T19 14C; F42 = C9507-B35443, T19 16C; F43 = C9507-
B35461, T19 138’; F44 = C9510-B361N1, T25 14C; F45 = C9512-B36177, S9 8C; and F46
= F47 = C9512-B361F3, S9 20C.

The sequential extraction data for uranium (Table 23, Figure 19) show only a small portion of the

uranium mass in the samples is present in the aqueous and sorbed (mobile) phases. In every sample, the
highest fraction of uranium mass is in the sixth extraction, likely representing mostly natural uranium.
For the B35443 sample of CCU high-carbonate sediment with the highest uranium concentration, the
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third and fourth extractions (representing carbonate materials) show relatively high fractions of uranium.
In summary, for uranium, a relatively small fraction of the uranium mass in these samples would transport
under equilibrium partitioning conditions (i.e., is mobile). Thus, transport analyses should include kinetic
transport processes or recognize that a portion of the uranium is functionally immobile. The 1000-hour
extraction results, targeted at identifying mobile uranium, are consistent with the sequential extraction
results in that the uranium mass extracted in the 1000-hour test is about the same as all of the mass in the
first two sequential extractions plus a portion of the mass in the third extraction. Post-soil-column-
leaching results show that the uranium mass extracted in the 1000-hour test is reduced dramatically, as
expected. Soil-column effluent data analyzed as cumulative mass of uranium leached are consistent with
the loss in uranium mass shown in the comparison of pre- and post-soil-column-test uranium mass in the
1000-hour extraction tests and are similar to the uranium mass present in the first two sequential
extractions plus a portion of the mass in the third extraction.

The sequential extractions for total iodine (Table 23, Figure 20) also show a low fraction of the iodine
in the aqueous and sorbed (mobile) phases. In every sample, the largest fraction of the iodine is in the
third and fourth extractions, representing carbonate materials. lodine is also present in the fifth
extraction. lodine determination in the sixth extractions was hindered by the acidic matrix and was not
reportable. Speciation of iodine was only possible in the first extraction (Table 24). lodide dominated the
speciation in first extraction for samples B35443, B361N1, and B35461, which all had relatively high
total iodine concentrations. lodate dominated the speciation in sample B35434. Other samples were non-
detect for both iodine species. A significant amount of iodine was present in the third and fourth
extractions, which are targeted at determining contaminant concentrations associated with carbonate
precipitates. It is most likely that carbonate-associated iodine would be in the iodate form, but speciation
was not possible for these extraction solutions. As with uranium, only a small fraction of the iodine mass
in these samples would transport under equilibrium partitioning conditions (i.e., is mobile). Thus,
transport analyses should include kinetic transport processes or recognize that a portion of the iodine is
functionally immobile. This assessment is based on total iodine (which includes both 1-127 and 1-129),
but the behavior of 1-129 is expected to be similar to total iodine. The mechanism for the relatively large
portion of iodine found in the extractions not associated with equilibrium partitioning may be association
of iodate with carbonate precipitates. This type of co-precipitation has been observed in the scientific
literature (Zhang et al. 2013; Podder et al. 2016) and is consistent with release of iodine in the third and
fourth extractions that are targeted at dissolving carbonate precipitates.

As with uranium, the iodine sequential extraction, 1000-hour extraction, and soil-column data show
consistent results (Table 23, Figure 20). The 1000-hour extraction results, targeted at identifying mobile
iodine, are consistent with the sequential extraction results in that the iodine mass extracted in the
1000-hour test is about the same as all of the mass in the first two sequential extractions plus a portion of
the mass in the third extraction. Post-soil-column-leaching results show that the iodine mass extracted in
the 1000-hour test is reduced dramatically, as expected. Soil-column effluent data analyzed as cumulative
mass of iodine leached are consistent with the loss in iodine mass shown in the comparison of pre- and
post-soil-column-test iodine mass in the 1000-hour extraction tests and are similar to the iodine mass that
was present in the first two sequential extractions plus a portion of the mass in the third extraction.

The sequential extraction data for chromium suggest that all of the chromium is natural, as expected
based on water, acid, and alkaline extraction chromium results (Section 4.1). Thus, these data are not
interpreted in terms of chromium attenuation and transport processes.
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lons released from sequential extractions can be interpreted, although the interpretation must consider
the ions present in the extraction solutions (Figure 22 and Figure 23). Samples B35434, B35461,
B361F3, and B36177 are similar in the types and amounts of ions released in the extractions, with
moderate differences in carbonate concentration (Ca and Mg released in extractions 3 and 4). Samples
B35443 and B361N1 have a much higher carbonate content, as indicated by the amount of calcium
released, but are otherwise similar to the other samples.

Another important category of experiment that can demonstrate contaminant mobility is a leaching
test that can quantify how quickly contaminants are released into the aqueous phase. In this type of test,
sediments containing contaminants are exposed to artificial pore water to quantify release of the existing
contaminants into the aqueous phase. For a batch leaching test, sediments are contacted with a single
aqueous solution for a long time period. Samples of the aqueous phase are analyzed for contaminant
concentration. Initial, short-contact-time results are representative of equilibrium partitioning of
contaminants from the sediments. Over time, if the contaminant concentration stays stable at near this
initial concentration, it can be interpreted that only equilibrium partitioning is controlling contaminant
release from the sediments. Concentrations rising over time indicate that some kinetically controlled
process such as dissolution of precipitates or diffusion from small pores in the sediments is contributing
to contaminant release from the sediments. Both partitioning and Kinetically controlled contaminant
release attenuate the mobility of contaminants.

Batch leaching results are shown in Figure 24 and Figure 25 for uranium and iodine, respectively.
Analysis showed that Cr(VI) and Tc-99 in the artificial pore water were below detection limits in all of
the sediments. The aqueous uranium concentration increased in all sediments (Figure 24), indicating slow
Kinetic release of uranium, likely from a combination of adsorbed U-carbonate species desorption
(relatively rapid release) and exchange with uranium in solid phase carbonates (relatively slow release).
Sediment uranium concentrations ranged from 0.3 to 30 pg/L initially (at 1 hour), and increased to 0.72 to
44 pg/L by 1000 hours.

50 Long-Term Water Extraction Long-Term Water Extraction
___________ Ak
- . 4 = _i"C'Q'SIJT o ok
4 e ’ C9507 104" C9512 64'
E kT 10 cos07 137 Co512 124
Sa0ac ’ = ] (anddupg,... 4p--
= 0507 94' I L G 4
= C9507 104' C9512 64" =
= C9507 137" C9512 124" 5107
'::'1 (and dup.) 5 NPSPEEEI MR ! g‘ """
DL = 0.07 ug/L S S
, P S S 4 10_1:"' DL = 0.07 ug/L
T =TS b’ T T T T T T T T T T T
1 10 100 1000 1 10 100 1000
time (hr) time (hr)

Figure 24. Aqueous uranium concentration in long-term batch leaching experiment.
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Figure 25. Aqueous total iodine concentration in long-term batch leaching experiment: (a) total iodine
for all sediments, (b) iodine species for C9507-B35443, T-19 16C, (c) iodine species for
C9507-B35461, T-19 138’, and (d) iodine species for C9510-B361N1, T-25 14C. lodine
speciation for other sediments was below detection limits.

Release of iodine species from sediments was also kinetically controlled (Figure 25), with total iodine
concentrations ranging from 0.2 to 10 pg/g initially (at 1 hour), and increasing to 0.3 to 14 ug/g by
1000 hours (Figure 25a). lodine speciation was difficult to characterize in sediments at these low
concentrations in a matrix of high ion concentration (i.e., mainly Na-nitrate) because the analysis relies on
anion separation before iodide or iodate mass analysis. Three sediments had concentrations of iodine
species (Figure 25b to d) above the detection limits, which showed that 75% to 100% of the iodine in the
aqueous phase was iodide. lodide is more mobile than iodate (about 4 times lower K;), and iodate can be
incorporated into carbonates. Thus, it is expected that iodide would be most susceptible to short-term
release from sediments. lodate, if present, may be more slowly released if it is incorporated into
carbonate precipitates. Determination of iodine speciation was not possible in all of the sequential
extractions. However, in samples with the highest total iodine concentration, iodide dominated the
species in the first water extraction. For the sequential extractions, a significant amount of total iodine
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was present in the third and fourth extractions (contaminant associated with carbonate precipitates).
Dissolution rates for iodate-carbonate precipitates may be slow and may not contribute significantly to the
iodine concentration in the batch leaching experiment.

Soil-column leaching tests contact sediments with a clean flowing artificial groundwater under
saturated flow conditions. Contaminant concentrations in the effluent of the column are controlled by the
magnitude of equilibrium partitioning and kinetically controlled contaminant release processes (e.g.,
dissolution of precipitates or small-pore diffusion). Soil-column tests provide data that can be interpreted
in terms of modeling contaminant release and partitioning under one-dimensional transport conditions.
Slower release of contaminant mass from the column (i.e., continued release over many pore volumes of
water flow through the column) indicates the partitioning and/or kinetically controlled processes are
attenuating the mobility of the contaminant. In addition, stop-flow events, where the water flow in the
column is stopped for tens to hundreds of hours, can indicate the presence of kinetically controlled
contaminant release if the contaminant concentration increases during the stop-flow event.

Soil-column leaching results are shown in Figure 26 through Figure 37. Uranium and iodine show
some slow-release behavior in terms of an extended release of contaminants over time from the column.
In addition, an increase in uranium and iodine concentration during stop-flow events was observed for all
events, though the magnitude varied. Additional analysis of stop-flow events is provided in Section 4.3.
Analysis shows that Tc-99 and Cr(V1) in effluent samples were all below detection limits, so these are not
shown. Analysis of cations and anions (excluding carbonate) on selected effluent samples shows that Na
and nitrate decrease rapidly to near influent artificial groundwater concentrations. Bromide breakthrough
shows uniform flow in columns, with average retardation of 0.96 to 1.04. lodine species analysis on
effluent samples was difficult due to the high nitrate concentration because the analysis relies on anion
separation before iodide or iodate mass analysis. Only a few samples from the first pore volume of
column effluent had iodine concentrations high enough for speciation analysis. Thus, the speciation data
are not of value and are not reported.
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Figure 26. Artificial groundwater leaching of the C9507-B35434, T19 14C sample for (a) uranium, and
(b) total iodine effluent concentrations. Most iodate and iodide concentrations were below

detection limits.
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Figure 27. Artificial groundwater leaching of the C9507-B35434, T19 14C sample for (a) cation and (b)
anion effluent concentrations for selected samples.
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Figure 28. Artificial groundwater leaching of the C9507-B35434, T19 14C sample for tracer (bromide)

effluent concentration.
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Figure 29. Aurtificial groundwater leaching of the C9507-B35443, T19 16C sample for (a) uranium and
(b) tracer (bromide) effluent concentrations.
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Figure 30. Artificial groundwater leaching of the C9507-B35443, T19 16C sample for total iodine data.
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Figure 31. Artificial groundwater leaching of the C9507-B35443, T19 16C sample for (a) cation and (b)
anion effluent concentrations for selected samples.
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Figure 32. Atrtificial groundwater leaching of the C9510, T25 14C sample for (a) uranium and (b) tracer
(bromide) effluent concentrations.
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Figure 33. Aurtificial groundwater leaching of the C9510, T25 14C sample for total iodine data.
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Figure 34. Artificial groundwater leaching of the C9510, T25 14C sample for (a) cation and (b) anion
effluent concentrations for selected samples.
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Figure 35. Artificial groundwater leaching of the C9510, T25 14C sample (duplicate sample) for (a)
uranium and (b) tracer (bromide) effluent concentrations.
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Figure 36. Artificial groundwater leaching of the C9510, T25 14C sample (duplicate sample) for total

iodine data.
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Figure 37. Artificial groundwater leaching of the C9510, T25 14C sample (duplicate sample) for (a)
cation and (b) anion effluent concentrations for selected samples.

The batch and soil-column leaching tests demonstrate that there is some slow release of uranium and
iodine in these samples. This type of release is consistent with attenuation mechanisms associated with
sorption properties and dissolution of carbonates over time in the saturated column conditions. Nitrate
was released very rapidly, confirming the low sorption properties of this contaminant. Assessment of
chromium and Tc-99 was not possible with these leaching experiments due to the low/non-detect
contaminant concentrations in the samples (noting that chromium in the sediments was attributed to
natural chromium only extractable by acid). Interpretation of the leaching results in terms of transport
parameters is provided in Section 4.3.

4.3 Quantification of Attenuation and Transport Parameters

Several types of data were collected that can be analyzed to estimate attenuation and transport
parameters that are needed for fate and transport assessments. The batch leaching and soil-column
leaching experiments presented in Section 4.2 can be interpreted to estimate transport parameters. The
concentration trend of batch leaching data can be used to estimate a contaminant release rate. Column
effluent data can be modeled to estimate transport parameters, though this type of analysis is not included
in this report. Stop-flow data can be used to estimate contaminant release rates based on the observed
change in concentration over the stop-flow time interval. Because some of the samples did not contain
sufficient contamination for effective application of leaching experiments, spiked-contaminant tests were
conducted that can be used to evaluate transport parameters. Batch experiments spiked with contaminants
can be analyzed to assess both adsorption and desorption linear equilibrium partitioning coefficients (Kg)
based on the observed ratio of solid- and solution-phase contaminant concentrations. Spike-contaminant
soil-column tests provide breakthrough and elution curves, which, when compared to conservative tracer
breakthrough and elution curves, can be used to estimate adsorption and desorption linear equilibrium
partitioning coefficients (Kg).
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Table 25 shows the batch leaching data interpreted as contaminant release rates from the sediment.
These rates were calculated for the data collected between 100 and 1000 hours of contact time. The
change in concentration from time zero, where the concentration in the aqueous phase would be zero, and
the 100-hour sample was interpreted to represent sorption-related contaminant release.

Table 25. Post-sorption contaminant release rates calculated for batch leaching experiments.

Sample lodine Uranium
Sample Name Location (ug/kg/d) (ug/kg/d)
C9507-B35434 T19 14C (CCUz2) 0.015 0.098
C9507-B35443 T19 16C (CCUc) 0.261 0.261
C9507-B35461 T19 138' (Ringold) - 0.024
C9510-B361N1 T25 14C (H2/CCU) 0.247 0.010
C9512-B36177 S-9 8C (H1/2) - -
C9512-B361F3 S-9 20C (H2) 0.022 0.010

Table 26 shows tabulated data for stop-flow events and the associated calculated contaminant release
rates. The computed release rates for uranium and iodine are generally higher for samples with higher
total contaminant mass leached. Over time as more pore volumes are passed through the soil-column,
release rates of iodine generally declined. Note that release rates are for total iodine; the iodine speciation
method was not sensitive enough to provide data during stop-flow events. For uranium, the response was
mixed, with a general decline shown in the highest uranium (and carbonate) sample, B35443, but steady
to increasing release rates for the other samples.

Table 26. Contaminant release rates calculated for stop-flow events during soil-column leaching
experiments.

Stop  Uranium lodine Stop  Uranium lodine Stop  Uranium lodine
Sample Sample Flow Rel.Rate Rel.Rate Flow Rel. Rate Rel. Rate Flow Rel. Rate Rel. Rate
Name Location (pv) (ug/kg/day) (ug/kg/day) (pv) (ug/kg/day) (ug/kg/day) (pv) (ug/kg/day) (ug/kg/day)

C9507-  T1914C 209  1.385 0568 11.65  1.808 0183 86.90  1.299 0.115
B35434  (CCUz)
C9507-  T1916C 178  1.951 1106 1020  0.195 0585 8310 0.501 0.442
B35443  (CCUc)
C9510-  T2514C 1.89  0.044 1.056 11.15 0.058 0412 81.06 0.160 0.402
B36IN1  (H2/CCU)
C9510-  T2514C 215  0.023 1017 1165 0.042 0366 86.90 0.178 0.553

B361N1  (H2/CCU)

Table 27 and Table 28 show the adsorption and desorption linear equilibrium partitioning coefficients
(Kq) from spiked-contaminant batch experiments for pore water and artificial groundwater tests,
respectively. Table 29 and Table 30 show the adsorption and desorption linear equilibrium partitioning
coefficients (Ky) from spiked-contaminant batch experiments conducted at multiple spike concentrations
for samples B35434 and B35461 for pore water and artificial groundwater tests, respectively. These
results are the average of two replicate experiments. In most cases, replicate results were comparable and
the average data are used to interpret the batch partitioning experiment results. Results for individual
tests are shown in Appendix B.
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Table 29. Calculated partitioning coefficients for spiked-contaminant experiments using the pore-water

recipe (Table 8) for samples B35434 and B35461 with multiple spiked-contaminant
concentrations.

Uranium
adsorption adsorption adsorption desorption desorption desorption
(mL/g) (mL/g) (mL/g) (mL/g) (mL/g) (mL/g)
Initial Concentration 100 pg/L 500 pg/L 1000 pg/L 100 pg/L 500 pg/L 1000 pg/L
C9507-B35434 1-day 117 1.82 1.74 0 0.79 0.98
T19 14C (CCUz) 7-day 1.56 1.57 2.75 0.34 1.14 2.16
28-day 1.34 1.40 2.99 0 0.97 2.58
C9507-B35461 1-day 1.57 1.64 1.58 0 0.87 0.75
T19 138' (Ringold) 7-day 1.47 1.16 2.15 0.99 0.71 1.86
28-day 0.94 0.56 2.74 0.56 0.71 2.66
Tc-99 (pertechnetate)
adsorption adsorption adsorption desorption desorption desorption
(mL/g) (mL/qg) (mL/g) (mL/g) (mL/g) (mL/g)
Initial Concentration 5 pg/L 10 pg/L 50 pg/L 5 pg/L 10 pg/L 50 pg/L
C9507-B35434 1-day 0.04 0 0.21 0.80 0.43 1.14
T19 14C (CCUz) 7-day 0.55 0.45 0.21 1.16 1.61 0.72
28-day 0.62 0.41 0.22 1.07 0.88 0.48
C9507-B35461 1-day 0.06 0 0.11 1.82 0 0.91
T19 138' (Ringold) 7-day 0.71 0.45 0.07 8.01 3.10 0.34
28-day 0.33 0.41 0.25 1.74 5.64 0.77
lodate
adsorption adsorption adsorption desorption desorption desorption
(mL/g) (mL/g) (mL/g) (mL/g) (mL/g) (mL/g)
Initial Concentration 100 pg/L 500 pg/L 1000 pg/L 100 pg/L 500 pg/L 1000 pg/L
C9507-B35434 1-day 0.86 0.95 0.52 2.36 2.08 0.88
T19 14C (CCUz) 7-day 2.69 0.46 0.73 2.89 1.03 1.81
28-day 1.13 0.55 0.51 3.76 0.19 0.36
C9507-B35461 1-day 0.81 0.79 0.31 1.33 2.07 0.61
T19 138" (Ringold) 7-day 1.25 0.32 0.65 2.53 0.41 1.65
28-day 0.77 0.27 0.17 1.97 0 0
lodide
adsorption adsorption  adsorption  desorption  desorption  desorption
(mL/g) (mL/g) (mL/g) (mL/g) (mL/g) (mL/g)
Initial Concentration 100 pg/L 500 pg/L 1000 pg/L 100 pg/L 500 pg/L 1000 pg/L
C9507-B35434 1-day 0.03 0 0.08 0 0 0.17
T19 14C (CCUz) 7-day 0 0.07 0.03 0 0.09 0
28-day 0 0.04 0.05 0 0 0.01
C9507-B35461 1-day 0 0 0 0 0 0
T19 138" (Ringold) 7-day 0 0 0 0 0 0
28-day 0 0.02 0 0 0.01 0
Chromate
adsorption adsorption  adsorption  desorption  desorption  desorption
(mL/g) (mL/g) (mL/g) (mL/g) (mL/qg) (mL/g)
Initial Concentration 100 pg/L 500 pg/L 1000 pg/L 100 pg/L 500 pg/L 1000 pg/L
C9507-B35434 1-day 0.09 0.14 0.03 4.49 2.40 0.41
T19 14C (CCUz2) 7-day 0.15 0.20 0.09 3.82 2.06 0.53
28-day 0.78 0.56 0.37 2.40 3.30 2.00
C9507-B35461 1-day 0.22 0.52 0.10 NR NR NR
T19 138' (Ringold) 7-day 2.07 4.02 0.68 25.70 141.59 61.87
28-day 18.96 8.64 11.47 NR NR NR

NR is not reported because concentrations in the desorption solution were below detection.
A value of “0” was assigned to any computed Ky value of less than zero.
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Table 30. Calculated partitioning coefficients for spiked-contaminant experiments using the artificial
groundwater recipe (Table 9) for samples B35434 and B35461 with multiple spiked-
contaminant concentrations.

Uranium
adsorption adsorption adsorption desorption desorption desorption
(mL/g) (mL/g) (mL/g) (mL/g) (mL/g) (mL/g)

Initial Concentration 100 pg/L 500 pg/L 1000 pg/L 100 pg/L 500 pg/L 1000 pg/L
C9507-B35434 1-day NR NR NR NR NR NR
T19 14C (CCUz) 7-day NR NR NR NR NR NR
28-day NR NR NR NR NR NR
C9507-B35461 1-day NR NR NR NR NR NR
T19 138" (Ringold) 7-day NR NR NR NR NR NR
28-day NR NR NR NR NR NR

Tc-99 (pertechnetate)

adsorption adsorption adsorption desorption desorption desorption

(mL/g) (mL/g) (mL/g) (mL/g) (mL/g) (mL/g)
Initial Concentration 5 ug/L 10 pg/L 50 pg/L 5 ug/L 10 pg/L 50 pg/L
C9507-B35434 1-day 0 0.02 0.04 0.15 0.62 0.26
T19 14C (CCUz) 7-day 0.14 0.10 0.04 1.96 0.46 0
28-day 0.20 0.08 0.04 0.18 0 0
C9507-B35461 1-day 0 0 0.13 0.01 1.07 2.43
T19 138' (Ringold) 7-day 0.29 0.39 0.27 4.92 6.49 2.35
28-day 0.20 0.10 0.14 2.41 1.13 0.40
lodate
adsorption adsorption adsorption desorption desorption desorption
(mL/g) (mL/g) (mL/g) (mL/g) (mL/g) (mL/g)
Initial Concentration 100 pg/L 500 pg/L 1000 pg/L 100 pg/L 500 pg/L 1000 pg/L
C9507-B35434 1-day 0.98 0.60 0.18 1.89 1.44 0.22
T19 14C (CCUz) 7-day 1.22 0.82 0.61 1.68 1.18 1.07
28-day 1.31 1.08 0.62 1.61 1.66 0.98
C9507-B35461 1-day 0.61 0.28 0.12 0.99 0.83 0.05
T19 138' (Ringold) 7-day 0.80 0.38 0.28 0.95 0.67 0.66
28-day 0.70 0.50 0.33 0.96 1.21 0.83
lodide
adsorption adsorption adsorption desorption desorption desorption
(mL/qg) (mL/g) (mL/g) (mL/qg) (mL/g) (mL/g)
Initial Concentration 100 pg/L 500 pg/L 1000 pg/L 100 pg/L 500 pg/L 1000 pg/L
C9507-B35434 1-day 0 0.02 0.02 0 0 0
T19 14C (CCUz) 7-day 0 0.02 0.03 0 0.01 0
28-day 0.02 0.06 0.06 0 0.17 0.09
C9507-B35461 1-day 0 0 0 0 0 0
T19 138" (Ringold) 7-day 0 0.01 0.01 0 0 0
28-day 0 0.01 0.01 0 0 0
Chromate
adsorption adsorption adsorption desorption desorption desorption
(mL/g) (mL/g) (mL/g) (mL/g) (mL/g) (mL/g)
Initial Concentration 100 pg/L 500 pg/L 1000 pg/L 100 pg/L 500 pg/L 1000 pg/L
C9507-B35434 1-day 0.02 0.02 0.03 3.75 0.36 0.22
T19 14C (CCUz) 7-day 0.21 0.05 0.09 6.94 0.33 0.42
28-day 0.17 0.40 0.21 5.39 2.06 0.97
C9507-B35461 1-day 0.13 0.17 0.05 8.73 18.22 5.39
T19 138" (Ringold) 7-day 2.61 0.73 0.37 NR 18.35 8.06
28-day NR 4.08 12.59 NR 36.35 97.93

NR is not reported: For uranium, the NR is because the no-sediment control showed large concentration decreases; for
chromate, because concentrations in the desorption solution were below detection.
A value of “0” was assigned to any computed Ky value of less than zero.
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Table 31 shows the adsorption and desorption linear equilibrium partitioning coefficients (Kgy) from
spiked-contaminant soil-column experiments. Figure 38 through Figure 40 depict the breakthrough and
elution curves for the spiked-contaminant soil-column tests. Batch and soil-column experiments provide
different types of data that can be used to estimate Ky. There was good agreement between the 1-day
batch and the soil-column adsorption Kq estimates in this study for Tc-99, iodine, and chromium. The
1-day batch data were selected for this comparison because of the short residence time used for the soil-
column tests. Because batch desorption Ky tests were over a long duration, they are less suitable for
comparison to soil-column desorption Ky estimates. Batch experiments with uranium for the simulated
groundwater medium were not reportable because the uranium concentration decreased significantly in
the no-sediment controls. soil-column experiments with uranium were also problematic, and effluent
concentrations did not show breakthrough or elution responses that could be analyzed for Kg.

Table 31. Calculated partitioning coefficients for spiked-contaminant column experiments.

Adsorption Desorption
Tc-99 Tc-99

Chromate  (Pertechnetate) lodate  Chromate (Pertechnetate) lodate
Sample Sample Ky Ky Ky Ky Ky Ky
Name Location (mL/qg) (mL/g) (mL/g) (mL/g) (mL/g) (mL/qg)
C9507- T19 14C 0.030 0.086 0.708 0.045 0.192 0.859
B35434 (CCUz)
C9507- T19 138 0.017 0.000 0.677 0.023 0.006 0.529
B35461 (Ringold)
C9512- S-9 20C (H2) 0.025 0.037 0.707 0.028 0.037 0.877
B361F3
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Figure 38. Breakthrough and elution responses for spiked-contaminant soil-column experiments with the
C9507-B35434, T19 14C sample for (a) bromide (tracer) and chromate, (b) bromide and
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pertechnetate, and (c) bromide and iodate.
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Figure 39. Breakthrough and elution responses for spiked-contaminant soil-column experiments with the
C9507-B35461, T19 138’ sample for (a) bromide (tracer) and chromate, (b) bromide and
pertechnetate, and (c) bromide and iodate.
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Figure 40. Breakthrough and elution responses for spiked-contaminant soil-column experiments with the
C9510-B361F3, S-9 20C sample for (a) bromide (tracer) and chromate, (b) bromide and
pertechnetate, and (c) bromide and iodate.
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The batch experiments provide a larger experimental matrix than the soil-column experimental matrix
for assessment of variability in Ky across the sample types and for comparison of adsorption and
desorption Ky estimates. For both uranium and iodate, adsorption and desorption were highest for
samples B35443 and B361N1, where both samples have a high carbonate content. The remaining
samples showed moderate Kq values for uranium and iodate. Chromate, iodide, and Tc-99 (pertechnetate)
Kq values were all low, except for chromate, where adsorption for days 7 and 28 and desorption (a 28-day
test) Ky values were all much higher than the 1-day values. Reduction of chromate in laboratory
experiments has been observed over these timeframes for other soil samples (Truex et al. 2015b). Thus,
interpretation and use of later-time data for chromate Ky values should consider the possibility that
chemical reduction occurred during the test. The effect of potential reduction may have also affected
some of the Tc-99 and iodate results, though increases in K4 over time were less dramatic than observed
with the chromate data. The desorption Kq values for Tc-99 (pertechnetate), iodate, and chromate are all
generally higher than adsorption K values. The comparison of adsorption and desorption Kq values for
uranium shows a mixed result of higher, lower, and similar values.

Tests for selected samples at multiple spiked-contaminant concentrations provide data to assess the
concentration range suitable for use of a Ky-type sorption parameter. Results showing comparable K4
values for each concentration condition indicate use of a K¢-type sorption parameter is reasonable. In
some cases, the K, value decreases as the spiked-contaminant concentration increases, notably for iodate.
This result may indicate that sorption sites are limited and a sorption isotherm may be needed to model
sorption for higher concentrations. In some treatments, the K4 value increased with increased spiked-
contaminant concentration, notably for some uranium treatments. This result may indicate some
precipitation is occurring in the treatment.

Soil-column tests show well-behaved breakthrough curves for bromide, chromate, Tc-99
(pertechnetate), and iodate, but not for uranium, as discussed above. Speciation data for iodine shows that
injected iodate was not reduced to iodide during the experimental timeframe. The observation that
breakthrough of concentrations of chromate and Tc-99 (pertechnetate) are nearly the same as the injected
concentrations also suggests no (or very limited) contaminant reduction occurred during the experimental
timeframe. For these short-duration soil-column tests, there is minimal difference between measured
adsorption and desorption Ky values, in contrast to the batch results. However, batch adsorption (7- and
28-day) and desorption (28-day) tests included much longer contact time of the contaminant and the
sediment.
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5.0 Recommendations

The laboratory study provided useful data to identify and quantify attenuation and transport processes

for the targeted contaminants and the biogeochemical and physical context for these processes. For future
laboratory studies of attenuation and transport processes with similar samples, several adjustments can be
considered to enhance the laboratory study.

o A number of samples contained low levels of the targeted contaminants. Thus, it is important to
quickly analyze sediment intervals for contaminant concentrations and use these data to define the
appropriate next analyses. This approach will enable consideration of contaminant concentrations
relative to subsequent testing approaches and analysis sensitivity. For the study reported herein, this
approach was appropriately applied to limit the number of soil-column leaching experiments and
emphasize spiked-contaminant partitioning experiments. Future efforts should implement a first step
to evaluate water- and acid-extractable contaminant concentrations and conduct sequential extractions
for the sample. These data would be compared to results reported herein to assess leaching potential
based on high total contaminant concentrations and high fractions of the contaminants distributed in
the first three sequential extraction solutions. These samples would be candidates for batch and soil-
column leaching tests. Samples not suitable for leaching would be considered for spiked-contaminant
tests as discussed below. Grab samples (e.g., samples other than those originally targeted for
attenuation testing) can also be considered to augment the number of samples available for assessing
leaching characteristics as described below.

Some types of attenuation and transport information are best determined from contaminated samples
(i.e., as opposed to spiked-contaminant tests). One option for each borehole would be to collect grab
samples throughout the borehole at the vertical locations where contaminant of concern analyses are
being conducted (i.e., by CHPRC). For those locations with high contaminant levels, a subset of
attenuation studies (e.g., repacked column tests, batch leaching tests, sequential extractions, and the
basic suite of contaminant and geochemical analyses) could be conducted. These tests do not require
an intact sample. While the full suite of analyses for the attenuation laboratory study could not be
obtained at these locations, the additional grab-sample data set could provide important information
about mobility of contaminants for field-contaminated sediments. Field-contaminated sediments are
unique in that they reflect contaminant conditions caused by the history of the waste disposal,
contaminant transport, and attenuation processes that have occurred. Thus, these field-contaminated
sediments best represent the starting point for future contaminant transport. For this reason, it is
important to evaluate additional locations within the borehole that provide this type of representative
conditions for evaluating contaminant behavior.

There were several instances where the sample conditions (e.g., nitrate concentration) limited the
applicability of laboratory analyses. Notably, iodine speciation was limited for some of the sample
matrices. In addition, iodine speciation was hampered by the ionic strength and acidity of some of the
extraction solution properties. Thus, the results reported herein can be used to indicate when matrix
interference will occur for iodine speciation.

Based on evaluation of the data collected in this study, several types of additional data collection

should be considered for these samples or for future samples.

o Measure the specific surface area of sediments for use in interpreting the partitioning data set. This
analysis will be conducted for the existing samples and reported along with the hydraulic and physical
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properties in a separate report. It provides another measure of sediment properties beyond just texture
and geochemical properties that can be used to assess correlations of partitioning and sediment
characteristics.

o The spiked-contaminant studies conducted for the samples in the study reported herein provided a
useful set of information for contaminant transport parameters. These data demonstrated that there is
variability in these parameters across the different types of samples. Thus, future studies should
consider augmenting this set of partitioning information with partitioning studies on samples from
other lithologic zones of importance to the 200-DV-1 OU. Candidate samples for additional
partitioning tests include those samples that have lithologic and geochemical properties significantly
different from the samples included in the large experimental matrix reported herein. These data
would augment the current data set to enable evaluate variations in partitioning for a broader set of
sediment types.

The data generated in this laboratory study provide a technical basis for updating the site CSMs and
transport analyses. The laboratory study was structured to address the information requirements for
considering MNA as all or part of a remedy (i.e., EPA 2015) by identifying and quantifying processes that
affect contaminant fate and transport. As outlined in the conclusions section, attenuation was
demonstrated as contaminant-specific and waste-site specific outcomes of this study. The attenuation
processes and transport parameters reported herein and can be used as part of the technical defensibility
for identifying attenuated transport through the vadose zone within the remedial investigation and
feasibility study for the 200-DV-1 OU.
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6.0 Quality Assurance

The PNNL Quality Assurance (QA) Program is based upon the requirements as defined in DOE
Order 414.1D, Quality Assurance, and 10 CFR 830, “Energy/Nuclear Safety Management, Subpart A,
Quiality Assurance Requirements. PNNL has chosen to implement the following consensus standards in a
graded approach:

o ASME NQA-1-2000, Quality Assurance Requirements for Nuclear Facility Applications, Part 1,
Requirements for Quality Assurance Programs for Nuclear Facilities.

o ASME NQA-1-2000, Part I, Subpart 2.7, Quality Assurance Requirements for Computer Software
for Nuclear Facility Applications, including problem reporting and corrective action.

o ASME NQA-1-2000, Part IV, Subpart 4.2, Guidance on Graded Application of Quality Assurance
(QA) for Nuclear-Related Research and Development.

The procedures necessary to implement the requirements are documented through PNNL’s “How Do
I...? (HDI), a system for managing the delivery of laboratory-level policies, requirements, and
procedures.

The DVZ-AFRI Quality Assurance Plan (QA-DVZ-AFRI-001) was applied as the applicable QA
document for this work under the NQA-1 QA program. This QA plan conforms to the QA requirements
of DOE Order 414.1D and 10 CFR 830, Subpart A. This effort is subject to the Price Anderson
Amendments Act.

The implementation of the Deep Vadose Zone — Applied Field Research Initiative QA program is
graded in accordance with NQA-1-2000, Part IV, Subpart 4.2, Guidance on Graded Application of
Quality Assurance (QA) for Nuclear-Related Research and Development. The technology level defined
for this effort is Development Research, which consists of developing information that will be used
directly by the Hanford Site to support remediation decisions.

This work was conducted under the Development Research level to ensure the reproducibility and
defensibility of these experimental results. As such, reviewed calculation packages are available upon
request except where experimental information is denoted as a scoping or preliminary study.

This work used PNNL’s Environmental Sciences Laboratory (ESL) for chemical analyses. The ESL
operates under a dedicated QA plan that complies with the Hanford Analytical Services Quality
Assurance Requirements Document (HASQARD; DOE 2007), Rev. 3. ESL implements HASQARD
through Conducting Analytical Work in Support of Regulatory Programs (CAWSRP). Data quality
objectives established in CAWSRP were generated in accordance with HASQARD requirements.
Chemical analyses of testing samples and materials were conducted under the ESL QA Plan.

QA reviews of data and analyses were conducted for this work in accordance with the QA plan.
There were no reportable QA issues with the data included in this report.
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7.0 Conclusions

The data collected in this laboratory study addressed the following three objectives:
o Define the contaminant distribution and the hydrologic and biogeochemical setting.
o |dentify attenuation processes and describe the associated attenuation mechanisms.

¢ Quantify attenuation and transport parameters for use in evaluating remedies.

These objectives are elements of the framework identified in EPA guidance (EPA 2015) for
evaluating MNA of inorganic contaminants, and they directly support updating the CSM for these waste
sites (and generally for the Hanford Central Plateau). Importantly, the information supports defining
suitable contaminant transport parameters that are needed to evaluate transport of contaminants through
the vadose zone and to the groundwater. This type of transport assessment supports a coupled analysis of
groundwater and vadose zone contamination. The laboratory study information, in conjunction with
transport analyses, can be used as input to evaluate the feasibility of remedies for the 200-DV-1 OU. This
remedy evaluation will be enhanced by considering these study results that improve the understanding of
controlling features and processes for transport of contaminants through the vadose zone to the
groundwater.

Interpretation of this laboratory study can be considered from several perspectives relevant to
supporting 200-DV-1 OU activities. Results for each contaminant were evaluated across all of the
samples to identify contaminant-specific conclusions and to enable consideration of how results from this
study may be relevant to other waste sites. Results are also evaluated with respect to conclusions relevant
to the specific waste sites included in the study. Lastly, study results were evaluated with respect to
updating CSMs and future evaluation of remedies, including the associated fate and transport assessment
needed as a basis for remedy evaluation.

The data and information from these attenuation and transport studies were interpreted to support the
following conclusions about contaminant behavior observed across the waste sites sampled in this study.

e Uranium

— Uranium concentrations were low in most samples; therefore, a significant fraction of the
uranium may be associated with natural background concentrations.

— The dominant form of uranium was U(V1), supporting the conclusion that little uranium reduction
has occurred in these samples.

— For samples where uranium concentrations were elevated, only a small fraction of the uranium
was present in the aqueous phase or in a form that would be transported in the aqueous phase
under equilibrium partitioning conditions. Most of the uranium was associated with precipitates,
and transport of uranium would be controlled by dissolution processes. This type of slow-release
transport behavior was observed in the batch and soil-column leaching experiments for samples
with higher uranium concentrations (B35434, B35443, and B361N1).

— Uranium Ky values were varied across the different samples tested, with the highest K4 value
associated with the sample of the high carbonate CCU material (B35443). Thus, in transport
assessments, selection of a K value for uranium should consider spatial variation of the K, value
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based on lithologic units and carbonate content. The CCU samples show the highest K, values
for uranium. Thus, carbonate content and smaller particle sizes are important to consider for
uranium Kg. Organic carbon content did not appear to be important, but was generally low in all
samples. In terms of desorption versus adsorption Kq values, there was no clear trend across all
of the samples. However, only the pore-water (Table 10) K4 tests provided useful data, not the
tests with artificial groundwater (Table 11).

e lodine

1-129 concentrations in the vadose zone were non-detect for all samples. Total iodine
concentrations were moderate and suitable for conducting attenuation and transport studies.
Because total iodine and 1-129 form the same chemical species, attenuation and transport
behavior for total iodine and 1-129 will be the same.

Total iodine speciation in the agueous phase was mostly dominated by iodide. However,
sequential extractions showed only a small fraction of the iodine was present in the aqueous
phase or in a form that would be transported in the aqueous phase under equilibrium partitioning
conditions. Most of the iodine was associated with precipitates (likely carbonates), and transport
of iodine in these precipitates would be controlled by dissolution processes. Speciation was not
possible in the carbonate precipitate extractions for the sequential extraction procedure, but it is
likely that the iodine present in these extractions was iodate. Scientific literature has shown co-
precipitation of iodate and carbonates (Zhang et al. 2013; Podder et al. 2016) The leaching
experiments showed some slow-release behavior of iodine that may be associated with these
carbonate precipitates.

Total iodine Ky values show minimal sorption of iodide and moderate sorption of iodate. lodate
Kq values varied across the different samples tested, with the highest K4 values associated with
the samples with high carbonate concentrations (B35443 and B361N1). Thus, in transport
assessments, selection of a Ky value for iodate should consider spatial variation of the K4 value
based on carbonate content. Unlike uranium, the higher iodate Kq4 values are not all associated
with CCU material (smaller particle sizes). Organic carbon content did not appear to be
important, but was generally low in all samples. Transport of iodide and iodate through the
vadose zone will be different, and speciation should be considered when conducting transport
assessments. Desorption K4 values were mostly higher than adsorption Ky values in the batch
experiments that were conducted.

e Tc-99

Tc-99 was not detected in any of the samples.

Tc-99 K, values determined in spiked-contaminant tests were minimal to low, and values varied
slightly across the different samples tested. However, the nominal retardation value for Tc-99
from these data would be close to 1. In batch testing, some of the desorption Ky values for Tc-99
were higher than the corresponding adsorption Ky values. Chemical reduction during the
experimental timeframe (up to 56 days total) may have contributed to the higher apparent
desorption Kq values, noting that reduction of Tc-99 by Hanford sediments has been observed in
the laboratory (Szecsody et al. 2014).
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e Chromium

Cr(VI) was not detected in most samples and, when detected, was present at a low concentration.
Total chromium measured in acid extractions was likely from natural background.

Cr(VI) Ky values determined in spiked-contaminant tests were low, and values varied slightly
across the different samples tested. The measured Ky values generally increased with experiment
time (from 1 to 28 days). Itis possible that all or some of this increase was due to Cr(VI)
reduction, which has been observed in laboratory experiments with Hanford sediment.
Desorption Ky values from batch experiments were all higher than adsorption values. However,
some of the concentration changes in the batch desorption experiments (up to 56-day duration)
may have been due to some Cr(VI) reduction (Truex et al. 2015b).

o Nitrate

Nitrate concentrations were high in all of the samples. Two samples showed very low nitrite
concentrations as a potential indicator of denitrification. However, nitrite concentrations were 4
to 5 orders-of-magnitude lower than nitrate concentrations, indicating that minimal reduction had
occurred.

Nitrate behavior in leaching experiments showed rapid elution, consistent with a minimal K4
value. The nominal retardation value for nitrate from these data would be close to 1.

Nitrate is a dominant electron acceptor and has influenced the microbial ecology in the samples.

The following conclusions were developed for the specific boreholes/waste sites analyzed in this

study.

e T-19

Samples for the laboratory study from the T-19 waste site (borehole C9507) were of CCU silt,
CCuU caliche, and Ringold (silty, sandy gravel) materials. These samples were from locations
well below the historical waste discharge and did not show signs of altered biogeochemistry
induced by the waste discharge, other than the presence of contaminants. Nitrate concentrations
were similar in all of the samples, indicating that waste fluids had penetrated to at least the depth
of the lowest sample. The pore-water pH was consistent with a carbonate-saturated system. The
highest uranium and (total) iodine concentrations were in the CCU caliche (high carbonate)
material, suggesting that uranium and iodine accumulated in this zone as the waste solution
passed through. Accumulation could be expected based on the observed high Kq4 value in this
unit and the potential formation of uranium- and iodine-carbonate precipitates. Thus, the CCU is
an important unit at this waste site for controlling contaminant transport. Tc-99 was not detected
in any of these samples. Cr(VI) was only detected at a very low concentration near the detection
limit in the CCU caliche sample.

Based on the data collected in this laboratory study, the following attenuation processes are
important at this waste site. Sorption processes are important for uranium and iodate, and to a
lesser extent for chromate and Tc-99. Formation of uranium- and iodate-carbonate precipitates
also appears to be an attenuation mechanism in T-19 borehole samples. Minor indications of
reduction were observed in one T-19 sample, and the potential for reduction through biotic (by
the microbes found in the samples) or abiotic (e.g., ferrous iron) mechanisms is present, though it
would likely have limited effect on future contaminant migration.
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e T-25

e S-9

The sample for the laboratory study from the T-25 waste site (borehole C9510) was of CCU silt
materials. The sample was from a location well below the historical waste discharge and did not
show signs of altered biogeochemistry induced by the waste discharge, other than the presence of
contaminants. The presence of high nitrate concentration indicates that waste fluids had
penetrated to at least the depth of the sample. The pore-water pH was consistent with a
carbonate-saturated system. The CCU silt had high carbonate content, though not as high as the
CCU caliche sample from the T-19 site. Uranium and total iodine were present at low
concentrations, though concentrations were sufficient for assessment of leachability. High Ky
values were measured for uranium and iodine, similar to the high K4 values measured for the
T-19 CCU caliche sample that also had a large fraction of carbonate. Accumulation could be
expected based on the high observed Kq value in this unit and the potential formation of uranium-
and iodine-carbonate precipitates. Thus, the CCU silt is an important unit at this waste site
controlling contaminant transport. Tc-99 and Cr(VI) were not detected in any of the samples.

Based on the data collected in this laboratory study, the following attenuation processes are
important at this waste site. Sorption processes are important for uranium and iodate, and to a
lesser extent for chromate and Tc-99. Formation of uranium- and iodate-carbonate precipitates
also appears to be an attenuation mechanism in T-25 borehole samples. The potential for
reduction through biotic (by the microbes found in the samples) or abiotic (e.g., ferrous iron)
mechanisms is present, though it would likely have limited effect on future contaminant
migration.

Samples for the laboratory study from the S-9 waste site (borehole C9512) were of sandy
Hanford Formation and transition from Hanford to CCU silt materials. These samples were deep
below the historical waste discharge and did not show significant signs of altered
biogeochemistry induced by the waste discharge, other than the presence of contaminants.
However, the upper sample showed indication of potential reductive activity that, along with the
very high nitrate concentration, may indicate some waste solution effects at this depth. Nitrate
concentration was very high in the upper sample (the highest concentration of all samples in the
laboratory study), and was at a moderately high concentration in the lower sample, indicating that
waste fluids had penetrated to at least the depth of the lowest sample. The pore-water pH was
consistent with a carbonate-saturated system. The uranium concentration in the lower sample
was low, but was an order of magnitude higher than the uranium concentration in the upper
sample. Neither sample appeared to be elevated in carbonate. Tc-99 and Cr(VI) were not
detected in any of the samples.

Based on the data collected in this laboratory study, the following attenuation processes are
important at this waste site. Sorption processes are important for uranium and iodate, and to a
lesser extent for chromate and Tc-99. Formation of uranium- and iodate-carbonate precipitates
also appears to be an attenuation mechanism in S-9 borehole samples. Minor indications of
reduction were observed in one S-9 sample and the potential for reduction through biotic (by the
microbes found in the samples) or abiotic (e.g., ferrous iron) is present, though it would likely
have limited effect on future contaminant migration.
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The study provided a set of data that addressed the study objectives and can support future evaluation
of remedies, including MNA and the associated fate and transport assessment that is needed as a basis for
remedy evaluations. The first objective was to jointly evaluate contaminant concentrations and the
biogeochemical and hydrologic setting for these data. This information provides a baseline for
interpreting attenuation and transport studies. As noted, there were significant variations in transport
parameter values and some attenuation mechanisms linked to specific sediment characteristics (e.g.,
carbonate content). For scaling and use of this information in fate and transport assessments, these
variations should be considered in light of the sample properties. For this study, the sample properties
were strongly linked to the sediment units sampled rather than waste stream properties. Thus, scaling and
use in future efforts can translate the attenuation and transport information from this laboratory study to
other waste sites based on the distribution of similar sediment units (e.g., the CCU silt and CCU caliche).

Another objective of the study was to identify attenuation processes that appear to be active in these
samples and that will affect contaminant transport through the vadose zone. Sorption processes are
important for uranium and iodate, and to a lesser extent for chromate and Tc-99. Carbonate content
appeared to be important for uranium and iodate Kq. Accumulation in carbonate precipitates was
identified as an attenuation mechanism for uranium and iodate. Slow release of uranium and total iodine
was evident in leaching experiments. Geochemical signatures of reducing conditions were minimal or
non-existent in the samples. However, there was indication of potential catalysts for reductive processes,
including the presence of microbes and reduced iron and manganese phases. These reductive catalysts
may be responsible for some of the difficult-to-extract contaminant phases (e.g., precipitated phases)
observed in sequential extraction analysis. Attenuation mechanisms relevant to chromium and Tc-99
(other than sorption) could not be fully assessed because of the low/non-detect concentrations of these
contaminants.

A key objective of the study was to quantify attenuation and transport parameters to support
parameterization of fate and transport assessments. This type of assessment will be needed to evaluate
transport of contaminants through the vadose zone, to evaluate the coupled vadose zone-groundwater
system, and to assess the need for, magnitude of, and/or design of remediation. The contaminant- and
sample-specific values from stop-flow portions of soil-column experiments, batch leaching, and K4
experiments provide a set of information that can be directly used to develop transport parameters. Soil-
column effluent concentration data can also be compared to one-dimensional simulations to assess fate
and transport model configurations for Kq4 or for surface complexation models.

Collectively, the information from this laboratory study can be considered in terms of updating the
CSM for contaminants in the vadose zone. It can also provide input to describing the coupled vadose
zone-groundwater system that needs to be considered for remedy determinations. CSM elements from
this laboratory study are listed below. These elements will need to be incorporated with other data
collected during the 200-DV-1 OU remedial investigation as part of updating the CSMs for the 200-DV-1
OU component waste sites.

o Sequential extraction experiments (and more coarsely indicated by comparison of water- and acid-
extraction contaminant data) show that only a small fraction of the uranium and iodine mass in
samples is in a mobile form that would transport under equilibrium-partitioning conditions. Leaching
experiment results confirmed that slow-release processes affect the transport of these contaminants.
The relative amount of uranium and iodine mass in the mobile versus functionally immobile phases
affects the potential for future mass discharge from the vadose zone to the groundwater.
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o Laboratory data suggest that formation and dissolution of uranium- and iodate-carbonate precipitates
is a potential attenuation mechanism affecting the relative mobile and immobile mass fractions and
the transport characteristics of uranium and iodine.

e Attenuation and sorption are not uniform in the vadose zone, especially for uranium and the iodate
form of iodine. Lithology (e.g., the presence and extent of layers such as the CCU) and carbonate
content affected the transport parameter values for these contaminants.

o For the waste sites included in this study, the effects of waste chemistry (e.g., altered sediment pH or
biogeochemistry), other than contaminant concentrations, did not penetrate deep into the vadose zone.
The biogeochemical signature of samples shows that a transport evaluations at these waste sites will
not need to include properties modified by waste chemistry for the deep portion of the vadose zone.

¢ While the CSM should acknowledge the potential for transformation processes (e.g., biotic or abiotic
reduction), minimal evidence was observed that these processes are active. However, biotic and
abiotic transformation may have occurred in the past and contributed to the currently observed
contaminant distribution within the sediment and pore water.

¢ Oxygen and hydrogen isotope data were collected and primarily show correlation to regional
precipitation with some variations from evaporative and condensation processes.

o |t will be important to incorporate variations in physical property data into the CSM to augment
existing data and correlate to indirect measures of lithology (e.g., geophysical logging). Some
additional hydraulic property data were collected for this laboratory study and will be documented in
a separate report.

This laboratory study extended the characterization of the 200-DV-1 OU to include identification and
guantification of contaminant attenuation processes and parameters that will be needed to evaluate
transport of contaminants through the vadose zone into the groundwater. This type of site-specific
information enhances the technical basis to support remedy evaluation. Quantifying transport of
contaminants in the vadose zone in terms of a source to groundwater under existing and future conditions
without additional intervention is a basic element of remedy evaluation for the vadose zone. This type of
evaluation and the supporting laboratory data describing the factors that affect transport (i.e., attenuation
processes) are used in the process of considering MNA as all or part of a remedy. For cases where future
contaminant discharge from the vadose zone will create or continue plumes of concern in the
groundwater, the transport behavior and magnitude of the source discharge are used to define the target
for vadose remediation (i.e., the extent of an engineered remedy needed in addition to natural attenuation)
and assess potential remedy options. Thus, the information in this laboratory study was included in the
200-DV-1 OU characterization efforts to support the upcoming remedy evaluation in the feasibility study.
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Geologist Descriptions of Samples
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Appendix A

Geologist Descriptions of Samples

The following files show the geologist description of the samples used in this study.
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Appendix B

Spiked-Contaminant Batch Experiments
Individual Treatment Results
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Appendix B

Spiked-Contaminant Batch Experiments
Individual Treatment Results

The table below shows the individual treatment results for spiked-contaminant batch tests conducted
to estimate the linear equilibrium partitioning coefficient (Ky). For this table, some data show negative
computed Kq values. Negative Kq values are interpreted as indicating and estimate of zero for the K
value.
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