0094054

TANK 4 AND LEACHATE TRANSMISSION SYSTEM REPORT CONSTRUCTION QUALITY ASSURANCE (CQA)

SECTION

1 OF 9

TANK 4 AND LEACHATE TRANSMISSION SYSTEM REPORT **CONSTRUCTION QUALITY ASSURANCE (CQA)**

ENVIRONMENTAL RESTORATION DISPOSAL FACILITY (ERDF)

SUPER CELL 9

SUBCONTRACT NO. S013213A00

Rob L. Stallings, P.E. Certification Engineer License No. 40137 Envirotech Registration No. 602297866

JANUARY 2011

010032

JANUARY 2011 (010032)

TABLE OF CONTENTS

INTR	ODUCTIO)N	1
1.1	Scope of	of Work	1
1.2	Project	Specifications	4
1.3			
1.4	Project	Overview	6
LEAC	HATE TRA	NSMISSION SYSTEM PIPING	7
2.2			
	2.2.1		
	2.2.2		
	2.2.3		
	2.2.4		
	2.2.5	"As-Built" Drawings	
TANK	(4 CONST	RUCTION	10
	-		
	3.3.3		
	3.3.4		
	3.3.5		
	3.3.6		
	3.3.7		
		3.3.7.4 Non-Destructive Seam Continuity Testing	
		3.3.7.7 Electronic Leak Detection Survey	
		3.3.7.8 Tank Tightness Testing	17
		3.3.7.9 "As-Built" Survey	
	3.3.8	Ancillary Equipment	18.
3.4	Conclus	ion	18.
ACCE	PTANCE T	EST PROCEDURES (ATPs)	18
4.1			
4.2			
4.3			
	1.1 1.2 1.3 1.4 LEAC 2.1 2.2 TANK 3.1 3.2 3.3	1.1 Scope of 1.2 Project 1.3 Key Project 1.4 Project 1.4 Project LEACHATE TRA 2.1 Construct 2.2 CQA ar 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 TANK 4 CONST 3.1 Scope of 3.2 Construct 3.3 CQA ar 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.4 Conclust ACCEPTANCE T 4.1 Scope of 4.2 Accepta	1.2 Project Specifications 1.3 Key Project Operational Organizations 1.4 Project Overview LEACHATE TRANSMISSION SYSTEM PIPING 2.1 Construction Activities 2.2 CQA and CQC Activities 2.2.1 Manholes 2.2.2 HDPE Pipe 2.2.3 Earthwork Backfill 2.2.4 Pipe Testing 2.2.5 "As-Built" Drawings TANK 4 CONSTRUCTION 3.1 Scope of Services 3.2 Construction Activities 3.3 CQA and CQC Activities 3.3 CQA and CQC Activities 3.3.1 Subcontractor Submittals 3.3.2 Earthwork Foundation 3.3.3 Ring Wall Concrete and Anchor Bolt Placement 3.3.4 Tank Erection 3.3.5 HDPE Pipe 3.3.6 Pipe Testing 3.7.1 LLDPE Geomembrane Manufacturing Observations/Conformance Testin 3.3.7.1 LLDPE Geomembrane Liner Seaming 3.3.7.4 Non-Destructive Seam Continuity Testing 3.3.7.5 Secondary Geomembrane Liner Repairs 3.3.7.7 Electronic Leak Detection Survey 3.3.7.8 Tank Tightness Testing 3.3.7.9 "As-Built" Survey 3.3.8 Ancillary Equipment 3.4 Conclusion ACCEPTANCE TEST PROCEDURES (ATPs) 4.1 Scope of Services 4.2 Acceptance Test Procedures (ATPs)

JANUARY 2011 (010032)

5.	DOCU	JMENTATION	20.
	5.1	Daily Reports	20.
	5.2	Inspection Data Sheets	20.
	5.3	CQA Progress Reports	
	5.4	Photograph Log	
	5.5	Supplier/Contractor Deviation Disposition Request (SDDR/CDDR) Documentation	
	5.6	Non-Conformance Reporting	
6.	CONC	LUSIONS	21.
TABLE 3	3.1	SUMMARY OF DESTRUCTIVE TEST CRITERIA	17.
APPEND	DIX A.	"AS-BUILT" DRAWINGS	A.
APPENE	DIX B.	PIPE PRESSURE TESTING	В.
APPEND	DIX C.	earthwork testing	
		C.1 STRUCTURAL FILL PROCTORS	
		C.2 STRUCTURAL FILL SOIL CLASSIFICATIONS	
		C.3 FIELD DENSITY TESTING	C.3
APPENE	DIX D.	TANK 4 CONCRETE TESTING	D.
APPEND	DIX E.	TANK 4 ACCEPTANCE NOTIFICATIONS	E.
APPEND	DIX F.	LLDPE CONFORMANCE TESTING	F.
APPEND	DIX G.	GEOSYNTHETIC FIELD TESTING RESULTS	G.
		G.1 SECONDARY GEOMEMBRANE	
		G.2 PRIMARY GEOMEMBRANE	G.2
		G.3 TRIAL WELDS	G.3
		G.4 ELECTRONIC LEAK TESTING	
		G.5 TANK TIGHTNESS TESTING	G.5
APPEND	NX H.	DOCUMENTATION	H.
		H.1 DAILY REPORTS	
		H.2 WEEKLY PROGRESS REPORTS	H.2
		H.3 PHOTOGRAPH LOG	H.3
APPEND	OIX I.	events reports and corrective actions	
		I.1 SUPPLIER DEVIATION DISPOSITION REPORTS (SDDRs)	
		1.2 CONSTRUCTION CONTRACTOR SUPPLIER DEVIATION DISPOSITION REPORTS	
		1.3 NON-CONFORMANCE REPORTING	1.3
APPEND	IX J.	ACCEPTANCE TEST PROCEDURES (ATPs)	
		J.1 TANK 4 "DRY RUN" ACCEPTANCE TEST PROCEDURES (ATPs)	-
		J.2 TANK 4 ACCEPTANCE TEST PROCEDURES (ATPs)	J.2

JANUARY 2011 (010032)

1. INTRODUCTION

ENVIROTECH ENGINEERING & CONSULTING, INC. (ENVIROTECH) was retained by Washington Closure Hanford, LLC (WCH) to provide Construction Quality Assurance (CQA) observation and testing services during construction of Super Cells 9 and 10 at the Environmental Restoration Disposal Facility (ERDF). The ERDF is located approximately 30-mi. north of Richland, WA, in the 200 West Area of the Hanford Nuclear Reservation. The U.S. Department of Energy (DOE) administers the Hanford Nuclear Reservation and ERDF. The construction of two (2) leachate storage tanks (Tanks 3 and 4) and the associated leachate transmission pipeline system were individual components of the Super Cells 9 and 10 construction project. WCH is under contract to the DOE for construction of ERDF Super Cells 9 and 10, and Environmental Restoration was retained by Washington Closure Hanford, LLC (WCH) to be surrounded to the supervision of the Super Cells 9 and 10 construction project. WCH is under contract to the DOE for construction of ERDF Super Cells 9 and 10, and Environmental Restoration was retained by Washington Closure Hanford, LLC (WCH) to be surrounded to be supervised by Washington Closure Hanford, LLC (WCH) to be surrounded to the supervised by Washington Closure Hanford, LLC (WCH) to be supervised by Washington Closure Hanford, LLC (WCH) to be surrounded by Washington Closure Hanford, LLC (WCH) to be surrounded by Washington Closure Hanford, LLC (WCH) to be surrounded by Washington Closure Hanford, LLC (WCH) to be surrounded by Washington Closure Hanford, LLC (WCH) to be surrounded by Washington Closure Hanford, LLC (WCH) to be surrounded by Washington Closure Hanford, LLC (WCH) to be surrounded by Washington Closure Hanford, LLC (WCH) to be surrounded by Washington Closure Hanford, LLC (WCH) to be surrounded by Washington Closure Hanford, LLC (WCH) to be surrounded by Washington Closure Hanford, LLC (WCH) to be surrounded by Washington Closure Hanford Han

This report documents the construction of Tank 4 and the associated leachate transmission pipeline system. This document represents the third of four (4) certifying reports that document CQA activities during construction of Super Cells 9 and 10 as follows:

- 1. Super Cell 9 Final Report;
- 2. Super Cell 10 Final Report;
- 3. Tank 4 and Leachate Transmission System Report; and
- 4. Tank 3 Report.

The three (3) individual components comprising this report are as follows:

- ① Leachate Transmission Piping;
- ② Tank 4 Construction; and
- 3 Acceptance Test Procedures.
- **Scope of Work.** The scope of ENVIROTECH'S services for this project segment is outlined in *Exhibit D Scope of Work* and encompasses the following:
 - **A.** Mobilization Activities.
 - Training requirements and certifications, as outlined in Submittal 5-09 -Training Matrix.

JANUARY 2011 (010032)

- Procurement and mobilization of testing equipment, supplies, and consumables.
- Development, review, and approval of submittals.
- Delivery and set-up of construction testing equipment to include calibration of laboratory and field testing equipment and associated documentation.

B. Inspection Activities.

- All inspection activities, as defined in the Construction Quality Assurance Plan.
- Verification of construction activities to ensure that Construction Quality Control (CQC) testing was completed to include:
 - Leachate transmission pipeline system, leachate storage tank system, and associated appurtenances;
 - Electrical conduit and concrete-encased duct banks;
 - Crest pad building concrete and rebar; and
 - Crest pad building electrical testing.

C. Acceptance Testing.

- Observe and record the results of the dry-run verification of the acceptance tests conducted by TWS.
- Observe and record the results of the acceptance tests procedures (ATP) conducted by TWS.

D. Documentation.

- Preparation of a final certification report to document each construction component monitored by CQA, as required by the CQAP.
- Preparation and submittal of preliminary reports in order to expedite the final report review process.

TANK 4 AND LEACHATE TRANSMISSION SYSTEM REPORT CONSTRUCTION QUALITY ASSURANCE (CQA) ENVIRONMENTAL RESTORATION DISPOSAL FACILITY (ERDF)

SUBCONTRACT S013213A00

JANUARY 2011 (010032)

SUPER CELL 9

- **E.** CQA Subcontractor Submittals.
 - Submit the subcontract documents listed in Exhibit "I" and in accordance with the requirements and procedures set forth in Exhibit "I".
- **F.** Receiving Inspections.
 - Conduct receipt inspections to include transportation and handling of geosynthetic materials.
 - Conduct receipt inspections to include transportation and handling of bentonite materials.
- **G.** Review Construction Subcontractor's Submittals.
 - Review the Construction Subcontractor's (TWS) engineering submittals listed in Attachment C of the specifications.
 - Review calibration data for the Construction Subcontractor's testing equipment to include pugmill scales.
- **H.** Progress "As-Built" Drawings and Specifications.
 - Maintain an up-to-date set of Construction Subcontract drawings and technical specifications.
- **I.** "As-Built" Surveys.
 - Conduct "As-Built" surveys to demonstrate that the cell's subgrade; lysimeter
 and liner system layer thicknesses (top of admix, secondary drainage,
 primary drainage and operations layers); leachate collection; and pipeline
 alignments meet the requirements specified in the Construction Subcontract
 drawings and technical specifications.
 - Incorporate the "As-Built" survey on the "As-Built" drawings and summarize in table format to include survey points in a 50-ft. grid corresponding to the Washington State Plane coordinate system Northing, Easting, and Elevation.
 - Prepare drawings in accordance with SC 4.3 Subcontractor-Furnished Drawings, Data, and Samples (Exhibit "B").

JANUARY 2011 (010032)

- **J.** Meetings.
 - Attend and participate in weekly progress meetings administrated by WCH.
 - Plan supplemental meetings, as necessary, to coordinate activities with the ERDF Operations Subcontractor, WCH, and others.
- **K.** Work Excluded. Work specifically excluded from the scope of work included:
 - CQA support trailers and utilities;
 - Construction work associated with Exhibits "E" and "F";
 - Cultural/ecological assessments or reviews;
 - Radiological control support/personnel monitoring; and
 - Supplying radiological postings (signs and labels).
- **1.2 Project Specifications.** The work was conducted in accordance with the following documents:
 - Construction Specifications and Drawings for Environmental Restoration Disposal Facility (ERDF), Super Cells 9 and 10, Hanford Site, Richland, Washington, prepared for WCH by Weaver Boos, Inc., and dated November 13, 2009.
 - Construction Quality Assurance Plan (CQAP) for Environmental Restoration Disposal Facility (ERDF), Super Cells 9 and 10, prepared for the U.S. Department of Energy by Weaver Boos, Inc., and issued for construction on November 13, 2009.

In addition, all work described in this report was conducted in conformance with all issued design clarifications and modifications as well as supplier deviation disposition requests (SDDRs) and approved contractor submittals.

1.3 Key Project Operational Organizations.

• Tradewind Industries, Inc. (TWS) of Kennewick, WA, served as the construction subcontractor for Super Cell 9.

JANUARY 2011 (010032)

- DelHur Industries, Inc. (DHI) of Port Angeles, WA, served as the primary construction subcontractor to TWS for the construction of Super Cell 9.
- Gundle/SLT Environmental, Inc. (GSE) of Houston, TX, provided the 40-mil. LLDPE geomembrane material.
- Environmental Specialties International Inc. (ESI) of Baton Rouge, Louisiana, served as the liner installer/subcontractor under TWS.
- SKAPS Industries of Athens, Georgia, supplied the 8-oz. geocomposite geotextile materials (Type A and Type B, respectively) and geocomposite materials.
- ISCO Industries of Louisville, Kentucky, supplied the leachate collection and riser piping.
- American Electric of Richland, WA, served as the electrical subcontractor to TWS for construction of Super Cell 9.
- Total Energy of Richland, WA, served as a subcontractor to American Electric for the logic controls associated with the leachate transmission system.
- Leak Location Services (LLS) Inc. of San Antonio, Texas, performed the electronic leak detection surveys on the Tank 4 liner systems.
- Baker, McHenry and Welch Constructors (BMWC) of Indianapolis, Indiana, served as the piping installer/subcontractor under TWS.
- Columbia TecTank of Kansas City, MO, provided the Tank 4 design and tank materials.
- Thompson Tank of Downey, CA, subcontracted to Columbia TecTank to provide on-site tank component assembly.
- Stratton Surveying Inc., of Kennewick, WA, served as the CQA surveyor for Super Cell 9 and provided the CQA "As-Built" drawings.
- Precision Geosynthetic Laboratories (PGL) of Anaheim, California, and Texas Research Institute, Inc. (TRI) of Austin, Texas, served as the CQA testing laboratories for geosynthetic materials.

JANUARY 2011 (010032)

1.4 Project Overview. This report documents the construction of Tank 4 and the associated leachate transmission pipeline system.

The leachate transmission piping conveys wastewater from the crest pad buildings to the leachate storage tanks. Commencing on March 18, 2010, TWS conducted excavation activities and installed seven (7) new manholes between the new storage tanks and Crest Pad Buildings 9 and 10. TWS installed MH-32 north of Crest Pad Building 9 and MH-33 north of Crest Pad Building 10. BMWC installed the transmission piping between Crest Pad Buildings 9 and 10 to their respective manholes located north of the buildings. The remaining five (5) manholes were spaced approximately 500-ft. apart in the north berm from MH-33 to the tank storage area, and BMWC installed the double-walled leachate transmission piping between the manholes.

An existing leachate transmission piping system is located in both the south and north berms. The new transmission system was connected to the existing transmission system in the tank storage area. New pipe was installed between MH-38 and MH-9, and from MH-21 to a tie-in point between MH-20 and MH-21.

Subsequent to installation of the leachate transmission piping, the pipe section was pressure-tested. Following acceptance of the pressure testing results, the pipe trenches were backfilled and tested, according to the requirements set forth in the specifications. On August 31, 2010, pressure testing was conducted on the entire leachate transmission system.

On September 14, 2010, TWS commenced construction of Tank 4. TWS utilized structural fill to raise the tank's foundation to the design elevation, and BMWC installed the leachate detection piping and tank drain. After the foundation was raised, TWS excavated a 100-ft.-dia. trench in the foundation and poured a concrete ring wall foundation.

TWS retained Columbia TecTank to supply the tank components and in turn, Columbia TecTank contracted with Thompson Tank, Inc. to erect Tank 4's structural walls. After the anchor bolts were drilled into the concrete ring wall, Thompson Tank, Inc. bolted the walls together before attaching them to the anchor bolts. TWS then placed grout into the airspace between the bottom of the tank walls and the top of the concrete slab.

ESI purchased geosynthetic material from Gundel/SLT Environmental (GSE) and SKAPS Industries. GSE produced the geomembrane material while SKAPS supplied the geotextile and geocomposite materials. ESI commenced installation of the geosynthetic liner into Tank 4 on November 6, 2010. A 40-mil. LLDPE secondary geomembrane was installed on the sidewalls and floor of the tank. ESI then installed a layer of geocomposite on the floor of Tank 4 over the secondary geomembrane, followed by installation of the primary 40-mil.

SUBCONTRACT S013213A00 JANUARY 2011 (010032)

LLDPE geomembrane over the secondary geomembrane on the walls and geocomposite on the floor of Tank 4.

It should be noted that due to inclement weather conditions, completion of the liner system was delayed. Following completion of the liner system, BMWC installed motor-operated valves (MOVs) in the manholes located in the tank storage area, followed by installation of the control systems by American Electric. Total Energy (subcontractor to American Electric) and CQA personnel completed the Tank 4 and leachate transmission Acceptance Test Procedures (ATPs) on January 12, 2011.

Following completion of each construction phase, Stratton Surveying of Kennewick, WA, conducted a CQA "As-Built" survey. The "As-Built" survey drawings were progressively compiled from the initial level of cell construction forward. The 11-in. x 17-in. "As-Built" drawings are included in *Appendix A*. For ease of review, please refer to the full-size (24-in. x 36-in.) drawings in CQA *Submittal 5-22 - CQA Surveys*.

2. LEACHATE TRANSMISSION SYSTEM PIPING

Installation of the leachate transmission pipeline and associated manholes (between Crest Pads 9 and 10 and the leachate storage area) will be discussed in the following paragraphs.

- **2.1 Construction Activities.** Construction of the leachate transmission pipeline encompassed the following five (5) steps:
 - (1) Manhole installation in the north berm;
 - (2) Welding the double-containment pipe;
 - (3) Installation of the double-containment pipe between the manholes;
 - (4) Backfilling the leachate transmission pipeline trench; and
 - (5) Installation of the motor-operated valves and associated control systems.

TWS excavated the location for each manhole in the leachate transmission system to include the north berm and tank storage area. TWS procured sectioned, pre-fabricated concrete manholes and placed the sections into the excavations. The manhole sections were then assembled in the excavations utilizing neoprene rubber gaskets.

JANUARY 2011 (010032)

BMWC procured the piping from both J-M Eagle and PolyPipe, and welded the double-containment leachate transmission piping together on the north berm and in BMWC's lay-down area.

TWS excavated the leachate transmission system trenches between the manhole locations and their surveyor set the slope grade of the gravity drain lines from the excavated pipe bed. With the aid of BMWC, TWS set the leachate transmission system piping into the tranches. Following placement of the referenced piping, BMWC installed gaskets on either end of the pipes and connected the piping system to the manholes.

Following completion of CQA and CQC activities, TWS backfilled the leachate transmission system trenches with structural fill. Aided by American Electric, BMWC then installed the motor-operated valves (MOVs) and associated control systems in the manholes, as graphically depicted on the project's design drawings.

During backfilling operations, one (1) soil lift failed to meet construction specifications. CQA collected a soil sample and TWS resumed compaction activities. The laboratory analytical results indicated that the soil failed to meet construction specification requirements. TWS prepared, and WCH accepted, Construction Subcontractor Supplier Deviation Disposition Request (SDDR) 23. Pursuant to the SDDR-3, the material was accepted in a use-as-is condition. A copy of SDDR-23 is included in *Appendix I*.

- **2.2 CQA and CQC Activities.** Construction Quality Assurance (CQA) and Construction Quality Control (CQC) conducted all testing associated with installation of the leachate transmission piping system.
 - 2.2.1 Manholes. TWS procured the manholes from H2 Precast, Inc. and prior to delivery, TWS submitted (and WCH approved) manhole design requirements and associated materials. CQA verified that the design requirements submitted corresponded with the manholes delivered to the site. In addition, CQA observed the installation activities to verify that the manholes were correctly assembled during the installation process.
 - 2.2.2 HDPE Pipe. BMWC procured the HDPE pipe from both JM Eagle, Inc. and PolyPipe, Inc. Each company conducted quality control (QC) testing on their respective product to ensure that the piping properties met the requirements set forth in the construction specifications. The Manufacturer Quality Control (MQC) certifications were reviewed by WCH engineers and CQA to verify consistency with the requirements set forth in the construction specifications, and approved.

JANUARY 2011 (010032)

Following delivery to the site, the materials were placed in holding areas for CQC receipt and verification that the piping corresponded to the requirements set forth in the referenced submittal and construction specifications. Manufacturer Quality Control (MQC) certifications are included in *Appendix B*.

2.2.3 Earthwork Backfill. The backfill utilized for the leachate transmission system piping trenches consisted of the excavated structural fill material from the north berm. Eleven (11) structural fill samples were collected during the course of the project. The testing conducted by CQA personnel on the collected samples included the following:

Modified Proctor pursuant to ASTM D1557;
Grain-size distribution (mechanical sieve) tests pursuant to ASTM D2487 (Classification of Soils for Engineering Purposes);
Atterberg Limits pursuant to ASTM D4318; and
Sieve Analysis pursuant to ASTM D422.

The laboratory analytical results from this testing event were utilized to analyze the field test measurements.

All fill associated with earthwork backfilling activities associated with installation of the leachate transmission system piping is considered to be utility backfill, as specified in the site work section of the project specifications. Therefore, the compaction requirement is 90% of the maximum dry density, as determined by the modified proctor (ASTM D1557) analytical results. The CQA Plan specifies that one (1) in-place moisture density test (ASTM D6938) be conducted every 300-ft. per trench lift. CQA conducted 205 in-place moisture density tests on the leachate transmission pipeline system to meet the testing frequency requirements set forth in the CQA plan. The laboratory analytical results are included in *Appendix C*.

2.2.4 Pipe Testing. After the pipes were welded together and installed between the manholes, CQC personnel conducted pressure testing on all pipes and associated welds. The inner pipes were hydrostatically tested while the outer annular spaces were pneumatically tested, in accordance with the requirements set forth in the testing specifications. In addition, CQA personnel verified and independently inspected each weld, in accordance with the requirements set forth in the testing specifications. The laboratory analytical results are included in *Appendix C*.

JANUARY 2011 (010032)

2.2.5 "As-Built" Drawings. Following completion of pressure testing activities on the piping, Stratton Surveying of Kennewick, WA, conducted a survey to document the piping location and verify the minimum 0.5% slope grade of the referenced piping. The "As-Built" drawings for the leachate transmission system piping are included in Appendix A.

3. TANK 4 CONSTRUCTION

Tank 4 construction activities, to include the tank's foundation and erection as well as installation of the geosynthetic liner material, will be discussed in the following paragraphs.

- **3.1 Scope of Services.** The scope of ENVIROTECH'S services outlined in the Construction Quality Assurance Plan (CQAP) included the following:
 - Subcontractor submittal review;
 - Oversight of subgrade and foundation preparation;
 - Oversight of concrete placement;
 - Oversight of anchor bolts and shop-fabricated tank parts;
 - Oversight of field-erected tank parts;
 - Oversight of piping, pumping, and other ancillary equipment; and
 - Oversight of tank liner system.

ENVIROTECH provided full-time monitoring services for the above-referenced activities from September 1, 2010 to December 20, 2010.

- 3.2 Construction Activities. Tank construction activities encompassed the following six (6) steps:
 - (1) Demolition of Tank 1;
 - (2) Construction of the earthwork foundation and associated piping;
 - (3) Formation of the concrete ring wall;
 - (4) Tank shell erection;

TANK 4 AND LEACHATE TRANSMISSION SYSTEM REPORT CONSTRUCTION QUALITY ASSURANCE (CQA)

ENVIRONMENTAL RESTORATION DISPOSAL FACILITY (ERDF)
SUPER CELL 9

SUBCONTRACT S013213A00

JANUARY 2011 (010032)

- (5) Installation of the geosynthetic liner material; and
- (6) Tank cover assembly.

TWS commenced Tank 1 demolition activities on September 1, 2010. Following completion of the demolition activities, TWS removed Tank 1 for transport to the ERDF active cell. On September 14, 2010, TWS commenced with construction of Tank 4. TWS excavated trenches in the Tank 4 footprint for the leachate transmission system drain and leak detection pipelines. The piping was welded, installed, and the trenches were backfilled.

In addition, TWS tied into the existing leachate transmission system at MH-17. TWS removed and replaced Tank 1's inflow line originating from MH-17, and reset the new line as the Tank 4 inlet. Following completion of tie-in activities, the piping trench was backfilled and TWS utilized structural fill to raise Tank 4's foundation to the design elevation.

TWS excavated a 100-ft.-dia. x 4-ft.-wide trench in the Tank 4 foundation and placed rebar supports in between the concrete forms, pursuant to the requirements set forth in the contract specifications. TWS then poured the ring wall in-place in one continuous pour and after the concrete reached minimum break strength, the ring wall was backfilled with structural fill.

TWS retained Columbia TecTank to design and furnish the structural portion of Tank 4, and the design submitted by Columbia TecTank was subsequently reviewed and approved by CQA and WCH. Columbia TecTank furnished the tank materials and retained Thompson Tank, Inc. to erect and install the tank on-site. Thompson Tank, Inc. initiated tank installation activities by drilling anchor bolts into the ring wall slab, as graphically depicted on TWS's tank submittal drawings. The tank wall panels were attached to the anchor bolts utilizing a torque gun. Following wall panel placement activities, leveling bolts were installed pursuant to the requirements set forth in the construction specifications. In addition, TWS placed grout into the space between the bottom of the tank wall panels and concrete slab pursuant to the requirements set forth in the construction specifications.

ESI procured geosynthetic liner material for Tank 4 from both Gundel/SLT Environmental (GSE) and SKAPS Industries. GSE produced the geomembrane liner material while SKAPS supplied the geotextile and geocomposite materials. On November 6, 2010, ESI initiated installation of the geosynthetic liner material in Tank 4. ESI attached the 40-mil. LLDPE secondary liner to the sidewalls of Tank 4 utilizing anchor bolts at the top of the walls. The secondary liner was continuously welded to the drain component inside the tank.

SUBCONTRACT S013213A00

JANUARY 2011 (010032)

During tank testing activities, minor tears occurred in the secondary 40-mil. LLDPE geomembrane at the anchor bolt penetration locations. Following completion of liner repair activities, ESI installed a layer of geocomposite over the secondary geomembrane liner material on the floor of Tank 4. On December 9, 2010, ESI installed the primary 40-mil. LLDPE geomembrane liner material over the geocomposite on the floor and secondary geomembrane liner material on the walls of Tank 4. ESI continuously welded the primary geomembrane on the walls to the primary geomembrane on the floor of Tank 4.

It should be noted that due to inclement weather conditions, installation of the primary geomembrane liner material in Tank 4 was delayed. Thompson Tank shall assemble the tank cover on at a later date following this report.

- 3.3 CQA and CQC Activities. Construction Quality Assurance (CQA) conducted the following activities associated with Tank 4 construction.
 - **3.3.1 Subcontractor Submittals.** TWS retained Columbia TecTank to design and furnish the structural portion of Tank 4, and the design submitted by Columbia TecTank was subsequently reviewed and approved by CQA and WCH.
 - **3.3.2 Earthwork Foundation.** The earthwork associated with Tank 4 construction includes both structural and utility fill. The specifications for both fill types are located in the *Site Work Section* of the construction specifications document.

As previously discussed in Section 2.2.3 of this report, eleven (11) structural fill samples were collected for laboratory analysis. The fill supporting (and in contact with) the ring wall is considered to be structural fill, as specified in the Site Work Section of the construction specifications document. CQA conducted twelve (12) in-place moisture density tests on the subgrade and subsequent lifts of fill around the perimeter of the ring wall. CQA conducted two (2) tests per lift to meet the specification requirement of one (1) test per 300-ft. of excavated trench, as summarized in the soil testing documentation in Appendix C. In addition, the CQA Plan specifies that one (1) in-place moisture density test (ASTM D6938) be conducted every 300-ft. per trench lift. CQA conducted 205 in-place moisture density tests on the leachate transmission pipeline system to meet the testing frequency requirements set forth in the CQA plan, as summarized in the soil testing documentation in Appendix C.

3.3.3 Ring Wall Concrete and Anchor Bolt Placement. CQA observed concrete testing activities on the ring wall conducted by Intermountain Material Testing, and the results are included in *Appendix D*. TWS drilled and installed the anchor bolts in the tank ring wall, and CQA verified that the anchor bolts were installed pursuant to the

SUBCONTRACT S013213A00

JANUARY 2011 (010032)

design specifications. A copy of the Acceptance Certificate for Tank 4 is included in *Appendix E*.

- 3.3.4 Tank Erection. The shop tank parts shipped from Columbia TecTank were received on-site and inspected by CQA personnel who verified that the items arrived undamaged. The field-erected tank parts were installed by Thompson Tank, Inc., and CQA verified that the tank design specification requirements were followed. In addition, CQA met with Thompson Tank employees and verified the calibration and proper function of all torque wrenches to ensure that the correct torque was being applied on all bolts. CQA verified that the grout in the air void between the bottom of the tank walls was properly placed and cured. Documentation of CQA's final inspection of all field-erected tank parts is included in *Appendix E*.
- **3.3.5 HDPE Pipe.** BMWC acquired the HDPE pipe from both JM Eagle, Inc. and PolyPipe, Inc., pursuant to the specification requirements outlined in *Section 2.2.2*.
- 3.3.6 **Pipe Testing.** Subsequent to the pipes being welded together and installed under Tank 4, BMWC conducted pressure testing on all pipes and pipe welds. The inner pipes were hydrostatically tested while the outer annular spaces were pneumatically tested, pursuant to the testing specification requirements. CQA independently inspected and verified each weld, pursuant to the requirements set forth in the testing specification. A record of all CQC testing of the leachate transmission piping is included in *Appendix B*.

3.3.7 LLDPE Geomembrane.

3.3.7.1 LLDPE Geomembrane Manufacturing Observations and Conformance Testing. Approximately 11,150-sf of black, 40-mil.-thick GSE (smooth) LLDPE geomembrane liner material was delivered on-site for Tanks 3 and 4 construction. PGL personnel collected samples of selected rolls at the GSE plant according to the specified frequency outlined in the CQA Plan. Documentation associated with the factory inspection visit is included in *Appendix F*. The samples were shipped to Precision Geosynthetics Laboratory in Anaheim, CA, for conformance testing.

As part of the CQA testing program, samples collected from a total of one (1) roll of 40-mil. LLDPE geomembrane liner were tested to ensure conformance with the project specifications. The CQA conformance testing frequency exceeded the CQA testing requirement of one (1) conformance test for every 50,000-sf of geomembrane liner delivered to the site. The test results were reviewed by ENVIROTECH personnel and determined to be in compliance with

JANUARY 2011 (010032)

the project specifications. The conformance test results are summarized in *Appendix F.*

In addition to the conformance tests, the geosynthetic (GSE) manufacturer provided a quality control documentation summary for each roll of HDPE geomembrane. The quality control documents and test results were reviewed by Environmental and determined to be in compliance with the project specifications.

3.3.7.2 Liner Deployment. ESI submitted a proposed panel layout drawing graphically depicting the number and orientation of the geomembrane panels prior to deployment of the geomembrane. During deployment activities, Environment recorded the approximate location of the panels deployed. The secondary geomembrane liner panel layout is graphically depicted on the drawing included in *Appendix A*.

During deployment of the geomembrane liner panels, ENVIROTECH personnel provided the following services:

- Confirmation of panel overlap;
- Visual observation of overall sheet quality; and
- Assignment of a unique identification number to each panel deployed.
- 3.3.7.3 LLDPE Geomembrane Liner Seaming. All LLDPE geomembrane seaming was conducted by ESI personnel and observed by ENVIROTECH personnel. Trial seams were made by each welding technician at the beginning of the shift and at mid-shift utilizing the type of welder to be operated. In addition, trial seams were required in the event the type(s) of material being welded changed. Sample coupons were cut from each trial seam and tested in the peel-and-shear test modes using a calibrated tensiometer provided by ESI. If a trial seam failed during field testing, the welder and welding technician associated with the failing trial seam were not allowed to weld on the geomembrane liner until they completed a trial seam that passed the field testing requirements set forth in the specifications. A summary of the trial seam testing results is presented in *Appendix G*.

All seaming operations were observed and documented by ENVIROTECH personnel. The entire length of all seams, patches, or other repairs were

SUBCONTRACT \$013213A00 JANUARY 2011 (010032)

observed and documented either during or shortly after completion. Approximately 760-If of welding was required to join the secondary geomembrane liner panels. A summary of CQA seaming observations is presented in *Appendix G*. The approximate locations of the secondary geomembrane liner seams are graphically depicted on the drawing included in *Appendix A*.

- **3.3.7.4 Non-Destructive Seam Continuity Testing.** The non-destructive seam continuity testing was conducted by ESI personnel and observed by ENVIROTECH personnel. All seams between panels as well as repairs made to the geomembrane liner system were non-destructively tested. The three (3) types of non-destructive tests used for this project are as follows:
 - Vacuum box testing on extrusion welds;
 - Air pressure testing on double hot-wedge fusion welds; and
 - Spark testing on pipe boots and skirts.

Vacuum box, air pressure, and spark testing were conducted in accordance with the requirements outlined in the project specifications.

All leaks or discontinuities detected in the seams were marked and subsequently repaired in accordance with project specification requirements. Documentation summarizing the observations made during non-destructive testing of the seams and repairs is presented in *Appendix G*.

- **3.3.7.5 Secondary Geomembrane Liner Repairs.** Defects observed in the secondary geomembrane liner were assigned a unique identification number by ENVIROTECH who located and marked the defects in the field for repair. The defects were repaired and non-destructively tested by ESI in accordance with the project specification requirements. A summary of the defects and associated repairs is presented in *Appendix G*. The approximate defect repair locations are graphically depicted on the drawing included in *Appendix A*.
- **3.3.7.6 Destructive Testing.** A total of six (6) initial destructive test samples were collected (1 fusion-weld sample, secondary; 1 fusion-weld sample, primary; 2 extrusion-weld samples, secondary; and 2 extrusion-weld samples, primary) and tested using a calibrated tensiometer in ENVIROTECH'S on-site laboratory. The destructive testing frequency requires at least two (2) destructive test samples for factory panel or one (1) test per 500-lf/welder. The six (6) fusion-

IANUARY 2011 (010032)

weld destructs exceed the number of destructs required by the specification. The test sample locations were selected by ENVIROTECH personnel based either on observations of the welded seams or random placement. ESI personnel cut the destructive seam samples and delivered them to ENVIROTECH for testing.

In the event of a destructive test failure, additional samples were removed from the seam at minimum 10-ft. intervals on either side of the failing test location and tested until passing retests bounded the original test, or until the extent of the welding performed by the apparatus in question had been exhausted. The seam between the passing tests (or to the extent of welding in question) was then capped. The approximate destructive test sites may be located by first referring to the specific destructive test in the Secondary Geomembrane Seam Destructive Log included in *Appendix G*. From this log, the assigned Repair Number is graphically depicted on the drawing included in *Appendix A*. The destructive test and repair location are the same.

Destructive samples were cut into three (3) sections and distributed as follows:

- One (1) section was forwarded to ENVIROTECH'S on-site geosynthetic laboratory for CQA destructive seam testing;
- One (1) section was forwarded to the geomembrane installer for testing; and
- ③ One (1) section was retained as an archive sample and submitted to WCH at project completion.

For CQA destructive seam testing, ten (10) test coupons were cut from each destructive test sample. Five (5) coupons were tested for adhesion (peel test mode) and five (5) coupons were tested for bonded seam strength (shear test mode). The specified acceptance criteria for destructive testing is summarized in *Table 3.1*, and a summary of the destructive test results is presented in *Appendix D*.

TANK 4 AND LEACHATE TRANSMISSION SYSTEM REPORT

CONSTRUCTION QUALITY ASSURANCE (CQA)
ENVIRONMENTAL RESTORATION DISPOSAL FACILITY (ERDF)

SUPER CELL 9

SUBCONTRACT S013213A00

JANUARY 2011 (010032)

TABLE 3.1 SUMMARY OF DESTRUCTIVE TEST CRITERIA									
Welding Method		Peel Test Mode		Shear Test Mode					
Extrusion Welding	1.	Five (5) of the five (5) test coupons per track must have a minimum peel strength of 34-lb/in.	1.	Five (5) of the five (5) test coupons must have a minimum yield strength of 45-lb/in. width.					
Excusion recains	2. Five (5) of the five (5) test coupons per track must not fail in the weld (FTB*).			Five (5) of the five (5) test coupons must not fail in the weld (FTB*).					
Fusion Welding	1.	Five (5) of the five (5) test coupons per track must have a minimum peel strength of 38-lb/in.	1.	Five (5) of the five (5) test coupons must have a minimum yield strength of 45-lb/in. width.					
rasion relaing	2.	Five (5) of the five (5) test coupons per track must not fail in the weld (FTB*).	2.	Five (5) of the five (5) test coupons must not fail in the weld (FTB*).					
FTB = Film Tear Bond									

- **3.3.7.7 Electronic Leak Detection Survey.** Leak Location Services (LLS), Inc. conducted the leak location survey for both secondary and primary geomembranes in four (4) steps as follows:
 - The tank floor was flooded with approximately 18-in. of water and electronically surveyed. LLS placed markers on the liner where holes were indicated by the survey results.
 - The water was removed from the tank floor and ESI repaired the holes in the geomembrane. The tank was then re-flooded with 18-in. of water and retested.
 - 3 After LLS verified that the geomembrane on the floor of Tank 4 was leak-free, 7-ft. of water was pumped into the tank.
 - 4 LLS tested the geomembrane on the tank walls and no leaks were detected.

Upon completion of testing activities, LLS summarized the results in the two (2) separate reports included in *Appendix G*.

3.3.7.8 Tank Tightness Testing. Tank tightness testing was conducted in conjunction with the electronic leak detection survey. In order to conduct

TANK 4 AND LEACHATE TRANSMISSION SYSTEM REPORT

CONSTRUCTION QUALITY ASSURANCE (CQA)
ENVIRONMENTAL RESTORATION DISPOSAL FACILITY (ERDF)

SUPER CELL 9
SUBCONTRACT S013213A00

JANUARY 2011 (010032)

the electronic leak detection survey, water was introduced between the secondary and primary geomembrane layers. Subsequent to LLS testing activities, TWS dyed the water in Tank 4. The dyed water was held at the 7-ft. mark for three (3) days between December 17 and 20, 2010. At the end of the testing period, clear water was discharged from the leak detection vault. It is understood that water shall continue to discharge from between the secondary and primary geomembranes, but this water is considered construction water as no dye was detected during testing procedures. The tank tightness testing record is located in *Appendix G*.

- **3.3.7.9** "As-Built" Survey. Stratton Surveying, Inc., of Kennewick, WA, conducted a geomembrane seam survey of the Tank 4 secondary and primary liners. A seam survey drawing was prepared that graphically depicts the location of each secondary geomembrane panel and repair location. The 11-in. x 17-in. "As-Built" drawings are included in *Appendix A*. For ease of review, please refer to the full-size (24-in. x 36-in.) drawings in CQA *Submittal 5-22 CQA Surveys*.
- **3.3.8 Ancillary Equipment.** CQA observed the installation of the transducers and other electrical equipment, and verified the calibration of each system prior to final approval. The calibration of the transducers and other equipment are included with the Acceptance Test Procedures Dry-Run documentation in *Appendix H*.
- 3.4 Conclusion. Tank construction commenced on September 1, 2010, and completed on December 20, 2010, following tank tightness testing activities. The tank was constructed by various subcontractors working on independent systems to complete the construction. The tank's structural, mechanical, electronic, and geosynthetic components were all tested and verified that each component met construction specification requirements.

4. ACCEPTANCE TEST PROCEDURES (ATPs)

This section provides a summary of the CQA observations and testing associated with placement of the Acceptance Test Procedures (ATPs) for Tank 4.

- **4.1 Scope of Services.** The scope of ENVIROTECH'S services outlined in the Construction Quality Assurance Plan (CQAP) consisted of the following:
 - Review subcontractor's acceptance testing of the system;
 - Verify tagging, labeling, and marking of system components;

JANUARY 2011 (010032)

SUBCONTRACT S013213A00

- Review system performance checks; and
- Review complete leachate removal system performance.

ENVIROTECH provided full-time monitoring of these activities from January 10 - 12, 2011.

4.2 Acceptance Test Procedures (ATPs). WCH ERDF Engineer, Mr. Tim Wintle, authored the ERDF Tank 4 and Leachate Transmission Pipeline Acceptance Test Procedures (ATPs) with input from Mr. Dave Sterley (TWS CQC), Mr. Bill Borloug (WCH Engineer), Mr. Ryan Harris (Test Director with Total Energy), and Mr. Joseph Voss (ENVIROTECH CQA). Mr. Jake Laws (WCH Electrical Subject Matter Expert (SME) and National Electrical Code (NEC) Inspector), Mr. Ryan Harris, and Mr. Dave Sterley aided CQA with inspection and confirmation of construction specifications and electrical code requirements, as documented in the prerequisites section of the ATP - Test Execution Form.

Prior to commencing with Acceptance Test Procedures (ATPs), TWS (assisted by Total Energy, American Electric, and CQC) conducted a "dry-run" test on Tank 4 and the leachate transmission system on January 10, 2011. The "dry-run" team tested and examined the motor-operated valves, alarms, and control logic associated with the leachate transmission system. In addition, the "dry-run" team tested the alarms and control logic associated with operation of Leachate Storage Tank 4. Although several minor imperfections were discovered in the system during "dry-run" testing, all deficiencies were corrected prior to the end of testing. The "dry-run" was documented on the ATP forms included in *Appendix J*.

TWS conducted acceptance testing of Tank 4 and the leachate transmission system on January 11, 2010, in accordance with the *ERDF Leachate Storage Tank 4 and Leachate Transmission System Acceptance Test Procedures (ATPs) - Revision 0.* ATP activities were directed by Mr. Ryan Harris (Total Energy); Mr. Bill Melvin (WCH Project Manager); Mr. Jack Howard (STR); Mr. Dave Sterley (TWS - Subcontractor QC); and Mr. Joseph Voss (CQA Recorder). In addition, Mr. Dave Einan (EPA); Mr. Owen Robertson (DOE); and Ms. Deanna McCrainie provided observation services during testing activities.

While conducting the ATP on the leachate transmission system in manhole MH-17, the motor-operated valve (MOV) failed to close. At that time, testing of MOVs in manholes MH-17 and MH-18 were skipped. The ATPs were completed, with the exception of retesting the MOVs in manholes MH-17 and MH-18. While troubleshooting the MOV failure, American Electric discovered that the existing electrical disconnect terminal in MH-17 was corroded. American Electric moved the MOV electrical connection to a non-corroded terminal in the electrical disconnect.

SUBCONTRACT S013213A00

JANUARY 2011 (010032)

On Wednesday, January 12, 2011, following repair of the MOV electrical disconnect, CQA participated in the continuation of ATP testing on Tank 4 and the leachate transmission line which was successfully completed and documented on the ERDF Leachate Storage Tank 4 and Leachate Transmission System Acceptance Test Procedures (ATPs) – Test Execution Forms in Appendix J. The continuing testing was documented as Exception 1 to the ATP testing procedures.

4.3 Leachate Removal System Performance Testing. The leachate removal system performance testing was removed from the CQA Plan by the supplier deviation disposition report (SDDR) 08. However, this testing shall be conducted by the ERDF operations subcontractor as part of start-up procedures. The SDDR-08 is included in *Appendix I*.

5. DOCUMENTATION

- **Daily Reports.** Daily reports compiled from the field books maintained by each on-site CQA staff member included the following:
 - Reference to the field books utilized that day by CQA staff;
 - Meteorological information;
 - A summary of the day's activity; and
 - Highlights of unresolved issues, if any.

A compilation of the daily reports is included in *Appendix H*.

- **Inspection Data Sheets.** All previously-referenced field and laboratory test data was recorded on Inspection Data Sheets and included in their respective Appendices.
- **CQA Progress Reports.** CQA Progress Reports were prepared weekly to summarize work activities, observations, and testing conducted by CQA. In addition, the reports provided a summary of construction activity and associated problems, if any. All CQA Progress Reports are included in *Appendix H*.
- **Photograph Log.** Daily photographs were taken to provide photo documentation of the work progression, CQA-identified issues requiring special notice, and other items of interest. The Photograph Log is included in *Appendix H*.
- **Supplier/Contractor Deviation Disposition Request (SDDR/CDDR) Documentation.**ENVIROTECH issued eight (8) SDDRs during the course of the project. The CQA and

JANUARY 2011 (010032)

contractor SDDR documentation affecting Super Cell 9 construction is included in Appendix I.

Non-Conformance Reporting. One (1) non-conformance report was issued during the course of Tank 4 and Leachate Transmission System Installation, and is included in *Appendix I*.

6. CONCLUSIONS

The activities summarized in this report are associated with construction of Super Cell 9 at the Environmental Restoration Disposal Facility (ERDF) located approximately 30-mi. north of Richland, WA, in the 200 West Area of the Hanford Nuclear Reservation. Envirotech Engineering & Consulting, Inc.'s personnel observed all activities associated with facility construction. Based on these observations and the results of the testing conducted, it is Envirotech's opinion that Super Cell 9 has been constructed in compliance with the design drawings and project specification requirements, including the Design Change Notices (DCNs) documented in this report.

APPENDIX A.

"As-Built" Drawings

REV. NO. 0600X-DD-C0716

BEGINNING BREAK CREST PAD BUILDING CENTERLINE EARTHWORK
FINISHED FLOOR ELEVATION
FLOOR
FENCE
LYSIMETER
OPERATIONS
ROAD
SUBGRADE
TOP OF BANK
TOP CENTERLINE
TERMINATION BERMS
TANK

TRENCH
TRADEWIND SERVICES, LLC
VERTICAL ANGLE POINT PRIMARY LEACHATE COLLECTION PIPE
PIPE TRANSMISSION LINE #1
PIPE TRANSMISSION LINE #2
PIPING
SECONDARY RISER PIPE
PRIMARY RISER PIPE
PRIMARY RISER PIPE
PRIMARY TRANSDUCER PIPE
LEACHATE COLLECTION PIPING
ELECTRICAL
ELECTRICAL
BOX
MANHOLE

TANK TOP SHOULDER OF SLOPE

LINER ABBREVIATIONS

SECONDARY LINER
SR SECONDARY REPAIR
SP SECONDARY PANEL

PRIMARY LINER
PR PRIMARY REPAIR
PP PRIMARY PANEL

DRAWING LIST — AS—BUILTS

0600X-DD-C0715
0600X-DD-C0716
0600X-DD-C0717
0600X-DD-C0718
0600X-DD-C0718
0600X-DD-C0719
0600X-DD-C0720
1000X-DD-C0720
1000X-DD-C0720
1000X-DD-C0720
1000X-DD-C0720
1000X-DD-C0720
1000X-DD-C0720

DETAIL IDENTIFICATION

(1) DETAIL IDENTIFICATION SHOWN ON DRAWING AS: THE DETAIL NAME IS DETAIL DESIGNATION OPTIONAL AND LOCATED HERE, FOLLOWING DETAIL 1 CALLOUT 0600X-DD-CO###

> - DRAWING NUMBER WHERE THE STANDARD DETAIL DRAWING IS LOCATED.

> > RECORD INFORMATION

RECORD NO. BLDG NO. H-6-17358, SHT01 600G

(2) ON DRAWING NUMBER OGOOX-DD-- THIS DETAIL IDENTIFIED AS:

-DETAIL DESIGNATION DETAIL NAME SCALE: AS DESIGNATED,

- DRAWING ON WHICH THE SECTION CUT

NOTES

1. ALL COORDINATES LISTED HEREIN ENDING WITH A * WERE SUPPLIED BY TRADEWIND SERVICES, LLC AND NOT VERIFIED BY THE

SURVEYOR'S CERTIFICATE
I, AARON A. DYCK, A LICENSED LAND SURVEYOR
IN THE STATE OF WASHINGTON, HEREBY CERTIFY
THAT THIS MAP CORRECTLY REPRESENTS AN
ACTUAL FIELD SURVEY CONDUCTED UNDER MY
DIRECTION, AT THE REQUEST OF ENVIROTECH
ENGINEERING AND CONSULTING, INC., AND ALL
COORDINATES AND ELEVATIONS ARE CORRECT.

D 1/4/11 al to al UVM4 to NEX. NOTE SHOWER SHOT ORK/ SHITE ORK SHOT SCALE: AS SHOWN

U.S. DEPARTMENT OF ENERGY DOE RICHLAND OPERATIONS OFFICE

RIVER CORRIDOR CLOSURE CONTRACT WASHINGTON CLOSURE

HANFORD LLC.

STRATTON SURREYING
MAPPING, PC
7525 W. DESCHUTES PL. UNIT 1C
KENNEMOK, WA 93336
(S09) 735-7364
FAX: (S09) 735-6560

ENVIRONMENTAL RESTORATION DISPOSAL FACILITY CELL 9 SYMBOLS. ABBREVIATIONS & DRAWING LIST

OTHIDOLO	, ADDITE THE THORS OF DIGIT	TITTO LIGIT
WCH JOB NO.	DOE CONTRACT NO.	CADD FILENAME
14655	DE-AC06-05RL-14655	4369WS2.DWG
No again a management of		

REV. NO. **ERDF** 0600X-DD-C0716 0

Res Common Common Common Dedicated To Safety Excellence

REV. NO. NOTES 0600X-DD-C0717 L SURVEY DATUM
VERTICAL: NAVD 88
HORIZONTAL: NAD 83 (91) 2. SEE DRAWING NO. 0600X-DD-C0718, FOR SECONDARY & PRIMARY REPAIR 3. ALL COORDINATES LISTED HEREIN ENDING WITH " WERE LOCATED UTILIZING THE SEAM TRACKING THE CQA GEOSYNTHETICS LEAD, AS PROVIDED FOR IN CQA NCR-03. 1. TANK LINER AS-BUILT REFERENCE; EDGE OF TANK PANEL BREAK LINE SR197 SR200 M SR10 GROUT TANK SECTION VIEW SR29 PR67 SR150 PANEL ARC PR35 \$k69/ \$R63/5/ PR33C Pio FLOOR DRAIN DSR35 PR32 PR30 DSR36 PRO5 SR75 SR08 PR74* PR26 PR25 * PR28 • PR29 SURVEYOR'S CERTIFICATE SR38 PR75* I, AARON A DYCK, A LICENSED LAND SURVEYOR IN THE STATE OF WASHINGTON, HEREBY CERTIFY THAT THIS MAP CORRECTLY REPRESENTS AN ACTUAL FIELD SURVEY CONDUCTED UNDER MY DIRECTION, AT THE REQUEST OF ENVIRONMENT AND ALL COORDINATES AND ELEVATIONS ARE CORRECT. SR59 PR76* PR23 CF PR22 (0) 20 PANEL BREAK PANEL ARC EDGE OF TANK as for as In Me for AS-BUILTS WALL (TYPICAL) BRINGS DISK DISK DE MICH BY DISK BETE DISK DE MICH BETE WALL (TYPICAL) NEX. INCE SCALE: AS SHOWN U.S. DEPARTMENT OF ENERGY DOE RICHLAND OPERATIONS OFFICE RIVER CORRIDOR CLOSURE CONTRACT **STRATTON SURVEYING & MAPPING, PC ***

**TS25 %. DESCHUTES PL. UNIT 1C **

**ENNEWCK, WA, 99336 (506) 735—736-7660 783: (509) 735—5560 TANK 4 SECONDARY LINER TANK 4 PRIMARY LINER WASHINGTON CLOSURE HANFORD LLC. ENVIRONMENTAL RESTORATION DISPOSAL FACILITY CELL 9 TANK 4 LINER AS-BUILT WCH JOB NO. DOE CONTRACT NO. CADD FILENAME 14655 DE-AC06-05RL-14655 4369WS2.DWG REV. NO. DRAWING NO. RNIR Company Closume Contract
Dedicated To Safety Excellence 0600X-DD-C0717 RECORD NO. BLDG NO. NOEX NO. H-6-17359, SHT01 600G 0111 0

REV. NO. 0600X-DD-C0718

		AIRS (WA		PLANE, FT)	-	DARY REP			PLANE, FT
POINT	NORTHING	EASTING	ELEV	DESC	POINT	NORTHING	EASTING	ELEV	DESC
40000	442162.23	1865378.10	701.41	SR ARC SEAM	40060	442180.50	1865329.64	700.40	SR009 PO
40001	442165.09	1865379.21	701.37	SR ARC SEAM	40061	442181.22	1865331.34	700.38	SR009 P0
40002	442168.66	1865380.43	701.34	SR ARC SEAM	40062	442179.16		700.40	SR009 P0
40003	442176.98	1865381.99	701.36	SR ARC SEAM	40063	442222.52	1865312.33	701.26	SR010 C0
40004	442171.42	1865381.10	701.33	SR ARC SEAM	40064	442223.46	1865313.44		SR010 C0
40005	442181.71	1865381.73	701.32	SR ARC SEAM	40065	142219.96	1865315.99	701.13	SR010 C0
				SR ARC SEAM	40066	442219.13	1865314.85	701.12	SR010 CO
40006	442185.94	1865381,09	701.31	SR ARC SEAM	40067	442175.89		700.71	SROTO CO
40007	442194.97	1865378.70	701.28						
40008	442202.22	1865377.03	701.34	SR ARC SEAM	40068	442197.53		700.85	SR01
40009	442207.06	1865374.47	701.32	SR ARC SEAM	40069	442184.20	1865284.00	707.15	SR01
40010	442214.40	1865368.85	701.18	SR ARC SEAM	40070	442133.58			SR01
40011	442217.57	1865365.31	701.20	SR ARC SEAM	40071	442133.49	1865320.23	100000	SR01
40012	442224.96	1865353.72	701.27	SR ARC SEAM	40072	442208.14	1865292.31	701.34	SR01
40013	442227.05	1865348.77	701.25	SR ARC SEAM	40073	442211.24	1865294.36	701.44	SR01
40014	442228.75	1865342.95	701.33	SR ARC SEAM	40074	442216.45		701.42	SR01
40015	442229.45	1865333.50	701.27	SR ARC SEAM	40075	442221.16	1865303.80	701.40	SR01
40016	442229.40	1865327.54	701.28	SR ARC SEAM	40076	442224.83	1865309.51	701.38	SR01
40017	442228.18	1865322.43	701.31	SR ARC SEAM	40077	442227.01	1865314.63	701.36	SR02
40018	442225.66	1865315.16	701.34	SR ARC SEAM	40078	442229.24	1865321.99	701.34	SRO
40019	442223.52	1865310.10	701.38	SR ARC SEAM	40079	442230.73	1865326.96	701.34	SR02
40020	442224.21	1865311.96	701.33	SR ARC SEAM	40080	442229.25	1865327.42	701.29	SR02
40021	442220.29	1865305.11	701.36	SR ARC SEAM	40081	442230.78	1865333.45	701.38	SR02
40022	442215.43	1865299.36	701.40	SR ARC SEAM	40082	442229.44		701.36	SR024 CC
40023	442210.53	1865295.28	701.40	SR ARC SEAM	40083	442231.29			SR024 CC
			701.39	SR ARC SEAM	40084	442231.50	1865337.92	702.38	SR024 CC
40024	442207.73	1865293.35	701.43	SR ARC SEAM	40085		1865337.69	701.35	
10025	442158.54	1865375.99			-				
40026	442154.19	1865373.20	701.48	SR ARC SEAM	40086		1865342.93	701.40	SR02
40027	442150.74	1865370.80	701.43	SR ARC SEAM	40087	442228.78		701.38	SR02
40028	442147.38	1865367.38	701.39	SR ARC SEAM	40088		1865354.22		SR02
40029	442138.53	1865354.10	701.39	SR ARC SEAM	40089	442218.70	1865366.11	701.26	SR02
40030	442136.92	1865350.47	701.35	SR ARC SEAM	40090	442213.06	1865304.05	701.21	SR02
40031	442135.53	1865347.08	701.46	SR ARC SEAM	40091	442215.49	1865369.62	701.29	SR03
40032	442134.51	1865340.57	701.45	SR ARC SEAM	40092	442211.86	1865371.08	701.24	SR031 C0
40033	442134.07	1865334.56	701.37	SR ARC SEAM	40093	442213.46	1865372.22	702.10	SR031 C0
40034	442134.53	1865326.21	701.35	SR ARC SEAM	40094	442214.98	1865371.54	701.97	SR031 C0
40035	442137.49	1865316.76	701.39	SR ARC SEAM	40095	442213.28	1865369.96	701.19	SR031 CC
40036	442138.70	1865313.57	701.37	SR ARC SEAM	40096	442207.93	1865376.00	701.39	SR03
40037	442141.29	1865309.02	701.38	SR ARC SEAM	40097	442199.36	1865377.22	701.30	SR033 C0
40037	442143.59	1865305.78	701.39	SR ARC SEAM	40098	442200.69	1865379.46	701.36	SR033 CC
					40098	442202.49	1865379.46	701.47	
40039	442148.84	1865299.41	701.42					-	SR033 CC
40040	442154.09	1865294.61	701.46	SR ARC SEAM	40100	442201.66	1865376.13		SR033 CO
40041	442161.62	1865290.27	701.48	SR ARC SEAM	40101	442196.50	1865378.34	701.28	SR034 CC
40042	442170.95	1865287.53	701.47	SR ARC SEAM	40102	442193.49	1865379.18	701.30	SR034 CC
10043	442178.33	1865286.43	701.41	SR ARC SEAM	40103	442194.77	1865381.67	701.38	SR034 CC
10044	442185.48	1865286.55	701.42	SR ARC SEAM	40104	442196.93	1865380.89	701.40	SR034 CC
10045	442195.29	1865288.13	701.37	SR ARC SEAM	40105	442186.07	1865382.79	701.32	SR03
40046	442131.84	1865332.24	705.13	SR001	40106	442182.10	1865383.13	701.41	SR03
10047	442132.35	1865331.77	705.10	SR001	40107	442177.20	1865382.75	701.39	SRO
40048	442214.70	1865372.02	702.47	SR003	40108	442171.50	1865381.85	701.35	SR03
10049	442141.63	1865359.06	701.37	SROO4 COR	40109	442165.72	1865379.99	701.38	SRO.
10050	442140.78	1865357.99	701.38	SR004 COR	40110	442162.13	1865379.12	701.41	SR04
40051	442138.95	1865359.18	701.41	SR004 COR	40111	442158.13	1865377.22	701.43	SRO
0052	442139.49	1865360.13	701.42	SR004 COR	40112	442153.95	1865374.27	701.43	SR04
10053	442154.15	1865363.06	701.42	SR005	40113	442150.20	1865371.75	701.42	SR04
_			_					_	
40054	442163.42	1865356.22	700.92	SR006	40114	442146.72	1865368.27	701.39	SR04
40055	442162.00	1865357.31	701.00	SR006	40115	442143.73	1865364.71	701.38	SR04
40056	442151.22	1865310.81	701.23	SR007	40116	442137.45	1865355.57	701.40	SR04
40057	442182.50	1865332.65	700.37	SROOB POC	40117	442135.91	1865351.06	701.36	SR04
40058	442182.92	1865334.57	700.37	SR008 POC	40118	442134.50	1865347.52	701.45	SR04
40059		1865333.95	700 17	SROOB POC	40119	442133.36	1865341.21	701.47	SR04

SECON	IDARY REP	AIRS (WA	STATE	PLANE, FT)
POINT	NORTHING	EASTING	ELEV	DESC
40120	442132.22	1865335.10	701.39	SR050
40121	442133.23	1865325.88	701.36	SR05
40122	442135.72	1865316.59	701.42	SR052
40123	442137.19	1865313.15	701.40	SR053
40124	442139.66	1865308.28	701.39	SR054
40125	442141.86	1865305.01	701.43	SR055
40126	442144.52	1865301.92	701.41	SR056
40127	442147.20	1865298.60	701.43	SR057
40128	442153.08	1865293.60	701.45	SR058
40129	442170.44	1865285.59	701.43	SR059
40130	442178.08	1865284.73	701.44	SR060
40131	442185.32	1865284.77	701.42	SR06
40132	442188.27	1865286.65	701.41	SR062 COF
40133	442190.22	1865286.91	701.39	SR062 COR
40134	442190.39	1865284.69	701.44	SR062 COF
40135	442188.74	1865284.38	701.49	SR062 COF
40136	442196.32	1865286.87	701.44	SR053
40137	442212.38	1865348.86	700.89	SR064
40138	442166.18	1865369.13	701.09	SR065
40139	442183.72	1865373.38	701.16	SR066 P00
40140	442182.08	1865372.82	701.19	SR066 P00
40141	442182.39	1865375.14	701.14	SR066 P00
40142	442149.58	1865364.99	701.30	SR067
40143	442221.72	1865309.02	701.33	SR068 COR
40144	442223.13	1865308.09	701.41	SROSS COR
40145	442220.60	1865304.71	701.41	SR068 COR
40146	442219.34	1865305.54	701.32	SR068 COR
40147	442195.37	1865288.83	701.37	SRO69 COR
40148	442195.87	1865287.61	701.40	SR069 COR
40149	442199.94	1865289.04	701.35	SRO69 COR
40150	442199.40	1865290.41	701.34	SR069 COF
40151	442161.25	1865289.44	701.43	SR070
40152	442165.72	1865379.99	701.38	SR07
40153	442144.50	1865363.42	701.39	SR072
40154	442138.57	1865354.46	701.41	SR073
40155	442145.37	1865349.57	0.00	SR074
40156	442181.15	1865330.01	700.46	SR075
40157	442138.70	1865354.36	701.41	SR076
40158	442134.46	1865326.17	701.43	SR077
40159	442146.54	1865298.24	701.56	SR078

POINT	NORTHING	EASTING	ELEV	DESC	POINT	NORTHING	EASTING	ELEV	DESC
42000	442178.33		701.48		42060	442175.71	1865333.66	700.54	PR29
42001	442166.44	1865288.35	701.56	PR ARC SEAM	42061	442180.18	1865334.84	700.45	PR30
42002	442155.63	1865293.72	701.52	PR ARC SEAM	42062	442183.14	1865335.43		PR3
42003	442146.B1	1865300.90	701.52	PR ARC SEAM	42063	442183.94	1865332.72	700.40	PR3
42004	442140.03	1865309.51	701.46	PR ARC SEAM	42064	442180.42	1865332.30	700.41	PR36
42005	442135.42	1865319.56	701.49	PR ARC SEAM	42065	442140.47	1865361.15	0.00	PR31
42006	442133.12	1865332.19	701.46	PR ARC SEAM	42066	442185.75	1865285.52	701.47	PR3
42007	442134.36	1865343.96	701.57	PR ARC SEAM	42067	442196.14	1865287.47	701.47	PR3
42008	442139.35	1865357.48	701.53	PR ARC SEAM	42068	442199.62	1865288.85	701.40	PR34
42009	442144.07	1865364.51	701.42	PR ARC SEAM	42069	442203.63	1865290.68	701.40	PR3
42010	442144.70	1865365.85	701.40	PR ARC SEAM	42070	442206.30	1865292.25	701.43	PR3
42011	442146.30	1865366.77	701.41	PR ARC SEAM	42071	442209.34	1865294.04	701.37	PR3
42012	442149.23	1865369.77	701.39	PR ARC SEAM	42072	442213.76	1865297.41	701,40	PR3
42013	442158.55	1865376.58	701.49	PR ARC SEAM	42073	442216.86	1865300.23	701.45	PR3
42014	442169.24	1865380.73	701.39	PR ARC SEAM	42074	442223.27	1865308.33	701.42	PR4
42015	442179.10	1865382.70	701.42	PR ARC SEAM	42075	442224.54	1865310.75	701.41	PR4
42016	442203.01	1865377.62	701.35	PR ARC SEAM	42076	442225.66	1865317.97	701.30	PR4
42017	442221.45	1865360.58	701.25	PR ARC SEAM	42077	442227.04	1865317.32	701.39	PR4
42018	442226.47	1865350.82	701.31	PR ARC SEAM	42078	442227.60	1865319.22	701.36	PR4
42019	442228.69	1865343.22	701.33	PR ARC SEAM	42079	442226.28	1865319.55	701.28	PR4
42020	442229.61	1865333.39	701.32	PR ARC SEAM	42080	442228.98	1865321.82	701.41	PR4
42021	442227.93	1865321.50	701.35	PR ARC SEAM	42081	442229.96	1865326.39	701.40	PR4
42022	442224.28	1865312.19	701.39	PR ARC SEAM	42082	442230.56	1865332.19	701.37	PR4
42023	442217.70	1865302.33	701.42	PR ARC SEAM	42083	442230.33	1865335.18	701.45	PR4
42024	442207.97	1865294.27	701.38	PR ARC SEAM	42084	442229.78	1865342.01	701.43	PR4
42025	442197.97	1865289.10	701.38	PR ARC SEAM	42085	442229.41	1865344.73	701.40	PR4
42026	442184.50	1865286.16	701.45	PR ARC SEAM	42086	442228.19	1865348.76	701.41	PR4
42027	442157.68	1865289.74	702.22	PR001	42087	442226.45	1865353.36	701.42	PR5
42028	442209.94	1865354.71	700.95	PR002	42088	442224.90	1865355.84	701.34	PR5
42029	442188.99	1865370.00	701.05	PR003	42089	442223.44	1865358.72	701.36	PR5
42030	442225.63	1865315.99	701.36	PR004	42090	442219.06	1865364.94	701.31	PR5
42031	442183.09	1865372.91	701.17	PR005	42091	442217.07	1865367.82	701.37	PR5
42032	442183.55	1865374.60	701.10	PR005	42092	442208.01	1865375.48	701.47	PR5
42033	442181.76	1865374.69	701.12	PR005	42093	442202.17	1865378.73	701.51	PR5
42034	442181.63	1865373.44	701.17	PR005	42094	442196.32	1865380.94	701.50	PR5
42035	442177.17	1865352.64	700.79	PR007	42095	442188.72	1865382.76	701.50	PR5
42036	442176.25	1865351.35	700.79	PR007	42096	442182.28	1865383.03	701.48	PR5
42037	442173.02	1865353.81	700.90	PR007	42097	442175.32	1865382.64	701.47	PR6
42038	442173.80	1865354.98	700.84	PR007	42098	442160.41	1865378.16	701.49	PRE
42039	442138.61	1865357.33	701.57	PR008	42099	442155.70	1865375.54	701.46	PR6
42040	442136.40	1865352.15	701.43	PR009	42100	442151.97	1865372.89	701.49	PR6
42041	442134.36	1865347.30	701.57	PR10	42101	442149.47	1865370.60	701.44	PR6
42042	442132.94	1865339.66	701.50	PR11	42102	442143.01	1865364.10	701.48	PR6
42043	442132.41	1865334.69	701.46	PR12	42103	442204.60	1865292.40	701.40	PR6
42044	442133.27	1865329.25	701.40	PR13	42104	442209.07	1865352.54	700.89	PR6
42045	442135.41	1865317.82	701.47	PR14	42105	442228.64	1865331.18	701.25	PR6
42046	442136.98	1865314.17	701.55	PR15	42106	442230.38	1865331.04	701.35	PR6
42047	442139.60	1865309.19	701.46	PR16	42107	442229.81	1865327.41	701.33	PR6
42048	442141.47	1865305.72	701.49	PR17	42108	442228.25	1865327.50	701.26	PR6
42049	442144.18	1865302.86	701.48	PR18	42109	442135.85	1865346.66	701.48	PR6
42050	442147.43	1865299.18	701.53	PR19	42110	442134.82	1865342.74	701.50	PR6
42051	442151.34	1865295.70	701.47	PR20	42111	442133.36	1865343.11	701.53	PR6
42052	442154.91	1865293.21	701.49	PR21	42112	442134.20	1865346.64	701.54	PR6
42053	442160.15	1865290.09	701.49	PR22	42113	442224.90	1865353.84	0.00	PR71
42054	442162.53	1865288.86	701.55	PR23	42114	442195.08	1865310.86	0.00	PR72
42055	442169.07	1865286.72	701.50	PR24	42115	442189.97	1865287.46	0.00	PR73
42056	442174.32	1865285.51	701.49	PR25	42116	442177.57	1865285.21	0.00	PR74
42057	442177.57	1865285.21	701.50	PR26	42117	442170.37	1865287.21	0.00	PR75
42058	442179.36	1865375.09	701.23	PR27	42118	442152.98	1865288.66	0.00	PR76
42059	442176 43	1865287.96	701.42	PR28	42119	442142.76	100576767	0.00	PR77

NOTES

1. SURVEY DATUM
VERTICAL: NAVD 88
HORIZONTAL: NAD 83 (91)

2. SEE DRAWING NO. 0600X-DD-C0717, FOR SECONDARY & PRIMARY REPAIR LOCATIONS.

3. ALL COORDINATES LISTED HEREIN ENDING WITH * WERE LOCATED UTILIZING THE SEAM TRACKING THE CQA GEOSYNTHERICS LEAD, AS PROVIDED FOR IN CQA NCR-03.

SURVEYOR'S CERTIFICATE

1, AARON A. DYCK, A LICENSED LAND SURVEYOR
IN THE STATE OF WASHINGTON, HEREBY CERTIFY
THAT THIS MAP CORRECTLY REPRESENTS AN
ACTUAL FIELD SURVEY CONDUCTED UNDER MY
DIRECTION, AT THE REQUEST OF ENVIROTECH
ENGINEERING AND CONSULTING, INC., AND ALL
COORDINATES AND ELEVATIONS ARE CORRECT.

01 M 2010

U.S. DEPARTMENT OF ENERGY

DOE RICHLAND OPERATIONS OFFICE RIVER CORRIDOR CLOSURE CONTRACT

WASHINGTON CLOSURE HANFORD LLC. RICHARD, WASHINGTON

ENVIRONMENTAL RESTORATION DISPOSAL FACILITY CELL 9

	TANK 4	LINER	AS-BUILT	TABLES	
WCH JOB NO.		DOE C	ONTRACT NO.		CADD FILENAME

14	655	DE-AC06-05RL-14655	4369WS2.DWG				
MATERIAL	TASK	DRAWING NO.		REV. NO.			
Weshington Chasers	ERDF	0600X-DD-C0	718	0			

River Common Comme Contract
Dedicated To Safety Excellence

RECORD NO. SHOOK NO. HOOK NO.

APPENDIX B.

PIPE PRESSURE TESTING

5-97-001

LEACHATE COLLECTION PIPE SYSTEM CQC REPORT

The contents of this CQC are presented to demonstrate TradeWind Services, LLC is in conformance with specification 0600X-SP-M0032, 3.5, PIPE, VALVES & SPECIALS. Itemized in this reports are segments showing verification of receipt of materials, conformance of materials to the requirements, equipment & device inspection upon installation, and field testing data for installed pipe. Pipe was placed in approximately 500 ft. lengths between newly installed manholes on the north side of the disposal facility. Testing was conducted for the inside and outside of the dual contained pipe using hydrostatic and pneumatic methods, respectively.

		WAS	HINGTO	IN CLOS	SURE	HANF	ORD			1		N BOL	0. 14655		
		_	SUPP	LIERISL	JBCON	TRAC	TOR C	OCUM	ENT S	TATUS	STAM	IP			
	1. Work	may proce	ed.						-						1 4
cut	2 Tevis			urk may	весев	d orier	In res	ubmiss	ion. <	5		_	-	255	WS.
										ect to p	penluti	no of in	acated c	-	12/8/10
12.8	12.8 3. Revise and resubmit. Work may proceed prior to resubmission subject to resolution of indicated comments by C. Revise and resubmit. Work may not proceed.											OLINIA INCHES	1		
·	5. Permission to proceed not required.											i			
	5.LI Femili	ission to pr	DCB 60 L	or negun	eg.										1
	Permissio	n to proce	eed dos	es not o	onstitu	ulo ac	cepta	nce or	appn	oval of	desig	n deta	ails, calc	ulations.	1
	analyses,	test meth	ods, or	materia	als dev	velope	d or s	alecte	d by t	he sup	pliar/s	Libcon	tractor	and does	1
	not relieve				from	full co	mplia	nce wi	ih cor	ılractu	al obli	gation	a or rele	ase any	ł
	"holds" placed on the contract.														
		32	1				3						IN	5 15	3
		353	1 3	Sar		N. N.	1	10		3	3		U/	101	-
and the second section		- Second	3	PROCESS	8	POLECT	1 8	JUSTON.	SWETY	MOLSTS	FHE PHOTEC			9 1	
BECEIVED		65 \$15 G	1 13	£3	3	8	ā	2.5	3	35	ar.	5		2 1	/
D # Test play and a section	REGULARINGW REGULARINGW	11	-									1	1	1	r
17			-	-			-	-	-			7	-	1/2	1
MOV 128 2010	MEWEVED BY	r	-	12-								1980	W	11/	1
NOV 128 2010	1	1/6	7								,	-	10	VI	1
	-6.	V. 5	Project En	Annual TO				-	_	_/	<u> </u>	<u> 29</u>	-/0		í
WCH - DOCUMENT			INJOU EN	Assession 1974		CUME	מו דא	NUMBE	ER.			Digital	1		J
CONTROL	SOI	23	794	D.	VI-	. 1	15	-0	ar) ~	1	01			
COMMO	201	000	O. No.	11/1	N.		<u>پ ر</u>	SRS IT	-		U	21	MITTAL		
	WC#3E332(01/152		C), NO.			_	3	11 CHE	CM		-	508	WILL INT	E8/07051	1
	West-Sense Sen. 185	nat)													
LOMAKUTS										V.	0		-	. (1.4)	copy
1 1										7	1	ED	DE	LYN	1000
DATE MISSING															/
		1.			1			1		1					
1 1 TODE 1) 4	FD 6	10	1	1-1	100	AT	10	7					_		
100 DECTION INC.			CVS	9	"		. 1	T	-1'			11 -	INI	ロチレ	
16	BLOTE	4	0	155	2 //			SE	-				LID		-
SOME PEROPIS HAVE I		4	U	-								-	1	41 5	
	1														
1 24/10 12/2	410	-	-												
Le. Francisco	-	1													
CV	/	/													
	/														
2 1/ 7	>														
TASE / FAI)															
1700/1712	B:	Page 1	of 10)5											

Cells 9 & 10

Material Receipts

HYDRO TEST REPORT FORM

MCF-9

BMWC Constructors Inc.

	Gauge Tested in accordance to ASME B31.3
Job Number: 402738	Unit: Sequence #
Equipment Line No.: MH-17 PENETRAT	W,
Service:	Test Medium: Water
Equipment/System Being Tested: Boiler	Exchanger Furnace
Piping []	Vessel Other
Piping System: 12 × 18 CARRIER	For Test Pressures on which system:
Test Pressure: 30 - 40 psi	See Specification: 0600X-SP-M0032, Rev 1, 3.5.1
Reason For Test: New Piping Installation	
Gauge Manufacturer: NOSHOK Calibration Date: 8-1	Time: 3.10 Pass/Fail:
Mak Erlan	Date CTOR, QA'QC Date CTOR, QA'QC Date CTOR Date D

ITEM	QUANITY	SPEC	ACCEPTED	STORED LOCATION
MANHOLE 21 MONDLITHIC 13ASE	1 EA	0600x-DD-M0059	9/3-22-10	N/A
MH 39 MONO. 1345E	1 EA	0600x-DD-M0059	JU 3-22-10	/ / .
17H 32 MCMO. BASÉ	1 EA	6660 x - DD - MOO ST	FW 3-30-10	NA
THH 33 MONO BASE	IEA	0600x-170-10057	Th 3-30-10	NA
MH 34 MONO BASE	1 EA	0600x-1710-190058 DETAIL 2	AU 4-9-10	
MH 35 MONO ZASE	1 EA		AN 4-9-10	
MH 36 MONO	1 EA		PW 4-22-10	
MH 37 MONO 1345E	1 EA	₩	PN 4-22-10	
MH 38 MONO BASE	IEA	0600x-DD-MOUS9 DETAIL I	92 6-3-10	
2' RISERS		06CUX-010-17CUST CLCOX-010-17CUSB	91 9-20-10	
LIDS (21, 33, 38, 31)		+	Th 9-20-10	
RISERS	2 EA		JU 9-23-10	NIA
LIDS	5 EA		74 9-29-10	
RISERS	2 EA		769-29-K	
3' RISEX	1 EA	D	GW 10-12-X	•
				,
		, , , , , , , , , , , , , , , , , , , ,		
		R: Page 4 of 1		

ITEM	YTIMAUD	SPEC	ACCEPTED	STORED LOCATION
FUSION CAMPUG	1 EA	CECOX-SP-MODEZ	1 -	
LEAK DETECTION PLACER	1 EA		As 9-30-10	BMLC
FUSION COLY-LING	2 EA		FL 10-5-10 FL 10-5-10	BMUC
4" ELBOW	1 EA		962 10-5-10	BMUC
	-			
	!			

ITEM	QUANITY	SPEC	ACCEPTED	STORED LOCATION
1/2" TEE	2 EA	0600x-512 10032	9128-2310	BMUC
12" RECLYCER TEE	YEA			
PRIMER	109			
METAL CAN	6 EA			
1'2" CAP	12 139			
3/4" BALL VALLE	3 EA			
3/4" FLANGE	BEA			
1/2" BALL VALLE	6 EA			
3" × 4" REDUCER TEE	2 EA			
4" PIPE PL	20 FT			
3" PIRE PX	40 FT			
1'2" PIPE PKC	80 FT			
I" PIPE ACC	40 FT			
5"PIPE PUC	20 FT			
GAL. CEMENT	1 EM	→	4	4
4" GATE VALVE	IEA	CHANGE NUTICE 34)	709-14-10	N/A
12" CATE VALVE	IEA			
4' × 31" VALLET	1 EA			
36"×18" VALIT	I EA			
13 × 18" %	I EA			
4 × 8 TERMINATION) EA			
12 ×18 TERMINATION	IEA	-		
4×8 PIFE	40 FT			
i	10 FT	B: Page 6 o	105	

ITEM	QUANITY	SPEC	ACCEPTED	STORED LOCATION
4" PLIND FLANCE	2 EA	OLCOX-SP-MO37	907-14-10	Brac CONEX
3" 90° 5CH. 80	17 EA		A38-23.10	
3" TEE SCH. 80	2 EA			
3"x2" BUSHING	2 EA			
2" PLUC	2 EA			
3" FLANGE RWG	8 EA			
11/2 BALL VALLE	10 EA			
1'3" BALL CHECK VAL	4 EA			
13" TEE	4 EA			
4" FLANGE RING	2 EA			
4"x13" TEE	"I EA			
4"×3" TEE	2 EA			
4"x3" 13VSHING	2 EA			
3" PLIC	2 EA			
4" 90"	4 EA			
3" BALL VALLE	4 EA			
3" BALL CHECK	2 EA			
12" PLUG	4 EA			
13" 400	44 EA			
14"×1" BUSHING	8 EA			
1生" FLANGE	24 EA			
14" CASKET	12 EH			
BOLT PAGRAGE	12 84	1		→

7

ITEM	QUANITY	SPEC	ACCEPTED	STORED LOCATION
18" DR 11	700 FT.	Obiox-SP-MC032	925-100	BIMUC CONEX
1'4" PIPE				
1 HP PLUMP	4 EA	c600x - 59 - 10032	AS 5-24-10	Breve CONEX
7.5 HP PUMP	2 EA	+	+	+
1/2" DRII PIPE	1340 FT	+	4	4
6" DR 11 PIPE	600 FT	0600 X-SP-14032	96-1-10	BMWC CONEX
6" PERF. PIPE	40 FT.	+	*	V
11 × 3/4 FLANGE ADAPTER	12 EA			
34, BALL VALVE	6 EA	4	V	D
13" POLY GREAT	4 EA		906-10-10	
3" POLY GROWE	2 EA		+	\Diamond
STEEL THREAD FITTINGS	YEA	7	AU 6-10-1	3 BMLK COHEX
BOLT KITS	32 EA		AU6-22-10	BMUC CONEX
TERMINATION	3 EA	1	TW 6-24-10	+
6"CAP	1 EA	1	A 6-30-10	+
ELECTRO FUSE COUPLINGS	6EA	4	227-1-10	+
4" FITTINGS	8 EA		JW 7-6-10	
6" CAP	IEA			
6" DR 11	60 FT		+	. 🛨
10" CLAMP	9 EA	1	7W 7-13-K	
3/4" BALL VALVE	IEA			
RISER CLAMP	IEA			
10" GATE VALLE	1EA	7	7	7

ITEM	QUANITY	SPEC	ACCEPTED	STORED LOCATION
10" BLIND FLANGE	7 EA	okox-SP-mod32	QU 4.27-10	BIMUC CONEX
3" DRH	40 FT			
10"x4" DR 11 REDUCING FEE	2 EA			
D''SDR II FABBED TEE	5 EA			
8" DR H	bec FT	1	1	∇
Y" DK 17 X Y" END CONTRACIZER	6 EA	Obcox-SP. Mc032	AS 4-28-10	BMWC CONEX
4" CATE VALVE	4 EA		1	
8" GATE VALVE	1 EA			
10" GATE VALLE) EA	+	1	→
34," PVC FLANGE	34 EA	OECOX-SP-MOO32	9U5-3-K	BMUC CONEX
10 × 16 JOINTS	80 EA	Obcox-SP-MC032	9W 5-4-10	BriWC CONEX
10 × 16 JUINTS	1100 FT			1
8×12 PIPE	20 FT			
12" PERF PIPE	320 FT			
12" DR 11 PIPE	2240 FT	4	4	4
1" FITTINGS	4 EA)
3" FITTINGS	2 EA	4	1	4
FLOW MONITOR	2 EA	CLCOX - \$12-176032	9W 5-5-12	BYTHUC CONEX
L'' PERF. PIFE (LEACHATE)	1380 FT	06:0x-35-M6032	AU 5-10-10	BMUK CONEX
12" PERF. PIPE (SEUM)	240 FT			
18" PEF. PIFE	50 FT			
8" PEUT. PIPE	60 FT.			
12" OK 11	920 FT.	7	+	4

ITEM	QUANITY	SPEC	ACCEPTED	STORED LOCATION
10"x 16" TANK		0600x-5P-M0032	Q1 4-20-10	C.1.1 1. 2 -11/2/
PENETRATIONS) EA	2.4 0600x-SP-M032	10	
8"X12" TANK	IEA	2.4	AN 4-20-10	BMUC CONEX
PENETRATION 2"DRII X 6"DR 17	121	06 COX - SP - MCO 32	7/1.	
TERMINATION	2 EA	2.4	40 4-20-10	BYILL CONEX
8" DR 17 x 4"	11,50	0600x-512-10032	01.14-20-0	BMWC CONEX
CENTRALIZER	14 EA	11	700 1201	BI WE CEMEN
6"OR 17 × 2"	YEA	0600x-SP-m0032	FW 4-20-10	BMAC CONEX
CENTRALIZER 12" DR 17 × 8"	141	OECOX-SP-MO032		
CENTRALIZER	4 EA		40 4-20-10	BMLC CONEX
11 ×3/4 FLANGE	22 -	0600x-5P-M0032	A61 4-22.4	BMWC CONEX
ADAPTER	32 EA		1- 7-22 6	DI INC CENER
2" DR 11 1PS 900	2 EA	0600x-5P-M0032	AU4-22-10	BMUC CONEX
ELISON HIPPE	7 41			
10" DR 11 1PS BACKUP RING	4 EA		90 4-22-10	BMUX CONEX
8" DR 11 1195 TEE	IEA		Dill. 22 10	DWIN CANDO
	10	10	-10 4-22-10	BMUC CONEX
2" OR 11 × 6" OR 17	2 EA	Olcox-SP-Moo32	96 4-23-K	BYLL CONEX
TERMINATION 2" DK 11 1PS)	1	
FLANGE ADAPTER	2 EA			
2" DR 11 1PS				+
BACKUP RING	2 EA	V	V	ν
10" DR 11 x 16" DR 17	14 EA	0600x-5p-m0032	C/134-71.V	BMWC CONEX
TERMINATION	1101		100.20 %	DI WE CENEX
10" DR 11 1PS FLANGE ADAPTER	6 EA		1	
ואס ייטא וואס	Δ			
FLANCE ADAPTER	8 EA			
10" OR 11 iPS	111-11			
BACKUP RING (IRUN)	14 6/-1			
PENF PIPE				
B" DR 11 × 12" DR 17	0 -1			
TERMINATION	2 EA			
10" DR 11 x 16" DR17	1200 FT			
	1,200 1 .			
8" 1122 BLIND	1 EA	1	77	1
FLANGE 8" LYSIMETER WYE		1400× 513-140032	714	7
C LISTICIEN WYC	2 EA		FLJ 4-27-10	BMUC CONEX
4" BLIND FLANGE	2 EA	i		}
	701	+	45	+

ITEM	QUANITY	SPE		ACCE	PTED		RED LOCA	
3"DR 11 x 12" DR 17	20 FT	2,9	Mou32	401	1.15.10	BMUC	CCNEX	(EAST SIDE)
4"DR 11 × 8" DR 17	260 FT							
2"DR11 × 6" DR 17	80 FT							
10"DR 11 × 16" DR 17	900 FT	-						
2" DRH X 6" DR 17	2 EA	0600x -5P	-m032					
10" OR 11 × 16" OR 17	1 EA							
8"DR11 × 12" DR 17	IEA							
4"DR11 ×8"DR17	3 EA							
4"DR11 ×8"DK 17 22.5°	I EA							
16" DR 17 x 10" END CENTRALIZER	14 EA							
DID CENTRALIZER	4 EA	. 💠		-	7		4	
4" OR 11 × 8" OR 17	4 EA	01.60×-517- 2.4		-	1-19-10		CONEX	
2"DR 11 IPS FLANCE ADAPTER	2 EA	0600x · Si2 · 1	mc032	90	1-19-10	BMUC	CONE	×
2" LEAK DETECTION PENETRATION	I EA	2.3						
2" OR 11 × 6" DR 17 END TERMINATION	I EA	2.4						
4" DR 11 1PS 900 HDPE 3408	4 EA	2.3						
4" DR 11 11-3 PIPE HOPE 3403 ALXVA F714	120 FT	2.3						
HI'OR II IPS TEE	2 EA	2.3						
B" DR 11 1P3 FLANGE ADAPTER 3408	2 EA	2.3						
NO" DK 11 INS FLANCE ADAPTER 3408	4 EA	2.3						
4" DR 11 123 FLANGE ADAIPTER	10 EA	2,3						
4" DR 11 IPS BACKUP RING DUCTILE IRON	IU EA	2.3	7	7	7		7	
Y" X 8" TANK PENETRATION		060x-5P.	M2032	qu	4-20-6	BILL	CONE	X

Cells 9 & 10

Hydrostatic & Pneumatic Pressure Tests

Certificate of Calibration

Certification Number: 28750

Customer Name BMWC CONSTRUCTORS, INC

Address:

200 WEST AREA OF HANFORD

RICHLAND, WA 99354

Certification Date:

09-Apr-10

P O #:

402738-1016

Seattle, WA 98108

Re-certification Due:

09-Apr-11

Branom Order #: 428736

Lab Temperature:

72.43° F

Technician:

MIKE MCCARTY

Lab Humidity:

30.93%

Branom Instrument company certifies that the following instrument meets or exceeds all published specifications and has been calibrated using standards whose accuracies are traceable to the National Institute of Standards and Technology. The following certificate applies only to the instrument listed below.

Calibration Procedure:

Calibrated to manufacturer's specifications.

Instrument

Description:

MCDANIEL 4" 0-30PSI 1/2"LM

Serial Number: N/A

Customer ID#: 101121

Tolerance:

± 0.5% F.S.

Condition Found: INTOLERANCE

Condition Left: IN TOLERANCE

service@branom.com

Calibration Standard(s)

Standard Model

Standard Serial

Standard Due

WIKA 65-2000

0511292

05/08/2010

Calibration Readings

Calibration Standard Reading	Customer Instrument Reading	Acceptance Low	Acceptance High	Units of Measure
0.00	0.0	-0.15	0.15	PSI
15.00	15.0	14.85	15.15	PSI
30.00	30.0	29.85	30.15	PSI
		1		
4 4 4 6 8 6 1 4 0 4 6 6 6 6 6 7 7 7 7 9 7 7 7 7 8 4 7 7 8 8 8 7			,	

		!		
*****************************		!		
**********************			***************************************	

*********	•			
***************************************	*******************************			
	:			
# # \$ \$ 11 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14				
	Q.A. Manager		4	4/9/10
		(COREY	PORTER	Date of Issue

This certificate shall not be reproduced except in full without written approval of Brancm Instrument Company.

Certificate Revised 12/26/2006

Printed: 12-Apr-10

Page: 1

Instrument Co. Since 1947

RECEIVED

MAY 13 2010

800-767-6051 BRANDM 5500 4th Ave. So. WSTRUMENTATION Seattle, WA 98108

FAX 206-763-4165 service@branom.com

WCH - DOCUMENT

Certificate of Calibration

5012308A00 05.110 000

Certification Number: 28846

Customer Name BMWC CONSTRUCTORS, INC

Service Dept.

Address:

20638 84TH AVE S

KENT, WA 98032

Certification Date:

28-Apr-10

PO#:

Re-certification Due:

28-Apr-11

402738

Lab Temperature:

72.04° F

Branom Order #: 430371 Technician:

COREY PORTER

Lab Humidity:

36.90%

Branom instrument company certifies that the following instrument meets or exceeds all published specifications and has been calibrated using standards whose accuracles are traceable to the National Institute of Standards and Technology. The following certificate applies only to the instrument listed below.

Calibration Procedure:

Calibrated to manufacturer's specifications.

Instrument

Description:

NOSHOK 40.901-60PSI/KPA

Serial Number: 430371

Customer ID#: N/A

Tolerance: ± 1% F.S. Condition Found: IN TOLERANCE

Condition Left:

IN TOLERANCE

Calibration Standard(s)

Standard Model

Standard Serial

Standard Due

WIKA 65-2000

0511292

05/08/2010

Calibration Readings

alibration Standard Reading	Customer Instrument Reading	Acceptance Low	Acceptance High	Units of Measure
0.00	0.0	-0.6	0.6	PSI
30.00	30.0	29.4	30.6	PSI
60.00	59.8	59.4	60.6	PSI

		:		
4844 POOPER TO THE POOPER TO T	*			•
	}			
*******************************		1 1		
******	• • • • • • • • • • • • • • • • • • •			
	i 			
	f			

This certificate shall not be reproduced except in full without written approval of Branom Instrument Company.

COREY PORTER

Date of Issue

Submitted as 5-110-cog

Branom Instrument Co.

Service Dept. 5500 4th Ave. So. Seattle, WA 98108

800-767-6051 FAX 206-763-4165 service@branom.com

Certificate of Calibration

Certification Number: 29607

Customer Name BMWC CONSTRUCTORS

Address:

20638 84TH AVE S

KENT. WA 98032

Certification Date:

12-Aug-10

P 0 #:

CASH SALE

Re-certification Due:

12-Aug-11

Branom Order #: 438570

Lab Temperature:

73.1° F

Technician:

JESSE LABBE

Lab Humidity:

50.5%

Branom Instrument company certifies that the following instrument meets or exceeds all published specifications and has been calibrated using standards whose accuracies are traceable to the National Institute of Standards and Technology. The following certificate applies only to the instrument listed below.

Calibration Procedure:

Calibrated to manufacturer's specifications.

Instrument

Description:

NOSHOK 40,901-60PSI/KPA

Serial Number: 438570-A

Customer ID#: N/A

Tolerance: ± 1% F.S. Condition Found: IN TOLERANCE

Condition Left:

IN TOLERANCE

Calibration Standard(s)

Standard Model

Standard Serial

Standard Due

WIKA 65-2000

0511292

05/26/2011

Calibration Readings

Calibration Standard Reading	Customer Instrument Reading	Acceptance Low	Acceptance High	Units of Measure
0.00	0.0	-0.6	0.6	PSI
30.00	30.0	29.4	30.6	PSI
60.00	60.0	59.4	60.6	PSI
	***************************************	***************************************		
	**************************************	}		****
	***************************************	* * **********************************	***************************************	

***************************************	}			
	***************************************	*************		
***************************************	***************************************			

	***************************************		-	
***************************************	Q.A. Manager		4	8/12/10

This certificate shall not be reproduced except in full without written approval of Branom Instrument Company.

COREY PORTER

Date of Issue

Service Dapt. 5500 4th Ave. So. Seattle, WA 98108

800-767-6051 FAX 206-763-4165 service@branom.com

Certificate of Calibration

Certification Number: 28531

Customer Name BMWC CONSTRUCTORS

Address:

PO BOX 1316

KENT, WA 98035-1316

Certification Date:

09-Mar-10

P 0 #:

402738-1001

Re-certification Due:

09-Mar-11

Branom Order #: 424942

Lab Temperature:

72.58° F

Technician:

JESSE LABBE

± 0.25% F.S.

Lab Humidity:

30.79%

Branom instrument company certifies that the following instrument meets or exceeds all published specifications and has been calibrated using standards whose accuracies are traceable to the National Institute of Standards and Technology. The following certificate applies only to the instrument listed below.

Calibration Procedure:

Calibrated to manufacturer's specifications.

Instrument

Description:

WIKA 332.54 SERIES P/N 4220081 0-300PSI

Serial Number: 369562

Customer ID#: N/A

Tolerance:

Condition Found: OUT OF TOLERANCE

Condition Left: IN TOLERANCE

Calibration Standard(s)

Standard Model

Standard Serial

Standard Due

DM-T-150

11825

11/19/2011

Calibration Readings

Calibration Standard Reading	Customer Instrument Reading	Acceptance Low	Acceptance High	Units of Measure
0	0	0.75	0.75	PSI
150	150	149.25	150.75	PSI
300	300	299.25	300.75	PSI

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
****************	**************************************			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*			
	<u> </u>			

	.,		1	1 /
***************************************	Q.A. Manager	0	4	2/9/10
		COREY		Date of Issue

This certificate shall not be reproduced except in full without written approval of Branom Instrument Company

Certificate Revised 12/26/2006

Printed: 15-Mar-10

Page: 1

Service Dept. 5500 4th Ave. So. Seattle, WA 98108

800-767-6051 FAX 206-763-4165 service@branom.com

Certificate of Calibration

Certification Number: 28532

Customer Name BMWC CONSTRUCTORS

Address:

PO BOX 1316

KENT, WA 98035-1316

Certification Date:

09-Mar-10

P O #:

402738-1001

Re-certification Due:

09-Mar-11

Branom Order #: 424942

Lab Temperature:

72.58° F

Technician:

JESSE LABBE

Lab Humidity:

30.79%

Branom Instrument company cartifies that the following instrument meets or exceeds all published specifications and has been calibrated using standards whose accuracles are traceable to the National Institute of Standards and Technology. The following certificate applies only to the instrument listed below.

Calibration Procedure:

Calibrated to manufacturer's specifications.

Instrument

Description:

WIKA 332,54 SERIES P/N 4220081 0-300PSI

Serial Number: 400519-A

Customer ID#: N/A

Tolerance:

± 0.25% F.S.

Condition Found: OUT OF TOLERANCE

Condition Left:

IN TOLERANCE

Calibration Standard(s)

Standard Model

Standard Serial

Standard Due

DM-T-150

11825

11/19/2011

Calibration Readings

Calibration Standard Reading	Customer Instrument Reading	Acceptance Low	Acceptance High	Units of Measure
0	0	-0.75	0.75	PSI
150	150	149.25	150.75	PSI
300	300	299.25	300.75	PSI

		•		
		* • •		
	<u> </u>			
***************************************	Q.A. Manager	0	1	3/9/10

This certificate shall not be reproduced except in full without written approval of Branom Instrument Company.

COREY PORTER

Date of Issue

MCF-9

一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	सन्दर्भके देशके देशके का स्थापन स	Gauge Tested in accordance		WARRY HAC
Job Number: 40-2738		Unit:	Sequence #	
Equipment/Line No.: 21x6 Fo	LOOR DRAIN (C	ARRIER PIPE) Area:	Test #	
Service:		Test Medium: Water		
Equipment/System Being Tested:	Boiler 🔲	Exchanger [Furnace	
	Piping 🗸	Vessel [Other	
Piping System: 2"x6" CP 9 FLC	UR DRAIN	For Test Pressures on which	system:	
Test Pressure: 30	psi	See Specification: 0600X-	SP-M0032, 3.5	
Starting Test Pressure: 33 Finish Test Pressure: 30 Pass Criteria: (0) -Zero Lea Gauge Manufacturer: 11KA Gauge Serial# 400519-A Calibr	psi Time	e: 10:05 A.Pl. Pass/Fa pressure.		
Comments: Pressure Relief Valve	is installed on test pur	mp		
est Witnessed and Accepted By:				-
	BMWC Represent	itive	Date	
Delh	ur - SUBCONTRACT	OR, QA/QC	Date	
	WCH - CONTRAC	TOR	Date	
	COA		DATE	

MCF-9

一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	ttigenium antwestrations	Gauge Tested in accord		· · · · · · · · · · · · · · · · · · ·
Job Number: 40 - 2738		Unit:	Sequence #	
Equipment/Line No.:		Area:	Test #	1-A
Service:		Test Medium: Wa	ter	
Equipment/System Being Tested:	Boiler	Exchanger	Furnace []
	Piping 🗾	Vessel [Other_	
Piping System: 2"×6" CP 9 FL	COR DRAIN	For Test Pressures on w	which system:	
***	psi	See Specification: 060		
Reason For Test: New Piping	Installation			
Starting Test Pressure: 34	psi Ti	me: 10:25 A.M.		
Finish Test Pressure: 34	psi Ti	me: 11:25 A.M. Pa	ss/Fail: 19ASS	
Pass Criteria: (0) -Zero Lea				
Gauge Manufacturer: L)KA Gauge Serial# 400519 - A Calibr	Calibrati ation Date: _3/10	on Certificate Number: 22 Calibration Expiration	532 on Date: 3/11	
Comments: Pressure Relief Valve	is installed on test p	oump , ('ORRECTIVE	ACTION: DRAIN	I PIPE WAS
LYATER COOLED	TO MAINTAIN	Y CONSISTENT TE	MPERATURES CA	THE LENGTH
Test Witnessed and Accepted By:)	OF PIPE IN OR	PDER TO CONTROL E	XPANSION DUE	TO WARM WEATHER
land	. 00		M-7=	1-10
Thin	BMWC Represe	ntitive	Da	
///	1.11.		4-12-	10
Delh	ur - SUBCONTRAC	CTOR, QA/QC	Da	ite
30	Jack Howa	el STR	4-22	-10
1,	WCH - CONTRA	CTOR	Da	te
o h	The way	k	4-22	1-10
	COA		DF	ITE

PNUEMATIC TEST REPORT FORM

MCF-10

	and the second	-1-1-1 VIV	auge Tested in accordan	ce to ASME B31.3
Job Number:	402738		Unit:	Sequence #
Equipment/L	ine No.: Crest P	#9 2"XC" F	Floor DrainArea:	Test # 1A - P
	Service &" Flore Conta	innent Pipe	Test Medium: Co	mpressed AIR
System Being To	ested:	Boiler	Exchanger	Furnace
		Piping 🔽	Vessel	Other
Test F	Pressure: 18 Pressure: psi	-	In Service Test [(on	ly checked, if in service test was perforated)
Reason F	For Test: New Piping Ins	tallation		
Final Test P	of Test: 4-22-1 Pressure: 11 psi	red BMWC "	Calibration Expiration I Duration of Test: 121 Pass Sneep "The 19	mins.
	Check For 1	eaks. Tw		
Test Witnessed a	and Accepted By:	BNIWC Representitive		4-22-10 Date
	Pelhur	SUBCONTRACTOR,		<u>4 - 22 - 18</u> Date
	<u> </u>	WCH-CONTRACTOR	STR	4-22-10 Date
	o by	Chydr 200		4-22-10 Provematic Test Report Form, xla
		B: Page 2	0 of 105	

MCF-9

		cordance to ASME B31.3	San
Job Number: 402738		Sequence #	
Equipment/Line No.: 4x8 CARRIER CPB	9 Area:	Test #	2
Service:	Test Medium:	Water	
Equipment/System Being Tested: Boiler	Exchanger	☐ Furnace	
Piping [7]	Vessel	Other	
Piping System: 4"x8" CARRIER Test Pressure: 30 psi	For Test Pressures of See Specification:	on which system: 0600X-SP-M0032, 3.5	
Reason For Test: New Piping Installation			
Finish Test Pressure: 33 psi Time: Pass Criteria: (0) Zero Leakage at specified test pro Gauge Manufacturer: [1] KA Calibration Date: 3/10	Certificate Number: Calibration Expir		
Comments: Pressure Relief Valve is installed on test pum	p		
Test Witnessed and Accepted By: BMWC Representit Delhur - SUBCONTRACTO WCH - CONTRACT CCA	OR, QA/QC	4-27	Date 2-10 Date 0-16 Date

PNUEMATIC TEST REPORT FORM

MCF-10

and the second of the second second second second	and action of Spain and Spain and Atlanta of the	Gauge Tested in accordance	to ASME B31.3
Job Number: 402738			Sequence #
Equipment/Line No.: CPB*9	4"xB" CONTAINM	ENT PIPE Area:	Test # 2 - P
Service:		Test Medium: Com	pressed AIR
System Being Tested:	Boiler	Exchanger [Furnace
	Piping 🗹	Vessel	Other
Test Pressure:	_ psi	In Service Test [(only d	secked, if is service test was performed)
Reason For Test: New Pipir	g Installation		
Gauge Serial# 511292 Cal	ibration Date: 04/09/10	Calibration Expiration Da	te: 04/09/11
Date of Test: 4/- 27	-10 2:40 P.M.	Duration of Test: 120	mins.
Final Test Pressure:	_psi	Pass	Fail
Comments: <u>CGA</u> obs	erved BMWC	"Snoop" the Joi	nts and
observere	1' no visible	lcaks. Th	
Test Witnessed and Accepted By:	BMWC Representitiv	by	#/27 / FO Date
De	Thur - SUBCONTRACTOR	R, QA/QC	27-10 Date
By	WCH-CONTRACTO	DR DR	C4-18-10 Date
1	The Mon		4-27-10
	A A A B: Page	22 of 105	Pruematic Test Report Formula

MCF-9

· · · · · · · · · · · · · · · · · · ·	Gauge Tested in accordance	
Job Number: 402738		Sequence #
Equipment/Line No.: CPB*XV 4"x8" CARRIE	R PIPE Area:	Test # 3
Service:	Test Medium: Water	
Equipment/System Being Tested: Boiler	Exchanger	Furnace
Piping ☑	Vessel	Other
	For Test Pressures on which See Specification: 0600X-S	•
total residue.	oce operineation.	
Reason For Test: New Piping Installation		
Starting Test Pressure: 36 psi Time: Finish Test Pressure: 35 psi Time: Pass Criteria: (0) - Zero Leakage at specified test pre Gauge Manufacturer: 101KA Calibration Comments: Pressure Relief Valve is installed on test pump	2:05 Pass/Fa Pass/Fa Pass/Fa Pass/Fa Pass/Fa Pass/Fa Pass/Fa Pass/Fa	?-10
Test Witnessed and Accepted By: BMWC Representitive Belhur - SUBCONTRACTOR WCH - CONTRACTOR COA	R QA/QC	4-28-10 Date 4-28-10 Date 4-29-10 Date 4-28-10 Date

PNUEMATIC TEST REPORT FORM

MCF-10

Some on the arrangement of the property control control of	Gauge Tested in accordance	e to ASME B31.3
		Sequence #
*10 4"×8" ("CNTAINE	MENT PIPEArea:	Test #3 - P
	Test Medium: Con	npressed AIR
Boiler 🗀	Exchanger	Furnace
Piping 🖸	Vessel	Other
psi	In Service Test [(only	checked, if in service test was performed)
oing Installation		
18-10 2:30 P.M.	Calibration Expiration D Duration of Test: 120 Pass	
BMWC Representition Delhur - SUBCONTRACTOR	R, QA/QC	4/28/10 Date 4-28-10 Date 4-28-10 Pruematic Test Report Form als
	Boiler Deliver Delhur - SUBCONTRACTO	Unit: Containment April Containment Containment

MCF-9

- gers hoppin (Jorga), successful distributed by the confidence of	in with the common water the second was	Gauge Tested in accordance	
Job Number: 402738	•	Unit:	
Equipment/Line No.: CP3 */	0 2×6 CAR	RIER Area:	Test # 4
Service:		Test Medium: Water	
Equipment/System Being Tested:	Boiler	Exchanger [Furnace
	Piping 🗸	Vessel	Other
Piping System: 2 x 6 CAR	RIEIR	For Test Pressures on which	system:
Test Pressure: 30-40		See Specification: 0600X-S	
Finish Test Pressure: 36 Finish Test Pressure: 33 Pass Criteria: (0) -Zero Lea Gauge Manufacturer: NOSHOK Gauge Serial# 43037 Calibr	osi Tim skage at specified test Calibratio	pressure. Pass/Fa	6
Comments: Pressure Relief Valve	is installed on test pu	imp	
Test Witnessed and Accepted By:			
	BMWC Represen	titive	Date
Deth	ur - SUBCONTRACT	FOR, QA/QC	Date
	WCH - CONTRAC	CTOR	Date

HYDRO TEST REPORT FORM MCF-9

The return of the constitution of the same			ordance to Asive By 1.3	
Job Number: 402738	,	Unit:	Sequence #	
Equipment/Line No.: CPB*10	2x6 CARBIER	Area:	Test #	414
Service:		Test Medium:	Water	-
Equipment/System Being Tested:	Boiler	Exchanger	Furnace	
	Piping 🔽	Vessel	Other	·
Piping System: 2 ×6" CARR	RIER I	For Test Pressures o	on which system:	
Test Pressure: 30 - 40 ps	i s	See Specification: (0600X-SP-M0032, 3.5	
Starting Test Pressure: 36 ps Finish Test Pressure: 36 ps Pass Criteria: (0)-Zero Leak		11:45 12:45 554765 % L	Pass/Fail: <u>PASS</u> EAKAGE JL	-) 5-5-10
Gauge Manufacturer: NOSHOK Gauge Serial# 130.371 Calibrat	·		28846 ation Date: 4/11	-
Comments: Pressure Relief Valve is	installed on test pump			
Test Witnessed and Accepted By: James Delhur	BMWC Representitive - SUBCONTRACTOR WCH - CONTRACTO		5-5 5-5-	Date Date
fl	WHAT OF		J-3	- 10
- Izl	Who.		5-5	

PNUEMATIC TEST REPORT FORM

MCF-10

and the service of th	or advancer of the the the temperature of	Gauge Tested in accordance	to ASME B31.3
Job Number: 402738		Unit:	Sequence #
Equipment/Line No.:	10 2"x6" CCNTAINI	BENT PIPE Area:	Test # <u>4A-P</u>
Service:		Test Medium: Con	pressed AIR
ystem Being Tested:	Boiler	Exchanger	Furnace
	Piping 🕗	Vessel	Other
Test Pressure:	psi	In Service Test [(only	checked, if is service test was performed)
Reason For Test: New Pip	ing Installation		
Final Test Pressure:	psi	Duration of Test: 130 Pass V Oap Test all Welco	Fail
est Witnessed and Accepted By:	BMWC Representit	(ive	5-5-10
15.	Delhur - SUBCONTRACTO J. J. J. L. (WCH - CONTRACT	OR, QA/QC OR	Date 5-5-10 Date
	CAA B: Pag	e 27 of 105	Pruematic Test Report Form.xls

HYDRO TEST REPORT FORM MCF-9

		Cauge resieu in accordance	C.I Cd SIMICA OF
Job Number: 402738		Unit:	Sequence #
Equipment/Line No.: 111-1-33	TRANSMISSION LIN	HE Area:	Test #5
Service:		Test Medium: Water	
Equipment/System Being Tested:	Boiler	Exchanger	Furnace
	Piping 🗸	Vessel [Other.
Piping System: 10 × 16 CARA Test Pressure: 30 - 40		For Test Pressures on which See Specification: 0600X-8	
Reason For Test: New Piping	Installation		
	psi + 5% allowed acceptable if the measured noughout the specified test	loss is not greater than 5 % duration.	of the test beginning
Comments: Pressure Relief Valv	ve is installed on test pump	and set at no more than 5%	6 of the maxium test pressure
Test Witnessed and Accepted By:	BMWC Representation BMWC Representation BMWC Representation		5-17-10 Date 5-17-10 Date
•	WCH - CONTRACTO	OR	Date
-	CQA - SUBCONTRAC	TOR	Date

HYDRO TEST REPORT FORM MCF-9

	Ga	ige rested in accordance	W ASME BS1.5
Job Number: 402738		Unit:	Sequence #
Equipment/Line No.: 1914-33	TRANYMISSION L	INE Area:	Test # 5A
Service:		Test Medium: Water	
Equipment/System Being Tested:	Boiler	Exchanger	Furnace
	Piping 🗸	Vessel	Other
Piping System: 10 × 16 CARRETE Test Pressure: 30-40 p		Test Pressures on which e Specification: 0600X-	h system: SP-M0032, Rev 1, 3.5.1
Reason For Test: New Piping I	nstallation		
Gauge Manufacturer: NOSHOK	si + 5% allowed Tir ceptable if the measured lose sughout the specified test do	ne: 9:05 Pass/F ss is not greater than 5 % uration. tificate Number: 288	of the test beginning
Comments: Pressure Relief Valve	is installed on test pump as	nd set at no more than 59	% of the maxium test pressure
Buy	BMWC Representative Lur - SUBCONTRACTOR, WCH - CONTRACTOR CQA - SUBCONTRACTOR	QA/QC	5-19-10 Date 5-19-10 Date 05-19-10 Date

PNEUMATIC TEST REPORT FORM MCF-10

		Gauge Tested in acc	cordance to ASME B31.3	
Job Number: 402738		Unit:	Sequence #	
Equipment/Line No.: 1911-33	TRANGMISSION	LINE Area:	Test #	5A-12
Service:		Test Medium:	Compressed AIR	
System Being Tested:	Boiler [Exchanger	☐ Furnace	
10x16 CONTAINMEN	Piping ✓	Vessel	☐ Other	
Test Pressure: 10.5	psi -	In Service Test Joints Snoop Tested	(only checked, if Joints Snooped (
Reason For Test: New Piping	Installation			
es de la companya de				
Gauge Serial# 511292 Calib	oration Date: 4-9-	Calibration Expi	ration Date: 4-9-1/	
Date of Test: 5-19-1	0 9:55	4.M. Duration of Test:	mins.	
Final Test Pressure: 10.5	psi	Pass	Fail	
pressure thoughout t	he specified test durat		of the test beginning	test pressure
Test Witnessed and Accepted By?	4. D. Ille	ntative CTOR, QA/QC LLL CTOR	5-,	9 -10 Date 19-10 Date -19-16 Date
	CQA - CONTRA	CTOR	5-19	ー/ 心 Date

MCF-9

	Gauge Tested in accordance	
Job Number: 402738	Unit:	Sequence #
Equipment/Line No.: MH-21 TANK PENETRATIO	Area:	Test # 6
Service:	Test Medium: Water	
Equipment/System Being Tested: Boiler	Exchanger	Furnace
Piping [7]	Vessel	Other
	For Test Pressures on which See Specification: 0600X-S	·
Reason For Test: New Piping Installation		
Starting Test Pressure: 39 psi + 5% allowed Finish Test Pressure: 39 psi + 5% allowed Pass Criteria: The test is acceptable if the measured pressure thoughout the specified test Gauge Manufacturer: NOSION Calibration Date: 4/10	Time: 7:55 Pass/Fai loss is not greater than 5 % of t duration.	of the test beginning
Comments: Pressure Relief Valve is installed on test pump	and set at no more than 5%	of the maxium test pressure
Test Witnessed and Accepted By: And Accepted By: BMWC Representation Delhur - SUBCONTRACTO WCH - CONTRACTO CQA - SUBCONTRACTO	R, QA/QC OR	5-21-10 Date 5-21-10 Date 05-21-10 Date 5-21-10

PNEUMATIC TEST REPORT FORM

MCF-10

		Gauge Tested in acco	ordance to ASME B31.3
Job Number: 402738		Unit: _	Sequence #
Equipment/Line No.: M11-21 T	ANK PENETRA	IICM Area:	Test # 6 P
Service:		Test Medium:	Compressed AIR
System Being Tested:	Boiler	Exchanger [Furnace
8 × 12 CONTAINMENT	Piping 🗸	Vessel [Other
Test Pressure:	psi	In Service Test Joints Snoop Tested	(only checked, if Joints Smooped (Soap Tested) (only checked, if Joints (Soap Tested)
Reason For Test: New Piping Ins	tallation		
Gauge Serial# 511292 Calibrat Date of Test: 5-21-10 Final Test Pressure: 10 psi	8:40 A.M.		10 mins. Fail
Comments: The test is acceptable if pressure thoughout the s Pressure Relief Valve	pecified test duration	1.	f the test beginning than 5% of the maxium test pressure
Test Witnessed and Accepted By: Delhur	BMWC Representa - SUBCONTRACTO WCH - CONTRACTO CQA - CONTRACTO	OR, QA/QC	5-21-10 Date 5-21-10 Date 5-21-10 Date

PNEUMATIC TEST REPORT FORM

MCF-10

	Gauge Tested in accordance to ASME B31.3
Job Number: 402738	Unit: Sequence #
Equipment/Line No.: MH - 21 TANK PENETR	2ATTCN Area: Test # 6-19-1
Service: VALVE TEST	Test Medium: Compressed AIR
System Being Tested: Boiler	Exchanger Furnace
8×12 CCNTAINMENT Piping 1	Vessel Other
Test Pressure: 10.5 psi	In Service Test (only checked, if Joints Scooped (Saap Tested) Joints Snoop Tested (anly checked, if Joints (Soap Tested)
Reason For Test: New Piping Installation, VERIF	Y VALUE TIGHTNESS IN MH-21. TEST
6-P VERIFIED WELDS.	· · · · · · · · · · · · · · · · · · ·
Gauge Serial# 5/1292 Calibration Date: 4-9-	10 Calibration Expiration Date: 4-9-11
Date of Test: 5-21-10 2:20 P.1	n. Duration of Test: 10 mins.
Final Test Pressure: 10.5 psi	Pass Fail
pressure thoughout the specified test durat	is not greater than 5 % of the test beginning ion. pump and set at no more than 5% of the maxium test pressure
Test Witnessed and Accepted By: Walton BMWC Representation	_5-21-10
WCH-CONTRA WCH-CONTRA CQA-CONTRA	5-21-10

MCF-9

		Gauge Tested in acc	cordance to A	ASME B31.3
Job Number: 402738		Unit:		Sequence #
Equipment/Line No.: MH - 39	TANK PENE	TRATION Area:		Test #
Service:		Test Medium:	Water	·
Equipment/System Being Tested:	Boiler	Exchanger		Furnace
	Piping 🔽	Vessel		Other
Piping System: 10 x 16 CARI	RIEK	For Test Pressures	on which syst	tem:
Test Pressure: 30-40 p	si	See Specification:	0600X-SP-M	10032, Rev 1, 3.5.1
Reason For Test: New Piping I	nstallation	· · · · · · · · · · · · · · · · · · ·		
Gauge Manufacturer: NOSHOK	si + 5% allowed septable if the measur ughout the specified Calibration	Time: 10:24 red loss is not greater thest duration.	Pass/Fail: _han 5 % of th	ne test beginning
Comments: Pressure Relief Valve	is installed on test pu	mp and set at no more	than 5% of t	he maxium test pressure
Test Witnessed and Accepted By: Dothu	BMWC Represent	FOR, QA/QC CTOR	-	5-21-10 Date 5-21-10 Date 05-21-10 Date

PNEUMATIC TEST REPORT FORM

MCF-10

	Gauge Tested in accorda	ince to ASME B31.3
Job Number: 402738	Unit:	Sequence #
Equipment/Line No.: MH - 39 TANK	PENETRATION Area:	Test # 7-P
Service:	Test Medium:	Compressed AIR
System Being Tested: Boiler 10 × 16 CONTAINMENT Piping	Exchanger Vessel	Furnace Other
Test Pressure: 10 psi	In Service Test Joints Snoop Tested	(only checked, if Joints Snooped (Soap Tested) (only checked, if Joints (Soap Tested)
Reason For Test: New Piping Installation		
Gauge Serial# 5/1/292 Calibration Date: Date of Test: 5-21-10 10:4 Final Test Pressure: 10 psi		
pressure thoughout the specified	sured loss is not greater than 5 % of the test duration. Ed on test pump and set at no more that	
Delhur - SUBCO	Representative ONTRACTOR, QA/QC CONTRACTOR ALL ALL ALL ALL ALL ALL ALL A	
CQA - C	CONTRACTOR	Date

PNEUMATIC TEST REPORT FORM

MCF-10

	Gaug	e Tested in accordance to	ASME B31.3
Job Number: 402738		Unit:	Sequence #
Equipment/Line No.: 1914-39	TANK PENETRATION	Area:	Test # 7-P-1
Service: <u>VALVE</u>	TEST	Test Medium: Compre	essed AIR
System Being Tested:	Boiler	Exchanger	Furnace
	Piping 🖸	Vessel	Other
Test Pressure: 10.5	psi In S Joints	Service Test (only check	ted, if Joints Smooped (Scap Tested) ted, if Joints (Scap Tested)
Reason For Test: New Piping	Installation, VERIFY V	ALVE TYGHTSIESS	IN MH-39. TEST
7-P VERIFI	ED WEUDS.		
Gauge Serial# 51/292 Calibr	ation Date: 4-9-10 Ca	libration Expiration Date:	4-9-11
Date of Test: 5-21-	10 2:00 P.M. Dur	ration of Test: 10	mins.
Final Test Pressure: 10.5	osi	Pass	Fail
pressure thoughout th	if the measured loss is not gre e specified test duration. e is installed on test pump and		
Test Witnessed and Accepted By:	BMWC Representative	. ·	5-21-10 Date
Delfi	ur-SUBCONTRACTOR, QA	VQC	Date 05 · 21 · / O
	WCH - CONTRACTOR CQA - CONTRACTOR		Date 5-21-10 Date

MCF-9

	Gauge Tested in accordance	e to ASME B31.3			
Job Number: 402738	Unit:	Sequence #			
Equipment/Line No.: 2" LEAK DETECTION	/ Area:	Test #			
Service:	Test Medium: Water				
Equipment/System Being Tested: Boiler	Exchanger	Furnace			
Piping 🖸	Vessel	Other.			
Piping System: 2" SINGLE WALL Test Pressure: 30 - 4/6 psi	For Test Pressures on which See Specification: 0600X-	•			
Reason For Test: New Piping Installation					
Starting Test Pressure: 35 psi + 5% allowed Time: 1:00 Finish Test Pressure: 34 psi + 5% allowed Time: 2:00 Pass/Fail: PASS Pass Criteria: The test is acceptable if the measured loss is not greater than 5 % of the test beginning pressure thoughout the specified test duration. Gauge Manufacturer: NOSHOK Calibration Certificate Number: 28846 Gauge Serial# 43037/ Calibration Date: 4/10 Calibration Expiration Date: 4/11					
Comments: Pressure Relief Valve is installed on test p	oump and set at no more than 5%	of the maxium test pressure			
Test Witnessed and Accepted By: BMWC Representation Delhur - SUBCONTRACT WCH - CONTRACT CQA - SUBCONTRACT	CTOR, QA/QC CTOR	Date 5-24-10 Date 05-24-10 Date 5-24-2010 Date			

HYDRO TEST REPORT FORM MCF-9

	Gauge T	ested in accordance to A	ASME B31.3
Job Number: 402738		Unit:	Sequence #
Equipment/Line No.: MH - 22 TAN	K PENETRATION	Area:	Test # 9
Service:	Tes	t Medium: Water	
Equipment/System Being Tested: Bo	oiler 🗌	Exchanger	Furnace
Pi	ping 🗸	Vessel	Other.
Piping System: 4 × 8 CARRIER	For Test	Pressures on which syst	em:
Test Pressure: 30 - 40 psi	See Spec	cification: 0600X-SP-M	10032, Rev 1, 3.5.1
Reason For Test: New Piping Installat	tion		
Starting Test Pressure: 36 psi + 5% Finish Test Pressure: 36 psi + 5%			PASS
Pass Criteria: The test is acceptable	e if the measured loss is no t the specified test duration		e test beginning
Gauge Manufacturer: NO SHOK	Calibration Certificate Pate: 4/10 Calibrate	e Number: <u>28846</u>	4/11
Comments: Pressure Relief Vaive is insta	alled on test pump and set	at no more than 5% of t	he maxium test pressure
Test Witnessed and Accepted By:	A Hatto WC Representative	M	5-25-10
Delhur - SU	BCONTRACTOR, QA/Q	 .	Date 5-25-10 Date
15 m/wci	J. Jehlel H-CONTRACTOR		Ø5 - 25 - 10 Date
21	With	-	5-25-2010
COA-	SUBCONTRACTOR		Date

PNEUMATIC TEST REPORT FORM MCF-10

	Gauge Tested in accordance	to ASME B31.3
Job Number: 402738	Unit:	Sequence #
Equipment/Line No.: MH - 22 TANK PENE	TRATICN Area:	Test # 9-P
Service:	Test Medium: Com	pressed AIR
System Being Tested: Boiler	Exchanger	Furnace
4 x8 CONTAINMENT Piping 1	Vessel	Other
Test Pressure: 10.5 psi	In Service Test (only	checked, if Joints Sacoped (Soap Tested) checked, if Joints (Soap Tested)
Reason For Test: New Piping Installation		
Gauge Serial# 5/1292 Calibration Date: 4-9- Date of Test: 5-25-10 2:28 15 Final Test Pressure: 10.5 psi		
Comments: The test is acceptable if the measured loss pressure thoughout the specified test durat Pressure Relief Valve is installed on test	ion.	
Delhur - SUBCONTRAC	TOR, QA/QC	5-25-10 Date 5-25-10 Date 5-25-10 Date 5-25-2010 Date

MCF-9

		Gauge Tested III accordance	
Job Number: 402738		Unit:	Sequence #
Equipment/Line No.: MH - 32 7	RANGINISSION I	UNE Area:	Test # 10
Service:		Test Medium: Water	
Equipment/System Being Tested:	Boiler	Exchanger	Furnace
	Piping 🔽	Vessel [Other
Piping System: 10 x 16 CARR, Test Pressure: 30 - 40 psi	IER	For Test Pressures on which See Specification: 0600X-3	•
1301.13034.01 July 10 par		specification observe	
Reason For Test: New Piping Ins	tallation		
Starting Test Pressure: 34 psi Finish Test Pressure: 35 psi			ail: <i>PAS</i> S
Pass Criteria: The test is accept			
pressure thous	thout the specified te	st duration.	
Gauge Manufacturer: NOSHCK Gauge Serial# 430371 Calibratic	Calibration on Date: 4/16	Certificate Number: 2885 Calibration Expiration D	16 ate: 4/1/
<u></u>			
Comments: Pressure Relief Valve is	installed on test pum	p and set at no more than 5%	of the maxium test pressure
			,
Test Witnessed and Accepted By:			
lest williessed and Accepted by.	1 8/8/	1	5-27 10
1 pame	BMWC Representati	we	Date
	/ / / / / / / /		
Delhur	SUBCONTRACTO	OR. OA/OC	<u>5-27-10</u> Date
·	il o		Elization
$\frac{\mathcal{D}^{\times}}{\mathcal{D}^{\times}}$	WCH - CONTRACT	OR	Date
	1/1/		5.77 204
- 3 _{CC}	A - SUBCONTRAC	CTOR	5- 27- 20/0 Date

PNEUMATIC TEST REPORT FORM

MCF-10

	Gauge	Tested in accordance to	ASME B31.3
Job Number: 402738		Unit:	Sequence #
Equipment/Line No.: MH-32 7	TRANSMISSION LINE	Area:	Test # 10 -10
Service:	T	est Medium: Comp	ressed AIR
System Being Tested: 10 × 16 CONTAINMENT	Boiler Piping	Exchanger Vessel	Furnace Other
Test Pressure:		ervice Test (only du	ecked, if Joints Snooped (Sasp Tested) ecked, if Joints (Sasp Tested)
Reason For Test: New Piping Ins	stallation		
Gauge Serial# 5/1292 Calibrat Date of Test: 5-27-/ Final Test Pressure: // ps	0 11:45 Am Dur		
Pressure thoughout the Pressure Relief Valve. Test Witnessed and Accepted By:		set at no more than 5%	to beginning of the maxium test pressure Date 5-27-10 Date 5727/10 Date
	CQA - CONTRACTOR		<u>5-27-2010</u> Date

MCF-9

		Gauge Tested in accorda	ince to ASME B31.3
Job Number: 402738		Unit:	Sequence #
Equipment/Line No.: 1914-35 7	RANSMISSION	LINE Area:	Test #
Service:		Test Medium: Water	er
Equipment/System Being Tested:	Boiler	Exchanger	Furnace
	Piping 🗸	Vessel	Other
Piping System: 10 × 16 CAR	IER	For Test Pressures on wi	nich system:
Test Pressure: 30-40 ps	i	See Specification: 0600	X-SP-M0032, Rev 1, 3.5.1
Reason For Test: New Piping In	stallation		·
Starting Test Pressure: 38.5 ps Finish Test Pressure: 37.5 ps Pass Criteria: The test is according to the pressure that Gauge Manufacturer: NOSHOK Gauge Serial# 430371 Calibra	ii + 5% allowed eptable if the measur ughout the specified	Time: 1:45 Pas red loss is not greater than 5 test duration.	5 % of the test beginning
Comments: Pressure Relief Valve	s installed on test pu	imp and set at no more than	5% of the maxium test pressure
-15- 11/4.00	BMWC Represent	TOR, QA/QC	$ \begin{array}{c} 6-7-10 \\ \hline Date \\ 6-7-10 \\ \hline Date \\ 06.08.10 \\ \hline Date \\ 68-19 \\ Date $

PNEUMATIC TEST REPORT FORM

MCF-10

	Caug	ge Tested in accordance	O ASME BS1.5
Job Number: 402738		Unit:	Sequence #
Equipment/Line No.: 141-35	TRANSMISSION LIN	E Area:	Test # 11-12
Service:		Test Medium: Cor	npressed AIR
ystem Being Tested:	Boiler	Exchanger	Furnace
10 × 16 CONTAINMENT	Piping 🗸	Vessel	Other
Test Pressure:		Service Test God;	y checked, if Joints Sacoped (Scap Tested) y checked, 'I Joints (Scap Tested)
Reason For Test: New Piping	Installation		
Final Test Pressure:	psi . e if the measured loss is not gr	Pass Pass	Fail est beginning
pressure thoughout t	he specified test duration.		% of the maxium test pressure
est Witnessed and Accepted By:	BMWC Representative hur - SUBCONTRACTOR, O WCH - CONTRACTOR EQA - CONTRACTOR	Andrew Services	Date 6-8-10 Date 06.08.10 Date 6-9-19 Date

BMWC Constructors Inc.	Gauge Tested in accordance to	ASME B31.3		
Job Number: 402738	Unit:	Sequence #		
Equipment/Line No.: MH 37-38 CARRIER	Area:	Test # 12		
Service:	Test Medium: Water			
Equipment/System Being Tested: Boiler	Exchanger	Furnace		
Piping 🗸	Vessel	Other.		
Piping System: 10 × 1/5	For Test Pressures on which sy	stem:		
Test Pressure: psi	See Specification: 0600X-SP-	M0032, Rev 1, 3.5.1		
Reason For Test: New Piping Installation Starting Test Pressure: 36 psi + 5% allowed Time: 10:55 Finish Test Pressure: 35, 5 psi + 5% allowed Time: 11:55 Pass/Fail: PASS Pass Criteria: The test is acceptable if the measured loss is not greater than 5 % of the test beginning pressure thoughout the specified test duration. Gauge Manufacturer: NOSHOK Calibration Certificate Number: 28846.				
Gauge Serial# 43037 i Calibration Date: 4/10 Comments: Pressure Relief Valve is installed on test po				
Test Witnessed and Accepted By: BMWC Representation Belhur - SUBCONTRACT WCH - CONTRACT CQA - SÜBCONTR	TOR, QA/QC CTOR	6-17-10 Date 6-17-10 Date 06:17-16 Date 6-17-10 Date		

PNEUMATIC TEST REPORT FORM MCF-10

33 CONTAU				12-12
			Test #_	12-12
,	Test Medium:	C		
,		Compresse	d AIR	
Boiler	Exchanger		Furnace [_
Piping 🗹	Vessel		Other_	
psi	In Service Test Joints Snoop Tested	(anly checked, if	Jaints Snooped (So: Jaints (Sosp Tested	ap Tested)
stallation				
•				
,				/
specified test durat	tion.			est pressure
6/11/	1.	·	6-1	7-10 Date 17-10
	ion Date: 4/-6/2 ion Date: 4/-6/2 i 1:37 ithe measured loss specified test durate is installed on test	psi In Service Test Joints Snoop Tested stallation ion Date: 4/-6/-/O Calibration Expi 2 1:37 Duration of Test: Pass the measured loss is not greater than 5 % specified test duration. is installed on test pump and set at no more BMWC Representative	In Service Test Joints Snoop Tested Stallation Stallation Calibration Expiration Date: 4 Duration of Test: 10 mi Pass The measured loss is not greater than 5 % of the test beging specified test duration. Is installed on test pump and set at no more than 5% of the BMWC Representative	In Service Test Only checked, if Joints Socoped (So Joints Snoop Tested Only checked, if Joints (Soap Tested Stallation Stallation Calibration Expiration Date: 4/-9-// Duration of Test: 10 mins. Pass Fail The measured loss is not greater than 5 % of the test beginning specified test duration. Is installed on test pump and set at no more than 5% of the maxium test. BMWC Representative Duration of Test: 10 mins.

		Gauge Tested in accordance	ID ASME B31.3
Job Number: 402738		Unit:	Sequence # 13
Equipment/Line No.: 13/H - 20	2	Area:	Test # 13
Service:		Test Medium: Water	
Equipment/System Being Tested:	Boiler [Exchanger	Furnace
	Piping 🔽	Vessel	Other.
Piping System: <u>CONTAINME</u> Test Pressure: 30-40 p		For Test Pressures on which See Specification: 0600X-	
Reason For Test: New Piping I	nstallation		
	osi + 5% allowed ceptable if the measure oughout the specified to	Time: 11: 34 Pass/F ed loss is not greater than 5 % est duration.	of the test beginning
Comments: Pressure Relief Valve	is installed on test pur	mp and set at no more than 59	6 of the maxium test pressure
Test Witnessed and Accepted By:	BMWC Representation - SUBCONTRACT WCH - GONTRACT CQA - SUBCONTRACT	TOR, QA/QC	7-15-10 Date 7-15-10 Date 7-15-16 Date 7/15/10 Date

PNEUMATIC TEST REPORT FORM

MCF-10

		Gauge Tested in accordance	e to ASME B31.3
Job Number: 402738		Unit:	Sequence #
Equipment/Line No.: MH - 20	B CARRIER	Area:	Test # 13-P
Service:		Test Medium: Con	mpressed AIR
System Being Tested:	Boiler	Exchanger	Furnace
	Piping 🗸	Vessel	Other
Test Pressure:	psi	In Service Test (onl	y checked, if Joints Snooped (Soup Tested) y checked, if Joints (Soup Tested)
Reason For Test: New Piping In	stallation		
Final Test Pressure:		Pass Pass Pass Pass of the to	Fail
pressure thoughout the	specified test duration	on.	% of the maxium test pressure
Test Witnessed and Accepted By: Ame Delhu	BMWC Represented		7-15-10 Date
- Bay	r-SUBCONTRACT WGH-CONTRAC	2l	7-15-10 Date 7-15-10 Date

MCF-9

		Gauge Tested in acc	cordance to F	ASME BJIJ
Job Number: 402738		Unit:		Sequence #
Equipment/Line No.: MH-32	DAYLIGHT	Area:		Test #
Service:		Test Medium:	Water	
Equipment/System Being Tested:	Boiler	Exchanger		Furnace
	Piping 🗸	Vessel		Other.
Piping System:	HT psi	For Test Pressures See Specification:		tem: v10032, Rev 1, 3.5.1
Reason For Test: New Piping	Installation			
Starting Test Pressure: 39 Finish Test Pressure: 58 Pass Criteria: The test is a pressure if Gauge Manufacturer: NOSHOK Gauge Serial# 430371 Calib	psi + 5% allowed eceptable if the measur loughout the specified t	Time: 8-38 ed loss is not greater to test duration.	han 5 % of t	he test beginning
Comments: Pressure Relief Valv	e is installed on test pu	mp and set at no more	than 5% of	the maxium test pressure
Test Witnessed and Accepted By: Amle Deli Baye	BMWC Represent BMWC Represent BMWC Represent BMWC Represent COA - SUBCONTRACT COA - SUBCONTRACT	TOR, QA/QC TOR		Dy - 19 - 10 Date 7-19-16 Date 2-19-10 Date 07-19-2010 Date

MCF-9

	Gauge Tested in accorda	nce to ASME B31.3
Job Number: 402738	Unit:	Sequence #
Equipment/Line No.: 1714 - 33 DAYL	16/1T Area:	Test #
Service: 4" HDPE Clean		x .
Equipment/System Being Tested: Boiler	Exchanger	Furnace
Piping D	Vessel [Other
Piping System: 4" DAYLIGHT	For Test Pressures on w	nich system:
Test Pressure: psi	See Specification: 0600	X-SP-M0032, Rev 1, 3.5.1
Reason For Test: New Piping Installation		
Starting Test Pressure: 37 1/2 psi + 5% allow		
Finish Test Pressure: 37 psi + 5% allow		
Pass Criteria: The test is acceptable if the pressure thoughout the st	pecified test duration.	
Gauge Manufacturer: <u>NOSHOK</u> Ca Gauge Serial# <u>43637</u> Calibration Date:	alibration Certificate Number: 28	1 <u>846</u> n Date: 4/1/
Comments: Pressure Relief Valve is installed o	n test pump and set at no more than	15% of the maxium test pressure
		,
Test Witnessed and Accepted By:	<u></u>	
- James X. IX	- flor	7-20-10
BMWCK	epresentative	Date
Delhur - SUBCON	TRACTOR, QA/QC	7-20-10 Date
Bur A.T	Khirland	7.20.10
/ WCH-CO	ONTRACTOR	Date
Jac SUBO	CONTRACTOR	07-20-10

Unit:	Sequence #
Area:	Test #
Test Medium: Water	
Exchanger	Furnace
Vessel	Other
For Test Pressures on which	system:
See Specification: 0600X-S	P-M0032, Rev 1, 3.5.1
	J. Co.
Time: 11:52 Time: 12:52 Pass/Fai	il: _ <i>PASS</i>
ured loss is not greater than 5 % of test duration. on Certificate Number: 2884 Calibration Expiration Da	
oump and set at no more than 5%	of the maxium test pressure
Antanye	-8-3-10 Date
CTOR, QA/QC	8-3-10 Date
ACTOR	08-03-10 Date
RACTOR	3.3 10 Date
	Test Medium: Water Exchanger Vessel Vessel For Test Pressures on which See Specification: 0600X-S Time: 11:52 Time: 12:52 Pass/Faured loss is not greater than 5 % of test duration. On Certificate Number: 2884/20 Calibration Expiration Date of test duration. On Certificate Number: 2884/20 Calibration Expiration Date of test duration. On Certificate Number: 2884/20 Calibration Expiration Date of test duration. On Certificate Number: 2884/20 Calibration Expiration Date of test duration. On Certificate Number: 2884/20 Calibration Expiration Date of the test duration. On Certificate Number: 2884/20 Calibration Expiration Date of the test duration. On Certificate Number: 2884/20 Calibration Expiration Date of the test duration. On Certificate Number: 2884/20 Calibration Expiration Date of the test duration. On Certificate Number: 2884/20 Calibration Expiration Date of the test duration. On Certificate Number: 2884/20 Calibration Expiration Date of the test duration. On Certificate Number: 2884/20 Calibration Expiration Date of the test duration. On Certificate Number: 2884/20 Calibration Expiration Date of the test duration. On Certificate Number: 2884/20 Calibration Expiration Date of the test duration. On Certificate Number: 2884/20 Calibration Expiration Date of the test duration. On Certificate Number: 2884/20 Calibration Expiration Date of the test duration.

PNEUMATIC TEST REPORT FORM MCF-10

		Gauge Tested in accordance	to ASME B31.3
Job Number: 402738		Unit:	Sequence #
Equipment/Line No.: 1111-38	.70 39 CON	TAINMENT Area:	Test # 16-19
Service:		Test Medium: Com	pressed AIR
System Being Tested:	Boiler	Exchanger	Furnace
CONTAINMENT	Piping 🖸	Vessel	Other
Test Pressure:	psi	In Service Test (only	checked, if Joints Snowped (Sosp Tested) checked, if Joints (Sosp Tested)
Reason For Test: New Piping	Installation		
Final Test Pressure:	- <u>10 2:05</u> psi	Calibration Expiration De Pass Pass s is not greater than 5 % of the ter	mins.
pressure thoughout t	ne specified test dura		
Test Witnessed and Accepted By:	A. Han	CTOR, QA/QC ACTOR ACTOR	8-3-10 Date 8-3-10 Date 8-3-10 Date

MCF-9

	<u> </u>	auge rested in accordance to	ASME BILS	
Job Number: 402738		Unit:	Sequence #	
Equipment/Line No.: 114-34 To	35 CARRIER	Area:	Test # 17	
Service:		Test Medium: Water		
Equipment/System Being Tested:	Boiler [Exchanger	Furnace	
	Piping 🔽	Vessel	Other	
Piping System: 10 × 16 Test Pressure: 30-40 psi		or Test Pressures on which sy		
Reason For Test: New Piping Ins	tallation			
Starting Test Pressure: 35,5 psi + 5% allowed Time: 6:30 Finish Test Pressure: 35 psi + 5% allowed Time: 7:30 Pass/Fail: PASS Pass Criteria: The test is acceptable if the measured loss is not greater than 5 % of the test beginning pressure thoughout the specified test duration. Gauge Manufacturer: NOSHOK Calibration Certificate Number: 2846 Gauge Serial# 43037/ Calibration Date: 4/10 Calibration Expiration Date: 4/11 Comments: Pressure Relief Valve is installed on test pump and set at no more than 5% of the maxium test pressure				
B. e. 35-35	BMWC Representative SUBCONTRACTOR WCH - CONTRACTOR PSI - Z.9% BA QA - SUBCONTRACT	QA/QC R R R HOUR	8-5-10 Date 8-5-10 Date 08-05-10 Date 3-5-10 Date	

PNEUMATIC TEST REPORT FORM MCF-10

		Gauge Tested in accordance	to ASME B31.3
Job Number: 402738		Unit:	Sequence #
Equipment/Line No.: MH - 34 Service:	TO 35 CONTA	WINDUT Area:	Test #
Service:	34 1/10	Test Medium: Com	pressed AIR
System Being Tested:	Boiler	Exchanger	Furnace
CONTAINMENT (precumatic lest)	Piping 🗹	Vessel	Other
Test Pressure:	psi	In Service Test (only	
Reason For Test: New Piping	Installation		
All joint o	bserved (Snooped) For visible times .	Fleaks - None Observed.
Gauge Serial# 51/292 Calib	ration Date: 4-9-1	Calibration Expiration D	ate: 4-9-11
Date of Test: 8-5-	10 Start 12:5 end 1:0	Duration of Test: 10 5 pm Pass	mins.
	e if the measured loss is	not greater than 5 % of the te	st beginning
			% of the maxium test pressure
Test Witnessed and Accepted By:	BMWC Representa		8-5-10 Date
Delh	W NU STRACT	OR, QA/QC	8-5-10 Date
15-	WCH CONTRAC	TOR	08.05.10 Date
	CQA - CONTRAC	TOR	<u> </u>

		Cauge Tested in accordan	ICE ID ASMLE B31.3	
Job Number: 402738		Unit:	Sequence #	
Equipment Line No.: MH - 38	TO 9 CARRIES	Area:	Test #	18
Service:		Test Medium: Water	r	
Equipment/System Being Tested:	Boiler	Exchanger	Furnace []
	Piping 🔽	Vessel	Other	
Piping System: 10 × 16 CA. Test Pressure: 30 - 401		For Test Pressures on wh See Specification: 0600		3.5.1
Reason For Test: New Piping I	Installation			
			.7 -1	
Starting Test Pressure: 31 psi + 5% allowed Time: 7:00 Finish Test Pressure: 31 psi + 5% allowed Time: 8:00 Pass/Fail: PASS Pass Criteria: The test is acceptable if the measured loss is not greater than 5 % of the test beginning pressure thoughout the specified test duration. Gauge Manufacturer: NOSHOK Calibration Certificate Number: 28846 Gauge Serial# 430371 Calibration Date: 4/10 Calibration Expiration Date: 4/11				
Comments: Pressure Relief Valve is installed on test pump and set at no more than 5% of the maxium test pressure				
Test Witnessed and Accepted By: Della State of the Agency	BMIWC Représenta BMIWC Représenta BMIWC Représenta AUGUSTACT WCH - CONTRACT WCH - CONTRACT CQA - SUBCONTRA	OR, QA/QC TOR	8-9- 08.0	Date

PNEUMATIC TEST REPORT FORM MCF-10

	Gauge Tested in acco	rdance to ASME B31.3
Job Number: 402738	Unit:	Sequence #
Equipment/Line No.: MH'S 38-9	CONTAINMENT Area:	Test # 18-12
Service:	Test Medium:	Compressed AIR
	Boiler	☐ Furnace ☐
10×16 CONTAINMENT P	Piping Vessel [Other
Test Pressure:	_	(only checked, if Joints Sacoped (Scap Tested) (only checked, if Joints (Scap Tested)
Reason For Test: New Piping Install	ation	
Pate of Test: 8-12-10 Final Test Pressure:psi	12:50 Duration of Test:	10 mins.
pressure thoughout the spec	measured loss is not greater than 5 % or ciffed test duration. Istalled on test pump and set at no more	
Test Witnessed and Accepted By:	MWC Representative	8-12-16 Date
Delhur - Si	UBCONTRACTOR, QA/QC	8-12-18 Date
Beg &	CH, CONTRACTOR	98.12.10 Date
Sal	121/-	8/12/10
/ (0	A - CONTRACTOR	Date

MCF-9

BMWC Constructors Inc.

Gauge Tested in accordance to ASME B31.3

Job Number: 402738	Unit:	Sequence #		
Equipment/Line No.: ('ELL 9 - 18' PRIMAR)	Area:	Test # <u>j</u> 9		
Service:	Test Medium: Water			
Equipment/System Being Tested: Boiler	Exchanger	Furnace		
Piping 🔽	Vessel	Other_		
Piping System: 3" DISCHARGE	For Test Pressures on which	ch system:		
Test Pressure: 70 psi	See Specification: 0000A	-SP-M0032, Rev 1, 3.5.1		
Reason For Test: New Piping Installation				
		:		
Starting Test Pressure: 85 psi + 5% allowed	Time: 6:29			
	•	21.		
Finish Test Pressure: 84 psi + 5% allowed Time: 7:29 Pass/Fail: PASS				
Pass Criteria: The test is acceptable if the measured loss is not greater than 5 % of the test beginning				
pressure thoughout the specified	test duration.			
Gauge Manufacturer: [,)) (A Calibration	n Certificate Number: <u>285</u>	<u>31 </u>		
Gauge Serial# 349562 Calibration Date: 3/10	Calibration Expiration	Date: 3/11		
Comments: Pressure Relief Valve is installed on test pump and set at no more than 5% of the maxium test pressure				
Test Witnessed and Accepted By				
Test witnessed and Accepted by	1-11			
Vame, X. X/	Mon	8-16-10		
BMWC Represent	ative	Date		
(hob 1).lli 8.16-16				
Deihur - SUBCONTRACTOR, QA/QC Date				
K AND S		08.16.10		
WCH - CONTRACTOR Date				
1 1-11				
2/12/1-		8/16/10		
CQA - SUBCONTRA	ACTOR	Date		

MCF-9

	Gauge Tested in accordance	to ASME B31.3
Job Number: 402738	Unit:	Sequence #
Equipment/Line No.: CELL 4-12" PRIMARY	Area:	Test # <u>20</u> ;
Service:	Test Medium: Water	
Equipment/System Being Tested: Boiler	Exchanger	Furnace
Piping 🔽	Vessel	Other
Piping System: 11/2 1DISCHARCE	For Test Pressures on which	system:
Test Pressure: 70 psi	See Specification: 0600X-S	P-M0032, Rev 1, 3.5.1
Reason For Test: New Piping Installation		
Starting Test Pressure: <u>85</u> psi + 5% allowed Finish Test Pressure: <u>84</u> psi + 5% allowed		ii: _ <i>PA</i> SS
Pass Criteria: The test is acceptable if the measure pressure thoughout the specified te Gauge Manufacturer: DIKA Calibration Gauge Serial# 400619-A Calibration Date: 3/10.	st duration.	
Comments: Pressure Relief Valve is installed on test pun	np and set at no more than 5%	of the maxium test pressure
Test Witnessed and Accepted By: BMWC Representation Delhur - SUBCONTRACT WCH - CONTRACT CQA - SUBCONTRACT	OR, QA/QC COR	8-16-10 Date 8-16-10 Date 08-16-10 Date 8/16/00 Date

		Gauge Tested in accordance	e to ASME B31.3
Job Number: 402738		Unit:	Sequence #
Equipment/Line No.: (ELL 10	- 18" PRIMARY	Area:	Test #21
Service:		Test Medium: Water	
Equipment/System Being Tested:	Boiler [Exchanger	Furnace
	Piping 🗸	Vessel	Other
Piping System: 3" DISCHARGE Test Pressure: 70 ps	si	For Test Pressures on whice See Specification: 0600X	•
Reason For Test: New Piping In	stallation		
Gauge Manufacturer: <u>UIKA</u> Gauge Serial# <u>363662</u> Calibra	si + 5% allowed eptable if the measured ughout the specified test Calibration of tion Date: 3/10	Time: 7:30 A, 44 Pass/A loss is not greater than 5 % at duration. Certificate Number: 28.53 Calibration Expiration I	6 of the test beginning
Delhu Say	BMWC Representation Why Digital Contract Contract WCH - CONTRACT EL/- CQA - SUBCONTRACT CQA - SUBCONTRACT	DR, QA/QC COR	8/17/16 Date 8/17/15 Date 08.23.10 Date 8/17/10 Date

MCF-9

	Gauge Tested in accordance to ASME B11.3
Job Number: 402738	Unit: Sequence #
Equipment/Line No.: Cell 10 12" Cr	swary Area: Test # 22
Service:	Test Medium: Water
Equipment/System Being Tested: Boiler	Exchanger Furnace
Piping 🗾	Vessel Other
Piping System: 1/2 discharge	For Test Pressures on which system:
Test Pressure: 70 psi	See Specification: 0600X-SP-M0032, Rev 1, 3.5.1
1-	
Reason For Test: New Piping Installation	
Gauge Manufacturer: WKA Calibration Date: 3/16	Time: 7:15 Apg. Pass/Fail: Fass easured loss is not greater than 5 % of the test beginning fied test duration.
Baya N. Khu	8-18-10 Date 8-18-10 Date 8-18-10 Date 8/18/10

	Gauge Tested in accordance	to ASME B31.3		
Job Number: 402738	Unit:	Sequence #		
Equipment/Line No.: (ELL 9-12" SECUNDARS	Area:	Test #24		
Service:	Test Medium: Water			
Equipment/System Being Tested: Boiler	Exchanger	Furnace		
Piping 🗸	Vessel	Other		
Piping System: 1½" DISCHARGE Test Pressure: 70 psi	For Test Pressures on which See Specification: 0600X-			
Reason For Test: New Piping Installation				
Starting Test Pressure: 89 psi + 5% allowed Time: 6:10 Am. Finish Test Pressure: 87 psi + 5% allowed Time: 7:10 Am Pass/Fail: 915 Pass Criteria: The test is acceptable if the measured loss is not greater than 5 % of the test beginning pressure thoughout the specified test duration. Gauge Manufacturer: 11XA Calibration Certificate Number: 28632 Gauge Serial# 10069-A Calibration Date: 3/10 Calibration Expiration Date: 3/11				
Comments: Pressure Relief Valve is installed on test pu	mp and set at no more than 59	6 of the maxium test pressure		
Test Witnessed and Accepted By: BMWCRepresent Belhur - SUBCONTRACT WCH - CONTRACT CQA - SUBCONTRACT	TOR, QA/QC Cochel CTOR	8-19-10 Date 8-19-10 Date 08-23-16 Date 8/19/10 Date		

	Gauge Tested in acc	cordance to ASME B31.3	
Job Number: 402738	Unit:	Sequence #	
Equipment/Line No.: CELL 10 - 12	SECONDARY Area:	Test #	2.3
Service:	Test Medium:	Water	
Equipment/System Being Tested: Boil	er	Furnace	
Pipir	vessel Vessel	Other	
Piping System: 1'2" DISCHARGE	For Test Pressures	on which system:	
Test Pressure: 70 psi	See Specification:	0600X-SP-M0032, Rev	1, 3.5.1
Reason For Test: New Piping Installation	n		
Starting Test Pressure: 88 psi + 5% Finish Test Pressure: 84 psi + 5%		Pass/Fail: Paff	
Gauge Manufacturer: LIKA Gauge Serial# 400519 A Calibration Dat 36962 AD 8-23-10	he specified test duration. Calibration Certificate Number: e: 3/10 Calibration Exp	28532 28531	9W 8-23-10
	ed on test pump and set at no mor	e than 5% of the maxium	test pressure
Delhur - SUB WCH	CONTRACTOR, QA/QC CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR UBCONTRACTOR	8-19 8-19 08.2	Date

MCF-9

Sequence # Test #				
Test #				
Furnace				
Other				
stem:				
M0032, Rev 1, 3.5.1				
PASS				
Pass Criteria: The test is acceptable if the measured loss is not greater than 5 % of the test beginning pressure thoughout the specified test duration.				
8.12-11				
of the maxium test pressure				
الإ				
8-25-10				
Date				
<u>8-25-16</u> Date				
08.22.10				
Date				
08-25-2010 Date				

PNEUMATIC TEST REPORT FORM

MCF-10

	Gauge Tested in accordan	nce to Asivic D31.3
Job Number: 402738	Unit:	Sequence #
Equipment/Line No.: 1914 36 - 37		Test # 25 - 19
Service:	Test Medium: C	Compressed AIR
System Being Tested: Boiler	Exchanger	Furnace
10 × 16 CONTAINMENT Piping [Vessel	Other
Test Pressure: psi	In Service Test Joints Snoop Tested	(oply checked, if Joints Storoped (Sosp Tested) (only checked, if Joints (Sosp Tested)
Reason For Test: New Piping Installation		
Gauge Serial# 511292 Calibration Date: 4-9- Date of Test: <u>B-25-10 8:28</u> Final Test Pressure:psi		
Comments: The test is acceptable if the measured loss pressure thoughout the specified test durat Pressure Relief Valve is installed on test	ion.	
Test Witnessed and Accepted By: BMWC Represer Delhur - SUBCONTRAC WCH - CONTRA	CTOR, QA/QC	8-25-10 Date 8-25-10 Date 08:25:10 Date 8-25-10 Date

MCF-9

	Gauge Tested in accordance	e to ASME B31.3
Job Number: 402738	Unit:	Sequence #
Equipment/Line No.: M1/5 32 - 39 FUL	L Area:	Test # 26
Service: TRANSMISSION LINE	Test Medium: Water	
Equipment/System Being Tested: Boiler	Exchanger	Furnace
Piping 🔽	Vessel	Other
Piping System: 10 × 16 CARRIER Test Pressure: 36-40 psi	For Test Pressures on which See Specification: 0600X	
Reason For Test: New Piping Installation		
Starting Test Pressure: 36 psi + 5% allowed Finish Test Pressure: 25 psi + 5% allowed Pass Criteria: The test is acceptable if the measure street thoughout the specified Gauge Manufacturer: NESHOK Calibration Gauge Serial# 488576 - A Calibration Date: 8 - 12 - 12 - 12 - 12 - 12 - 12 - 13 - 13	Time: 7:43 Pass/ ured loss is not greater than 5 to 1 test duration. on Certificate Number: 23/ Calibration Expiration	後でフ Date: 8・12・11
Test Witnessed and Accepted By: BMWC Represe		5-31-(O Date
July lie	CTOR, QA/QC	8'-31-10 Date
By. J. Hele WCH-CONTR	actor .	08-31-10 Date
CQA - SUBCONT	RACTOR	08-31-10 Date
-2 53365111		

PNEUMATIC TEST REPORT FORM

MCF-10

	Gauge Tested in accordance to ASME B31.3
Job Number: 402738	Unit: Sequence #
Equipment/Line No.:	tion Tanky Area: Test# 27
Service:	Test Medium: Compressed AIR
System Being Tested: Zin, lenk Boiler	Exchanger Furnace
Detection Piping	Vessel Other
Test Pressure: 34 psi	In Service Test (only checked, if Joints Snooped (Soap Tested) Joints Snoop Tested (only checked, if Joints (Soap Tested)
Reason For Test: New Piping Installation	
Gauge Serial# 438570 A Calibration Date: 438570-A Date of Test: 9-1616	B-12-10 Calibration Expiration Date: 8-12-11 Duration of Test: 60 mins.
Final Test Pressure: 33 psi	Pass × Fail
pressure thoughout the specified to	red loss is not greater than 5 % of the test beginning est duration. on test pump and set at no more than 5% of the maxium test pressure
Test Witnessed and Accepted By: BMWC I	Halton a/16/10 Representative Date
Delhur - SUBCO	NTRACTOR, QA/QC Date
Benja W.	TELLE 09.16.10 Date
CQA - CC	ONTRACTOR Date

	Gauge Tested in acc	cordance to ASME B31.3
		1944
Job Number: 402738	Unit:	Sequence #
Equipment Line No.: MH-18 PENE	TRATION Area:	TANK #4 Test # 28
Service:	Test Medium:	Water
Equipment/System Being Tested: Boiler	Exchanger	Furnace
Piping	Vessel	Other_
Piping System: 4×8 CARRIER	For Test Pressures	on which system:
Test Pressure: 30-40 psi	See Specification:	0600X-SP-M0032, Ray 1, 3.5.1
Reason For Test: New Piping Installation		
Starting Test Pressure: 34.5 psi + 5% al	lowed Time: 7:17	
Finish Test Pressure: 33.5 psi + 5% al	lowed Time: 8:17	Pass/Fail: Pass
Pass Criteria: The test is acceptable if pressure thoughout the	the measured loss is not greater to specified test duration.	han 5 % of the test beginning
Gauge Manufacturer: <u>NOSHOK</u> Gauge Serial# <u>13887</u> 0-A Calibration Date:	Calibration Certificate Number: 8-12-16 Calibration Expi	29607 tration Date: 8 -12-11
Comments: Pressure Relief Valve is installed	d on test pump and set at no more	than 5% of the maxium test pressure
Tree Witnessed and Americal Phys	2 / 1	
Test Witnessed and Accepted By:	MA	
-Janus SY-	Marlon	9-16-10
BMWC	Representative	Date
1-11.5	24/4	9-16-10
Delhur - SUBC	ONTRACTOR QU'QC	Date
11.15.11		9/16/10
ZWCH-	CONTRACTOR COLA	Date
\mathcal{M}	1100	00.10.10
Low In IV.	PCONTRACTOR—	. <u>09.16.10</u> Date
4.75.1	· (041,23ctor	Parê
W CH		
	1341	

PNEUMATIC TEST REPORT FORM

MCF-10

	Gauge Tested in accordance to ASME 651.5
Job Number: 402738	Unit: Sequence #
Equipment/Line No.: MH-18 PENETRATION	Test # 28-P
Service:	Test Medium: Compressed AIR
System Being Tested: Boiler	Exchanger
CONTAINMENT Piping 4 × 8 7 v ¹ 4 v ¹ b Test Pressure: Pressu	Vessel Other
Tool 11 July 1	In Service Test (only checked, if Joints Sacoped (Soap Tested) Joints Snoop Tested (only checked, if Joints (Soap Tested)
Reason For Test: New Piping Installation	
Gauge Serial# 5/1/292 Calibration Date: 4/-9// Date of Test: 9-16-10 Final Test Pressure: 11 psi	· · · · · · · · · · · · · · · · · · ·
Comments: The test is acceptable if the measured loss is pressure thoughout the specified test duration Pressure Relief Valve is installed on test put	
Test Witnessed and Accepted By: BMWC Representa Delhur - SUBCONTRACT WCH - CONTRACT CQA - CONTRACT	7.16.10 OR, QAQC Date 09.16.10 Date 7/16/10

PNEUMATIC TEST REPORT FORM

MCF-10

		Gauge rested in accord	IANCE TO ASIME BS 1.3	
Job Number: 402738		Unit:	Sequence #	
Equipment/Line No.: MH - 17	Table 4 PENETRATION		Test # 29.	P
Service:			Compressed AIR	
System Being Tested:	Boiler	Exchanger [Furnace	
CONTAINMENT 12 × 18	Piping 🗹	Vessel	Other	
Test Pressure:	psi	In Service Test Joints Snoop Tested	(only checked, if Joints Snooped (Soup Tested) (anly checked, if Joints (Soup Tested)	
Reason For Test: New Piping In	estallation			
Gauge Serial# 5/1292 Calibra Date of Test: 9-16-			,	
Final Test Pressure: 10 p	ši	Pass	Fail	
		is not greater than 5 % of	the test beginning	
pressure thoughout the Pressure Relief Valve			nan 5% of the maxium test pres	ssure
Test Witnessed and Accepted By:	BNIWC Represen	etton.	5/16/10 Date	
Delhu	r-SUBCONTRAC		9/16/10 Date	
Bago.	D. Klenle	e	09.16.10	·····
	WCH - CONTRAC	CTOR	9-16-10	
	CQA - CONTRAC	CTOR	Date	

	Gauge Tested in accordance to ASME B31.3
Job Number: 402738	Unit: Sequence #
Equipment/Line No.: CREST PAD 9 F	Area: CP 9 Test # 30
Service:	Test Medium: Water
Equipment/System Being Tested: Boiler	Exchanger
Piping [7]	Vessel Other
Piping System: PVC Test Pressure: 70 psi	For Test Pressures on which system: See Specification: 0600X-SP-M0032, Rev 1, 3.5.1
Reason For Test: New Piping Installation	
Starting Test Pressure:psi + 5% allowe	d Time: 1:50
Finish Test Pressure: 72 psi + 5% allowe	d Time: 2:50 Pass/Fail: PASS
Pass Criteria: The test is acceptable if the pressure thoughout the spe	measured loss is not greater than 5 % of the test beginning
Gauge Manufacturer: 1) IVA Calibration Date:	ibration Certificate Number: 28532
	test pump and set at no more than 5% of the maxium test pressure
Test Witnessed and Accepted By:	Mox 11-2-10
BMWC Re	presentative Date
Delhur - SUBCON	TRACTOR, QA/QC Date
Ben B.	While 11.02.1/2
WCH-CO	VTRACTOR Date
	11-2-10
CQA-SUBCO	ONTRACTOR Date

MCF-9

	Gauge Tested in accordance	to ASME B31.3
Job Number: 402738	Unit:	Sequence #
Equipment/Line No.: CREST PAD 10	PVC Area: CP)	O Test # 31
Service:	Test Medium: Water	
Equipment/System Being Tested: Boiler	Exchanger	Furnace
Piping [7]	Vessel [Other
Piping System: PVC	For Test Pressures on which	system:
Test Pressure: 70 psi	See Specification: 0600X-S	P-M0032, Rev 1, 3.5.1
Reason For Test: New Piping Installation		
		J .:.
Starting Test Pressure: 76 psi + 5% allower	d Time: 7:30	
Finish Test Pressure: 71/ psi + 5% allowed	d Time: 5:36 Pass/Fa	il: <u>PASS</u>
Pass Criteria: The test is acceptable if the n pressure thoughout the spec		of the test beginning
Gauge Manufacturer: 1.) IVA Cali Gauge Serial# 400519-A Calibration Date: 3		32 ate: 3/11
Comments: Pressure Relief Valve is installed on	test pump and set at no more than 5%	of the maxium test pressure
		در
Test Witnessed and Accepted By:	1-1611	
Jaines V.	Nation	11-9-10
BMWC Rep	presentative	Date
Delhur - SUBCONT	CRACTOR, OA/OC	11-9-16 Date
Bud Ille	led	11.09.10
WCH - CON	TRACTOR	Date
44/ 8	lin	11/9/10
/ CQA - SUBCO	NTRACTOR	Date

Cells 9 & 10

Torque Reports

TORQUE WITNESS REPORT FORM MCF-12

BMWC Constru			Chapter of the state of the chapter of the state of the s	t deposits a compression description of the	San	""。一个一个	ক্রিভ
Job Number: 40273	8			Area: SC#9 & SC#1	0		
Equipment/Line No.:				Man-Hole # 38			
Service: 1	eachate			Test: Torque		,	
System Being Tested:		Во	iler 🗌	Exchanger	Furnace		
	Flange	d Connecti	ons 🗹	Vessel 🗌	Other	•	
Torque Requirements:	105	ft-lbs	12" Flanges [12" Flange x Valve_	75	ft-lbs	
Torque Requirements:	80	ft-lbs	10" Flanges	10" Flange x Valve	58	ft-lbs	V
Torque Requirements:	80	ft-lbs	8" Flanges	8" Flange x Valve	58	ft-lbs	
Torque Requirements:	50	ft-lbs	6" Flanges	6" Flange x Valve	44	ft-lbs	
Torque Requirements:	33	ft-lbs	4" Flanges	4" Flange x Valve	30	ft-lbs	
Reason For Test: 1 Wrench Serial# 5981138958		ibration Day		ration Due: /30/2011			
Date of Torque:	bepter	nber:	2 <u>nd</u> , 2010				
Comments: (3) (2) Test Witnessed and Accept	o" ed B	Flange Flange Wls BM	to Flange to Valve	9	7-2-1 Da	(O)	

GLOBAL CALIBRATION SERVICES

502 S LUCILE ST SEATTLE, WA 98108-2507

CERTIFICATE OF CALIBRATION #128566

Issued To:

BMWC CONSTRUCTORS, INC 20638 84TH AVE S KENT, WA 98032 SO 9001 ASSITUTE ASSI

Quality Management System Certificate No. 11495

Item ID: 5981138958

Item Description: TORQUE WRENCH

item Size: 250 ft-lb CW

Manufacturer: ARMSTRONG

Model Number: 64-086

Serial Number: 5981138958

Assigned Department: N/A

Item Location: N/A

Calibration Location: INHOUSE LAB

Purchase Order Number: 4027380105

Calibration Date: 03/30/2010

Calibration Due: 03/30/2011

Temperature (Deg F): 87

Humidity (%): 37

Procedure: GCS-8002

lan Torres, Technical Specialist

Date Certificate Issued: 03/30/2010

Global Calibration Services' quality management system conforms to ISO 9001:2000, ANSVNCSL Z540-1, ISO/IEC 17025-2005, ISO 10012:2003, and the technical requirements of the customer's order. All calibrations are performed using internationally recognized standards traceable to the SI Units. Traceability is achieved through the National Institute of Standards and Technology (NIST), other National Measurement Institutes (NMIs), or by using natural physical constraints, Intrinsic standards or ratio calibration techniques. Unless otherwise indicated, the combined estimated uncertainty of the measurement has a coverage factor of k-2 at a conlidence level of 95%. Any number of factors may cause the instrument to drift out of specification before the recommended recalibration date contained in this certificate. The Information shown on this certificate applies only to the Instrument identified above and may not be reproduced, except in fulf, without prior written consent from Global Calibration Services.

TABLE 2

EXAMPLES OF ESTIMATED BOLT TORQUE TO "SEAT" HOPE FLANGE FACES:

The engineer of record is usually responsible for establishing each flange joint criteria, and performing the required calculations to determine the initial and residual torque values.

These estimated values are based on non-plated bolts and studs, using a nut factor of K=0.16 for lightly greased bolts and nuts. The calculations uses a HDPE flange face seating stress of 1200-psi as a minimum and 1800-psi as a maximum, and assumes the flanged joint is between two HDPE flange adapters (in which the contact area is largest), without a rubber gasket.

NOTE: For boiling to ductile-iron pipe, steel flanges or butterfly valves, the flange face contact area is about half, so boil torque for that flange pair will be measurably less (refer to Table #3).

IPS	LJF	Initi	ial Minimum	Initial Maximum	Flange
Nominal	Bolt	Number	Lubed	Lubed	OD/ ID
Pipe Size	Diameter	of Bolts	Torque (Ft-L)	Torque (Ft-Lb	
2"	0.625	4	23	35	3.9 / 1.94
3"	0.625	4	33	50	5.0 / 2.86
4"	0.625	8	331	50	6.6 / 3.68
5"	0.75	8	44	68	7.5 / 4.40
6"	0.75	8 8 8	50 V	75	8.5 / 5.42
8"	0.75	8	80	120	10.63 / 6.76
10"	0.875	12	80	. 120	12.75 / 8.79
12"	0.875	12	105	160	15.00/ 10.43
14 ^{ss}	1.000	12	180	270	17.50 / 11.45
16"	1.000	16	180	270	20.00 / 13.09
18"	1.125	16	200	300	21,12 / 14.73
20°	1.125	20	200	300	23.50 / 16.36
22°	1.25	20	260	390	25.60 / 18.00
24"	1.25	20	290	435	28.00 / 19.64
26"	1.25	24	290-	435	30.00 / 21.27
28**	1.25	28	290	435	32.30 / 22.91
30°	1.25	28	325	488	34.30 / 24.54
32 ⁿ	1.50	28	425	640	36.50 / 26.18
34"	1.50	32	425	640	38.50 / 27.82
36"	1.50	32	460	690	40.80 / 29.45
40"	1.50	36	460	690	46.00 / 35.29
42"	1.50	36	460	690	47.50 / 37.08
48"	1.50	44	460	690	54.00 / 43.43
54"	1.75	44	560	840	80.00 / 48.86

NOTE: Uniform bolt pre-load (torque), without large "scatter", is as useful as the target pre-load. Within the limits of the HDPE flange adapter, gasket, or metal LJF, higher pre-load is desirable. The higher the pre-load safely achievable, the more closely the assembly will behave like the theoretical model and seal well. Higher pre-load means that a given internal pressure will result in the least possible change in contact sealing pressure. Be consistent (avoid changes) with materials and tools when following written assembly procedures.

Train and supervise the boiting personnel. Tell the crew what is to be accomplished, why, and explain that good results are not automatically achieved. Skill and care are essential. Boited Joint assembly is a technical skill that is not common in the construction and maintenance profession, being considered more like a specialty. There is no universally accepted testing, nor certification, of boited-joint assembly mechanics. With no common training, certification, nor standards, it is no surprise there is +/- 25% variability in assembly torque. Specifications and instructions by the engineer, followed by trained mechanics, help to solve the dilemma.

TABLE 3

Examples of Estimated Bolt Torque to "Seat" the HDPE Flange Face To A Butterfly-Valve, Steel Pipe Flange, or Ductile Iron Flange.

The engineer of record is usually responsible for establishing each flange joint criteria, and performing the required calculations to determine the initial and residual torque values.

These estimated lightly lubricated torque values assume the flanged joint connects one HDPE flange-adapter to a Butterfly-Valve or Steel Pipe flange of Schedule 40 ID, or a Ductile-iron flange. For bolting to steel flanges or butterfly valves, the flange face contact area is just over half that of HDPE to HDPE flanges, so calculated bolt torque for this flange pair will be measurably less than the values listed in Table #2.

Dimensional flange data should be obtained for each case from the pipe flange suppliers, so as to be able to calculate the face contact area.

These <u>estimated values</u> are based on non-plated bolts and studs, using a K=0.16 for lightly greased bolts and nuts. These calculations use an HDPE material minimum and maximum compressive seating stress of 1200-psi to 1800-psi.

IPS	LJF	Initia	al/Minimum \	Initial Maximum	HDPE
Nominal	Boit Dia.	Number	Lubed \	Lubed	Flange OD
Pipe Size	(inches)	of Bolts	Torque (Ft-Lbs)	Torque (Ft-l	
, .p	()			1919-111	(inches)
					(1101100)
2"	0.625	4	22	32	3.90 / 2.087
3"	0.525	4	30	45	5.00 / 3.088
4"	0.625	8	30	45	6.80 / 4.026
5"	0. 75 .	8	44	66	7.50 / 4.40
6"	0.75	8	سما 44	68 ·	8.50 / 6.06
8"	0.75	8	58	88	10.63 / 7,98
10"	0.875	12	58	88	12.75 / 10.02
12"	0.875	12	75 6	114	15.00 / 11.94
14 ^v	1.000	12	140	210	17.50 / 13.13
16"	1.000	16	140	210	20.00 / 15.00
18"	1.125	16	140	210	21.12 / 16.88
20"	1.125	20	140	210	23.50 / 18.81
22"	1.25	20	160	240	25.60 / 21.25
24"	1.25	20	180	270	28.00 / 23.25
26"	1.25	24	180	270	30.00 / 25.25
28"	1.25	28	180	270	32.30 / 27.25
30"	1.25	28	180	270	34.30 / 29.25
32"	1.50	28	240	360	36.50 / 31.00
34"	1.50	32	240	360	38.50 / 33.00
36"	1.50	32	260	390	40.80 / 35.00
40"	1.50	36	310	465	46.00 / 39.00
42"	1,50	3 6	310	465	47.50 / 41.00
48"	1.50	44	310	465	54.00 / 47.00
54 ⁿ	1.75	44	365	550	60.00 / 53.00

Train and supervise the bolting personnel. Tell the crew what is to be accomplished, why, and explain that good results are not automatically achieved. Skill and care are essential. Bolted Joint assembly is a technical skill that is not common in the construction and maintenance profession, being considered more like a specialty. There is no universally accepted testing, nor certification, of bolted-joint assembly mechanics. With no common training, certification, nor standards, it is no surprise there is +/- 25% variability in assembly torque. Specifications and instructions by the engineer, followed by trained mechanics, help to solve the dilemma.

BMWC Constru			e i gla i stespoj pretist st. di die de	the second of actions are the second of	STATE OF MAN	ded that spin	nues site in	以此
Job Number: 40273	8			Area: SC#	9 & SC#10	0		
Equipment/Line No.:				Man-Hole # 3	9			
Service: I	eachate			Test: Toro	ue			
System Being Tested:		Bo	iler 🔲	Exchanger [Furna	ce 🗀	
	Flange	d Connection	ons 🗹	Vessel		Oth	er	
Torque Requirements:	105	ft-lbs	12" Flanges 🗌	12" Flange	x Valve_	75	ft-lbs	
Torque Requirements:	80	ft-lbs	10" Flanges 🔽	10" Flange:	v Valve	58	ft-lbs	V
Torque Requirements:	80	ft-lbs	8" Flanges	8" Flange	v Valve	58	ft-lbs	
Torque Requirements:	50	ft-lbs	6" Flanges	6" Flange	x Valve	44	ft-lbs	
Torque Requirements:	33	ft-lbs	4" Flanges	4" Flange	x Valve	30	ft-lbs	
Wrench Serial# 5981138958		libration Da		ration Due: /30/2011		-		
Date of Torque:	Tuesday	ay Dieg	st 10th 2010 extender 2nd 2	0 10				
Comments: 2 (10	") Fla		Flange, 2		ge to	Val	ve	
Test Witnessed and Accept		ILLO S	WC Representative		_	9-	2 -/C Date)

BMWC Constru			न्द्रित्त । केल्क्नित्वाद्वराध्यक्तिक	和 是是的1.40%。	इ.स.स्टब्स्ट्रीट प्रमुख्ये क्रम्ब्स्ट्री (१००६)	क्ला होते की देखा है। इस्तार की की देखा है।	Carrena de la composición dela composición de la composición dela composición dela composición dela composición de la composición de la composición dela composición de la composición dela composición del	Tanger
Job Number: 40273	3				Area: SC#9 & SC#1	0		
Equipment/Line No.:			· · · · · · · · · · · · · · · · · · ·	Ma	un-Hole # 35			
Service: I	eachate				Test : Torque			
System Being Tested:		Во	iler 🗌	Е	xchanger [Furna	се 🗌	
	Flange	d Connection	ons 🗹		Vessel	Oth	er	
Torque Requirements:	105	ft-lbs	12" Flanges		12" Flange x Valve	75	ft-lbs	
Torque Requirements:	80	ft-lbs	10" Flanges	4	10" Flange x Valve	58	ft-lbs	
Torque Requirements:	80	ft-Ibs	8" Flanges		8" Flange x Valve	58	ft-lbs	
Torque Requirements:	50	ft-lbs	6" Flanges		6 ⁿ Flange x Valve	44	ft-lbs	
Torque Requirements:	33	ft-lbs	4" Flanges		4" Flange x Valve	30	ft-lbs	
Reason For Test: N Wrench Serial# 5981138958		libration Da 3/30/20	ite: (Calibration 3/30/				
Date of Torque:	Monda	ay Aug	ust 16, 20	olo				
r		,						
Comments: 3(10	") F	lange y	to Flange	. 1	Flange			_
Test Witnessed and Accept	ed By:	anne BMV	VC Representativ	1/10	** -	9-	2 - / (Date	2_

GLOBAL CALIBRATION SERVICES

502 S LUCILE ST SEATTLE, WA 98108-2507

CERTIFICATE OF CALIBRATION #128566

Issued To:

BMWC CONSTRUCTORS, INC 20638 84TH AVE S KENT, WA 98032

Quality Management System Certificate No. 11495

Item ID: 5981138958

Item Description: TORQUE WRENCH

Item Size: 250 It-Ib CW

Manufacturer: ARMSTRONG

Model Number: 64-086

Serial Number: 5981138958

Assigned Department: N/A

Item Location: N/A

Calibration Location: INHOUSE LAB

Purchase Order Number: 4027380105

Calibration Date: 03/30/2010

Calibration Due: 03/30/2011

Temperature (Deg F): 67

Humidity (%): 37

Procedure: GCS-8002

lan Torres, Technical Specialist

Date Certificate Issued: 03/30/2010

Global Calibration Services' quality management system conforms to ISO 9001:2000, ANSI/NCSL Z540-1, ISO/IEC 17025-2005, ISO 10012:2003, and the technical requirements of the customer's order. All calibrations are performed using internationally recognized standards traceable to the SI Units. Traceability is achieved through the National Institute of Standards and Technology (NIST), other National Measurement Institutes (NMIs), or by using natural physical constraints, intrinsic standards or ratio calibration techniques. Unless otherwise Indicated, the combined estimated uncertainty of the measurement has a coverage factor of k-2 at a confidence level of 95%. Any number of factors may cause the instrument to drift out of specification before the recommended recalibration date contained in this certificate applies only to the instrument Identified above and may not be reproduced, except in full, without prior written consent from Global Calibration Services.

EXAMPLES OF ESTIMATED BOLT TORQUE TO "SEAT" HDPE FLANGE FACES:

The engineer of record is usually responsible for establishing each flange joint criteria, and performing the required calculations to determine the initial and residual torque values.

These estimated values are based on non-plated bolts and studs, using a nut factor of K=0.16 for lightly greased bolts and nuts. The calculations uses a HDPE flange face seating stress of 1200-psi as a minimum and 1800-psi as a maximum, and assumes the flanged joint is between two HDPE flange adapters (in which the contact area is largest), without a rubber gasket.

NOTE: For bolting to ductile-iron pipe, steel flanges or butterfly valves, the flange face contact area is about half, so bolt torque for that flange pair will be measurably less (refer to Table #3).

IPS	LJF	Init	ial Minimum	Initial Maximum	Flange
Nominal	Bolt	Number	/ Lubed	Lubed	OD/ ID
Pipe Size	Diameter	of Bolts	Torque (Ft-	Lbs) Torque (Ft-Lbs	(Inches)
2"	0.625	4	23	35	3.9 / 1.94
3"	0.625	4	33	50	5.0 / 2.86
411	0.625	8	33 V	50	6.8 / 3.88
5"	0.75	8	44	66	7.5 / 4.40
6"	0.75	8	50 V	75	8.5 / 5.42
8"	0.75	8	80	120	10.83 / 6.76
10"	0.875	12	801	120	12.75 / 8.79
12"	0.875	12	1052	160	15.00/ 10.43
14"	1.000	12	180	270	17.50 / 11.45
16"	1.000	16	180	270	20.00 / 13.09
18"	1.125	16	200	300	21.12 / 14.73
20"	1.125	20	200	300	23.50 / 16.36
22"	1.25	20	260	390	25.60 / 18.00
24"	1.25	20	290	435	28.00 / 19.64
26"	1.25	24	290-	435	30.00 / 21.27
28"	1.25	28	290	435	32.30 / 22.91
30"	1.25	28	325	488	34.30 / 24.54
32"	1.50	28	425	640	36.50 / 26.18
34"	1.50	32	425	640	38.50 / 27.82
36"	1.50	32	460	690	40.80 / 29.45
40"	1.50	36	460	690	46.00 / 35.29
42 ⁿ	1.50	36	460	690	47.50 / 37.06
48"	1.50	44	460	690	64.00 / 43.43
54"	1.75	44	560	840	60.00 / 48.86

NOTE: Uniform bolt pre-load (torque), without large "scatter", is as useful as the target pre-load. Within the limits of the HDPE flange adapter, gasket, or metal LJF, higher pre-load is desirable. The higher the pre-load safely achievable, the more closely the assembly will behave like the theoretical model and seal well. Higher pre-load means that a given internal pressure will result in the least possible change in contact sealing pressure. Be consistent (avoid changes) with materials and tools when following written assembly procedures.

Train and supervise the boiting personnel. Tell the crew what is to be accomplished, why, and explain that good results are not automatically achieved. Skill and care are essential. Boited Joint assembly is a technical skill that is not common in the construction and maintenance profession, being considered more like a specialty. There is no universally accepted testing, nor certification, of bolted-joint assembly mechanics. With no common training, certification, nor standards, it is no surprise there is +/- 25% variability in assembly torque. Specifications and instructions by the engineer, followed by trained mechanics, help to solve the dilemma.

Examples of Estimated Boit Torque to "Seat" the HDPE Flange Face To

A Butterfly-Valve, Steel Pipe Flange, or Ductile Iron Flange.

The engineer of record is usually responsible for establishing each flange joint criteria, and performing the regulred calculations to determine the initial and residual torque values.

These estimated lightly lubricated torque values assume the flanged joint connects one HDPE flange-adapter to a Butterfly-Valve or Steel Pipe flange of Schedule 40 ID, or a Ductile-Iron flange. For boiling to steel flanges or butterfly valves, the flange face contact area is just over half that of HDPE to HDPE flanges, so calculated boil torque for this flange pair will be measurably less than the values listed in Table #2.

Dimensional flange data should be obtained for each case from the pipe flange suppliers, so as to be able to calculate the face contact area.

These estimated values are based on non-plated bolts and stude, using a K=0.16 for lightly greased bolts and nuts. These calculations use an HDPE material minimum and maximum compressive seating stress of 1200-psi to 1800-psi.

IPS	LJF	Initia	Minimum	Initial Maximum H	DPE
Nominal	Bolt Dia.	Number	Lubed	Lubed	Flange OD
Pipe Size	(inches)	of Bolts	Torque (Ft-Lbs)	Torque (Ft-Lbs)	_
2"	0.625	4	22	32	3.90 / 2.087
3"	0.625	4	30	45	5.00 / 3.068
4 ^M	0.625	8	301	45	6.60 / 4.026
5"	0.75	8	44	66	7.50 / 4.40
6"	0.75	8 8 8	44	66	B.50 / 6.06
8"	0.75	8	88	88	10.63 / 7.98
10"	0.875	12	58	88	12.75 / 10.02
12"	0.875	12	75	114	15.00 / 11.94
14"	1.000	12	140	210	17.50 / 13.13
18"	1.000	16	140	210	20.00 / 15.00
18"	1.125	16	140	210	21.12 / 16.88
20"	1.125	20	140	210	23.50 / 18.81
22"	1.25	20	160	240	25.80 / 21.25
24"	1.25	20	180	270	28.00 / 23.25
26"	1.25	24	180	270	30.00 / 25.25
28"	1.25	28	180	270	32.30 / 27.25
30*	1.25	28	180	270	34.30 / 29.25
32"	1.50	28	240	360	36,50 / 31.00
34"	1.50	32	240	360	38.50 / 33.00
36"	1.50	32	260	390	40.80 / 35.00
40"	1.50	36	310	465	46.00 / 39.00
42 ⁿ	1.50	36	310	465	47.50 / 41.00
48"	1.50	44	310	465	54.00 / 47.00
54"	1.75	44	365	550	60.00 / 53.00

Train and supervise the bolting personnel. Tell the crew what is to be accomplished, why, and explain that good results are not automatically achieved. Skill and care are essential. Bolted Joint assembly is a technical skill that is not common in the construction and maintenance profession, being considered more like a specialty. There is no universally accepted testing, nor certification, of bolted-joint assembly mechanics. With no common training, certification, nor standards, it is no surprise there is +/- 25% variability in assembly torque. Specifications and instructions by the engineer, followed by trained mechanics, help to solve the dilemma.

Job Number: 402738	3	-			Area: SC#9 & SC#1	10		
Equipment/Line No.:				Ma	n-Hole # 2/2			
Service: <u>I</u>	.eachate				Test: Torque			
System Being Tested:		Boile	r 🗆	E:	xchanger	Furnace		
	Flange	d Connections	· 🗹		Vessel [Other		
Torque Requirements:	105	ft-lbs	12" Flanges	0/	12" Flange x Valve	75	ft-lbs	
Torque Requirements:	80	ft-lbs	10" Flanges		10" Flange x Valve	58	ft-lbs	
Torque Requirements:	80	ft-lbs	8" Flanges		8" Flange x Valve_	58	ft-lbs	
Torque Requirements:	50	ft-lbs	6" Flanges		6" Flange x Valve_	44	ft-lbs	
Torque Requirements:	33	ft-lbs	4" Flanges		4" Flange x Valve	30	ft-lbs	
Reason For Test: N	lew Leac	hate Transmis	ssion Line Ins	tallation				
Reason For Test: N Wrench Serial# 5981138958		hate Transmis	:	Calibratio				
Wrench Serial#	Cal	libration Date 3/30/2010	:	Ca)ibratio				
Wrench Serial# 5981138958	Cal	libration Date 3/30/2010	:	Ca)ibratio				
Wrench Serial# 5981138958 Date of Torque:	Cal	libration Date 3/30/2010	,2010 ge to	Ca)ibratio	2011			

BMWC Constru	ctors Inc	· ·		n est	taring a taging tigg are	and the second	gerta tiko	Sec. 14
Job Number: 402738	3				Area: SC#9 & SC#1	0		
Equipment/Line No.:					Man-Hole # 37			
Service: <u>L</u>	eachate				Test: Torque		_	
System Being Tested:		Boiler			Exchanger	Furnac	:е 🔲	
	Flange	d Connections	Ø.		Vessel .	Othe	:f	
Torque Requirements:	105	ft-lbs	12" Flanges		12" Flange x Valve_	75	ft-lbs	
Torque Requirements:	80	ft-lbs	10" Flanges	V	10" Flange x Valve	58	ft-lbs	
Torque Requirements:	80	ft-lbs	8" Flanges		8" Flange x Valve	58	ft-lbs	
Torque Requirements:	50	ft-lbs	6" Flanges		6" Flange x Valve	44	ft-lbs	
Torque Requirements:	33	ft-lbs	4" Flanges		4" Flange x Valve	30	ft-lbs	
Reason For Test: N		libration Date:		Calib	oration Due:			
5981138958		3/30/2010		3	3/30/2011			
Date of Torque:	Sept	ember 2	nl , 201	0				
I	•							
Comments: (3)	10" 10"	Flange Flange	1 1	Fla	inge nd			
Test Witnessed and Accept	yed By:	NL H	Hallo. Representat	7/ ive		9-1	2 - 11	2_
//	/							

BMWC Constru			Contract of the form	and the last	entre de la companya	electrical property	The A	Para Cara		
Job Number: 40273		_			Area: SC#9 & SC#10					
Equipment/Line No.:					Man-Hole # 32					
Service: 1	.eachate				Test: Torque					
System Being Tested:		Boiler			Exchanger	Furnace				
	Flange	d Connections			Vessel	Other				
Torque Requirements:	105	ft-lbs	12" Flanges	0/	12" Flange x Valve	75	ft-lbs			
Torque Requirements:	80	ft-lbs	10" Flanges	∇	10" Flange x Valve	58	ft-lbs			
Torque Requirements:	80	ft-lbs	8" Flanges		8™ Flange x Valve	58	ft-lbs			
Torque Requirements:	50	ft-lbs	6" Flanges		6" Flange x Vaive	44	ft-lbs			
Torque Requirements:	33	_ft-lbs	4" Flanges	-	4" Flange x Valve	30	ft-lbs		•	
Reason For Test: N Wrench Serial# 5981138958		hate Transmis ibration Date: 3/30/2010		Calibra	nation Due; 30/2011				and the second	
Date of Torque:	Monsle	y Cing 5	Hi 2010							ı
			~		13					
Comments: $\frac{2(10)}{4(4)}$	") Fl	inge to	o Valve	2)(2	1(4") Flange to 2 values)	f/an	gc,			
Test Witnessed and Accept	led By:	MUS A	Representat	Won ive		8-	9-/	0		

GLOBAL CALIBRATION SERVICES

502 S LUCILE ST SEATTLE, WA 98108-2507

CERTIFICATE OF CALIBRATION #128566

Issued To:

BMWC CONSTRUCTORS, INC 20638 84TH AVE S KENT, WA 98032 ISO 9001
Regulatores

Asguard

Quality Management System Certificate No. 11495

Item ID: 5981138958

Item Description: TORQUE WRENCH

Item Sizs: 250 ft-lb CW

Manufacturer: ARMSTRONG

Model Number: 64-086

Serial Number: 5981138958

Assigned Department: N/A

Item Location: N/A

Calibration Location: INHOUSE LAB

Purchase Order Number: 4027380105

Calibration Date: 03/30/2010

Calibration Due: 03/30/2011

Temperature (Deg F): 67

Humidity (%): 37

Procedure: GCS-8002

lan Torres, Technical Specialist

Date Certificate Issued: 03/30/2010

Global Calibration Services' quality management system conforms to ISO 9001:2000, ANSI/NCSI, Z540-1, ISO/IEC 17025-2005, ISO 10012:2003, and the technical requirements of the customer's order. All calibrations are performed using internationally recognized standards traceable to the SI Units. Traceability is achieved through the National Institute of Standards and Technology (NIST), other National Measurement Institutes (NMIs), or by using natural physical constraints, intrinsic standards or ratio calibration techniques. Unless otherwise indicated, the combined estimated uncertainty of the measurement has a coverage factor of k-2 at a confidence lovel of 95%. Any number of factors may cause the instrument to drift out of specification before the recommended recalibration date contained in this certificate applies only to the instrument identified above and may not be reproduced, except in full, without prior written consent from Global Calibration Services.

EXAMPLES OF ESTIMATED BOLT TORQUE TO "SEAT" HOPE FLANGE FACES:

The engineer of record is usually responsible for establishing each flange joint criteria, and performing the required calculations to determine the initial and residual torque values.

These estimated values are based on non-plated bolts and studs, using a nut factor of K=0.16 for lightly greased bolts and nuts. The calculations uses a HDPE flange face seating stress of 1200-psi as a minimum and 1800-psi as a maximum, and assumes the flanged joint is between two HDPE flange adapters (in which the contact area is largest), without a rubber gasket.

NOTE: For boilting to ductile-iron pipe, steel flanges or butterfly valves, the flange face contact area is about half, so bolt torque for that flange pair will be measurably less (refer to Table #3).

IPS	LJF	Initia	Minimum	Initial Maximum	Flange
Nominal	Bolt	Number	Lubed	Lubed	OD/ ID
Pipe Size	Dlameter	of Bolts	Torque (Ft-)		
2"	0.625	4	23	35	3.9 / 1.94
3"	0.625	4	33	50	5.0 / 2.86
417	0.825	8	33 V	50	6.8 / 3.68
5"	0.75	8	44	66	7.5 / 4.40
6"	0.75	8	50	75	8.5 / 5.42
819	0.75	8	80	120	10.63 / 6.76
10"	0.875	12	801	120	12.75 / 8.79
12"	0.875	12	1051	160	15.00/ 10.43
14"	1.000	12	180	270	17.50 / 11.45
16"	1.000	18	180	270	20.00 / 13.09
18"	1.125	16	200	300	21.12 / 14.73
20*	1.125	20	200	300	23.50 / 16.36
22"	1.25	20	260	390	25.60 / 18.00
24"	1.25	20	290	435	28.00 / 19.64
26"	1.25	24	290-	435	30.00 / 21.27
28"	1.25	28	290	435	32.30 / 22.91
30"	1.25	28	325	488	34.30 / 24.54
32"	1.50	28	425	640	36.50 / 26.18
34"	1.50	32	425	640	38.50 / 27.82
36"	1.50	32	480	690	40.80 / 29.45
40"	1.50	36	460	890	46,00 / 35.29
42"	1.50	36	460	690	47.50 / 37.06
48"	1.50	44	460	690	54.00 / 43.43
54"	1.75	44	560	840	60.00 / 48.86

NOTE: Uniform bolt pre-load (torque), without large "scatter", is as useful as the target pre-load. Within the limits of the HDPE flange adapter, gasket, or metal LJF, higher pre-load is desirable. The higher the pre-load safely achievable, the more closely the assembly will behave like the theoretical model and seal well. Higher pre-load means that a given internal pressure will result in the least possible change in contact sealing pressure. Be consistent (avoid changes) with materials and tools when following written assembly procedures.

Train and supervise the bolting personnel. Tell the crew what is to be accomplished, why, and explain that good results are not automatically achieved. Skill and care are essential. Bolted Joint assembly is a technical skill that is not common in the construction and maintenance profession, being considered more like a specialty. There is no universally accepted testing, nor certification, of bolted-joint assembly mechanics. With no common training, certification, nor standards, it is no surprise there is +/- 25% variability in assembly torque. Specifications and instructions by the engineer, followed by trained mechanics, help to solve the dilemma.

Examples of Estimated Bolt Torque to "Seat" the HDPE Flange Face To

A Butterfly-Valve, Steel Pipe Flange, or Ductile Iron Flange.

The engineer of record is usually responsible for establishing each flange joint criteria, and performing the required calculations to determine the initial and residual torque values.

These estimated lightly lubricated torque values assume the flanged joint connects one HDPE flange-adapter to a Butterfly-Valve or Steel Pipe flange of Schedule 40 ID, or a Ductile-Iron flange. For bolting to steel flanges or butterfly valves, the flange face contact area is just over half that of HDPE to HDPE flanges, so calculated bolt torque for this flange pair will be measurably less than the values listed in Table #2.

Dimensional flange data should be obtained for each case from the pipe flange suppliers, so as to be able to calculate the face contact area.

These <u>estimated values</u> are based on non-plated botts and studs, using a K=0.16 for lightly greased botts and nuts. These calculations use an HDPE material minimum and maximum compressive seating stress of 1200-psi to 1800-psi.

	IPS	LJF	Initia	Minimum	Initial Maximum	HDPE
	Nominal	Bolt Dia.	Number	Lubed \	Lubed	Flange OD
	Pipe Size	(inches)	of Boits	Torque (Ft-Lbs)	Torque (Ft-	
	.2"	0.625	4	22	32	3,90 / 2,067
	3"	0.625	4	30	45	5.00 / 3.088
•	4"	0.625		301	45	6.60 / 4.026
	5"	0.75	8	44	66	7.50 / 4.40
	·6"	0.75	8 8 8	441	66	8.50 / 6.06
	8"	0.75	8	581	88	10.63 / 7.98
	10"	0.875	12	58	88	12.75 / 10.02
	12°	0.875	12	75 1	114	15:00 / 11.94
	14"	1.000	12	140	210	17.50 / 13.13
	16"	1.000	16	140	210	20.00 / 15.00
	18"	1.125	16	140	210	21.12 / 16.88
	20"	1.125	20	140	210	23.50 / 18.81
	22"	1.25	20	160	240	25.60 / 21.25
	24"	1.25	20	180	270	28.00 / 23.25
	26"	1.25	24	180	270	30.00 / 25.25
	28"	1.25	28	180	270	32.30 / 27.25
	30"	1.25	28	180	270	34.30 / 29.25
	32"	1.50	28	240	360	36.50 / 31.00
	34"	1.50	32	240	360	38.50 / 33.00
	36"	1.50	32	260	390	40.80 / 35.00
	40"	1.50	36	310	465	46.00 / 39.00
	42"	1.50	36	310	465	47.50 / 41.00
	48"	1.50	44	310	465	54.00 / 47.00
	64"	1.75	44	365	550	60.00 / 53.00

Train and supervise the boiling personnel. Tell the crew what is to be accomplished, why, and explain that good results are not automatically achieved. Skill and care are essential. Bolted Joint assembly is a technical skill that is not common in the construction and maintenance profession, being considered more like a specialty. There is no universally accepted testing, nor certification, of bolted-joint assembly mechanics. With no common training, certification, nor standards, it is no surprise there is +/- 25% variability in assembly torque. Specifications and instructions by the engineer, followed by trained mechanics, help to solve the dilemma.

Job Number: 40273	8	_			Area: SC#9 & SC	#10		
Equipment/Line No.:				M	an-Hole # 33			
Service: L	Leachate				Test: Torque			
						.*		
System Being Tested:		Boiler		1	Exchanger 🗌	Furne	ace 🗌	
	Flange	d Connections	J		Vessel 🗌	Oth	her	_
Torque Requirements:	105	ft-lbs	12" Flanges		12" Flange x Valve	75	ft-lbs	
Torque Requirements:	80	ft-lbs	10" Flanges	Ø	10" Flange x Valve	58	ft-lbs	
Torque Requirements:	80	ft-lbs	8" Flanges		8" Flange x Valve	58	ft-lbs	
Torque Requirements:	50	ft-lbs	6" Flanges		6" Flange x Valve	44	ft-lbs	
Torque Requirements:	33	ft-lbs	4" Flanges	V	4" Flange x Valve	30	ft-lbs	V
Reason For Test: N	New Leac	nate Transmis	Sidit Late hist	anation				
Reason For Test: N Wrench Serial# 5981138958		ibration Date:		Calibrati	on Due: /2011			
Wrench Serial#	Cal	ibration Date:		Calibrati				
Wrench Serial# 5981138958	Cal	ibration Date:		Calibrati 3/30				
Wrench Serial# 5981138958 Date of Torque:	Cal	ibration Date:		Calibrati 3/30	/2011	ge, to	Valve	
Wrench Serial# 5981138958 Date of Torque:	Cal	ibration Date:	-9 th 2	Calibrati 3/30	/2011	ge to 10"B"	Value ingl F	lan

BMWC Constru			State Verification	(************************************	on the second state of the second	3.排查数4.4%。		Sec. 1
Job Number: 40273	8	PRO-NA			Area: SC#9 & SC#1	0		
Equipment/Line No.:				M	an-Hole # 34			
Service: L	eachate	,			Test : Torque		-	
System Being Tested:		Boi	iler 🗌	E	xchanger	Furnace		
	Flange	d Connection	ons 🗸		Vessel	Other		
Torque Requirements:	105	ft-lbs	12" Flanges	٠,	12" Flange x Valve	75	ft-lbs	
Torque Requirements:	80	ft-lbs	10" Flanges		10" Flange x Valve	- 58	ft-lbs	
Torque Requirements:	80	ft-lbs	8" Flanges		8" Flange x Valve	58	ft-lbs	
Torque Requirements:	50	ft-lbs	6" Flanges		6" Flange x Valve	44	ft-lbs	
Torque Requirements:	33	ft-lbs	4" Flanges	i	4" Flange x Valve	30	ft-lbs	
Wrench Serial# 5981138958		libration Da 3/30/20		ibratio	on Due: /2011			
Date of Torque:	londe	iy Augus	of 16, 2010					
r								
Comments: 3/11)"))E	Flange lauge 7	to Flange	Flo	enge			
Test Witnessed and Accept	eed By:	BMY	A Late VC Representative	70		9-2 D	_/ <u>/</u>	

Job Number: 40273	8			Area: SC#9 & SC#1	0		
Equipment/Line No.:				Man-Hole # 9			
Service: I	enchate			Test : Torque			
System Being Tested:		Boi	iler 🔲	Exchanger	Furnac	e 🗌	
	Flange	d Connection	ons 🗸	Vessel []	Oth	er	
Torque Requirements:	105	ft-lbs	12" Flanges 🗹	12" Flange x Valve	75	ft-lbs	
Torque Requirements:	80	ft-lbs	10" Flanges 🗹	10" Flange x Valve	58	ft-lbs	
Torque Requirements:	80	ft-lbs	8" Flanges	8" Flange x Valve	58	ft-lbs	
Torque Requirements:	50	ft-lbs	6" Flanges	6" Flange x Valve	44	ft-lbs	
Torque Requirements:	33	ft-lbs	4" Flanges	4" Flange x Valve	30	ft-lbs	
Wrench Serial# 5981138958	Cal	libration Da		bration Due: 3/30/2011			
	Thur	sday	august 12	th 2010			
Date of Torque:		,		•			
_		Flange	2 (12")	Flange			

GLOBAL CALIBRATION SERVICES

502 S LUCILE ST SEATTLE, WA 98108-2507

CERTIFICATE OF CALIBRATION #128566

Issued To:

BMWC CONSTRUCTORS, INC 20638 84TH AVE S KENT, WA 98032 150 oden Grensteres

Quality Management System

Certificate No. 11495

Item ID: 5981138958

Item Description: TORQUE WRENCH

Item Size: 250 R-lb CW

Manufacturer: ARMISTRONG

Model Number: 64-086

Serial Number: 5981138958

Assigned Department: N/A

Item Location: N/A

Calibration Location: INHOUSE LAB

Purchase Order Number: 4027380105

Calibration Date: 03/30/2010

Calibration Due: 03/30/2011

Temperature (Deg F): 67

Humidity (%): 37

Procedure: GCS-8002

Ian Torres, Tachnical Specialist

Date Certificate Issued: 03/30/2010

Global Calibration Services' quality management system conforms to ISO 9001:2000, ANSVNCSL Z540-1, ISO/IEC 17025-2005, ISO 10012:2003, and the technical requirements of the customer's order. All calibrations are performed using internationally recognized standards traceable to the SI Units. Traceability is achieved through the National Institute of Standards and Technology (NIST), other National Measurement Institutes (NMIs), or by using natural physical constraints, intrinsic standards or ratio calibration techniques. Unless otherwise indicated, the combined estimated uncertainty of the measurement has a coverage factor of k-2 at a confidence level of 95%. Any number of factors may cause the instrument to drift out of specification before the recommended recalibration date contained in this certificate applies only to the instrument identified above and may not be reproduced, except in fulf, without prior written consent from Global Calibration Services.

EXAMPLES OF ESTIMATED BOLT TORQUE TO "SEAT" HDPE FLANGE FACES

The engineer of record is usually responsible for establishing each flange joint criteria, and performing the required calculations to determine the initial and residual torque values.

These estimated values are based on non-plated boits and studs, using a nut factor of K=0.16 for lightly greased boits and nuts. The calculations uses a HDPE flange face seating stress of 1200-psi as a minimum and 1800-psi as a maximum, and assumes the flanged joint is between two HDPE flange adapters (in which the contact area is largest), without a rubber gasket.

NOTE: For botting to ductile-iron pipe, steel flanges or butterfly valves, the flange face contact area is about half, so bolt torque for that flange pair will be measurably less (refer to Table #3).

IPS	LJF	init	iai Minimum	Initial Maximum	Flange
Nominal ·	Bolt	Number	Lubed	Lubed	OD/ ID
Pipe Size	Diameter	of Bolts	Torque (Ft	Lbs) Torque (Ft-Lb	s) (Inches)
2"	0.625	4	23	35	3.9 / 1.94
3 ⁷⁸	0.625	4	33	50	5.0 / 2.86
4"	0.625	8	33 V	50	6.6 / 3.68
5"	0.75	8	44	66	7.5 / 4.40
6"	0.75	8	50 L	75	8.5 / 5.42
8"	0.75	8	80	120	10.63 / 6.76
10"	0.875	12	801	120	12.75 / 8.79
12"	0.875	12	1051	160	15.00/ 10.43
14 ¹¹	1.000	12	180	270	17.50 / 11.45
16"	1.000	16	180	270	20.00 / 13.09
18"	1.125	16	200	300	21.12 / 14.73
20"	1.125	20	200	300	23.50 / 16.36
22"	1.25	20	260	390	25.60 / 18.00
24"	1.25	20	290	435	28.00 / 19.64
26"	1.25	24	290-	435	30.00 / 21.27
28"	1.25	28	290	435	32.30 / 22.91
30"	1.25	28	325	488	34.30 / 24.54
32"	1.50	28	425	640	36.50 / 26.18
34"	1.50	32	425	640	38.50 / 27.82
36"	1.50	32	460	690	40.80 / 29.45
40"	1.50	36	460	690	46,00 / 35.29
42"	1.50	36	460	890	47.50 / 37.06
48"	1.50	44	460	690	54,00 / 43,43
54"	1.75	44	560	840	60.00 / 48.86

NOTE: Uniform boit pre-load (torque), without large "scatter", is as useful as the target pre-load. Within the limits of the HDPE flange adapter, gasket, or metal LJF, higher pre-load is destrable. The higher the pre-load safely achievable, the more closely the assembly will behave like the theoretical model and seal well. Higher pre-load means that a given internal pressure will result in the least possible change in contact sealing pressure. Be consistent (avoid changes) with materials and tools when following written assembly procedures.

Train and supervise the boiting personnel. Tell the crew what is to be accomplished, why, and explain that good results are not automatically achieved. Skill and care are assential. Boited Joint assembly is a technical skill that is not common in the construction and maintenance profession, being considered more like a specialty. There is no universally accepted testing, nor certification, of boited-joint assembly mechanics. With no common training, certification, nor standards, it is no surprise there is +/- 25% variability in assembly torque. Specifications and instructions by the engineer, followed by trained mechanics, help to solve the dilemma.

Examples of Estimated Bolt Torque to "Seat" the HDPE Flange Face To

A Butterfly-Valve, Steel Pipe Flange, or Ductile Iron Flange.

The engineer of record is usually responsible for establishing each flange joint criteria, and performing the required calculations to determine the initial and residual torque values.

These estimated lightly lubricated torque values assume the flanged joint connects one HDPE flange-adapter to a Butterfly-Valve or Steel Pipe flange of Schedule 40 ID, or a Ductile-Iron flange. For bolting to steel flanges or butterfly valves, the flange face contact area is just over half that of HDPE to HDPE flanges, so calculated bolt torque for this flange pair will be measurably less than the values listed in Table #2.

Dimensional flange data should be obtained for each case from the pipe flange suppliers, so as to be able to calculate the face contact area.

These <u>estimated values</u> are based on non-plated bolts and studs, using a K=0.16 for lightly greased bolts and nuts. These calculations use an HDPE material minimum and maximum compressive seating stress of 1200-psi to 1800-psi.

IPS	LJF	Initia	Minimum	Initial Maximum	HDPE
Nominal	Bolt Dia.	Number	Lubed	Lubed	Flange OD
Pipe Size	(inches)	of Bolts	Iorque (Ft-Lbs)	Torque (Ft-L	
2"	0.625	4	22	32	3.90 / 2.067
3"	0.625	4	30	45	5.00 / 3.068
4 ⁿ	0.625	8	301	45	6.60 / 4.026
6"	0.75		44	66	7.50 / 4.40
6"	0.75	8	441	66	8.50 / 8.06
8"	0.75	8 8 8	58	88	10.83 / 7.98
10"	0.875	12	58	88	12.75 / 10,02
12"	0.875	12	75	114	15.00 / 11.94
14"	1.000	12	140	210	17,50 / 13,13
16"	1.000	16	140	210	20.00 / 15.00
18"	1.125	16	140	210	21.12 / 16.88
20"	1.125	20	140	210	23.50 / 18.81
22"	1.25	20	160	240	25.60 / 21.25
24"	1.25	20	180	270	28.00 / 23.25
26"	1.25	24	180	270	30.00 / 25.25
28"	1.25	28	180	270	32,30 / 27,25
30 ⁿ	1.25	28	180	270	34.30 / 29.25
32"	1.50	28	240	360	36.50 / 31.00
34"	1.50	32	240	360	38.50 / 33.00
36"	1.50	32	260	390	40.80 / 35.00
40"	1.50	36	310	465	46.00 / 39.00
42"	1.50	36	310	465	47.50 / 41.00
48"	1.50	44	310	465	54.00 / 47.00
54"	1.75	44	365	550	60.00 / 53.00

Train and supervise the bolting personnel. Tell the crew what is to be accomplished, why, and explain that good results are not automatically achieved. Skill and care are essential. Bolted Joint assembly is a technical skill that is not common in the construction and maintenance profession, being considered more like a specialty. There is no universally accepted testing, nor certification, of bolted-joint assembly mechanics. With no common training, certification, nor standards, it is no surprise there is +/- 25% variability in assembly torque. Specifications and instructions by the engineer, followed by trained mechanics, help to solve the dilemma.

New MH-#9 W/ Tee TO MH-#38

Job Number: 40273	8	_		Area: SC#9 & SC#10						
Equipment/Line No.:				Man-Hole # ZO						
Service: I	eachate	chate		Test: Torque		_				
System Being Tested:	Boiler ☐ Flanged Connections ☑			Exchanger	Furnace	• 				
				Vessel	Othe					
Torque Requirements:	105	ft-lbs	12" Flanges	12" Flange x Valve	75	ft-lbs				
Torque Requirements:	80	ft-lbs	10" Flanges	10" Flange x Valve	58	ft-lbs				
Torque Requirements:	80	ft-lbs	8" Flanges	8" Flange x Valve	58	ft-lbs				
Torque Requirements:	50	ft-lbs	6" Flanges	6" Flange x Valve	44	ft-lbs				
Torque Requirements:	33	ft-lbs	4" Flanges	4" Flange x Valve	30	ft-lbs				
Reason For Test: 1	New Lead	hate Transmis	ssion Line Installat	nion						
Reason For Test: No. 1 N		hate Transmis	Cali	bration Due: 3/30/2011						
Wrench Serial# 5981138958 Date of Torque:	Ca	libration Date	Cali	bration Due: 3/30/2011						
Wrench Serial# 5981138958	Ca	libration Date	Cali	bration Due: 3/30/2011						

Job Number: 40273	8	_			Area:	SC#9 & SC#1	0			
Equipment/Line No.:			Man-Hole # 21							
Service: 1	Leachate			Test: Torque				•		
stem Being Tested:		Boile	r 🗆	Ex	Exchanger			Furnace		
	Flangeo	I Connection	s 🗸	Vessel			Other			
•										
Torque Requirements:	105	ft-lbs	12" Flanges		12" Fla	nge x Valve	75	ft-lbs		
Torque Requirements:	80	ft-lbs	10" Flanges		10" Fla	nge x Valve	58	ft-lbs		
Torque Requirements:	80	ft-lbs	8" Flanges		8" Fla	nge x Valve _	58	ft-lbs		
Torque Requirements:	50	ft-lbs	6" Flanges		6" Fla	nge x Valve_	44	ft-lbs		
Torque Requirements:	33	ft-lbs	4" Flanges		4" Fla	nge x Valve	30 ft-lbs □			
Wrench Serial# 5981138958	Cali	bration Date 3/30/2010		Calibration 3/30/2						
	Cali 8/19									
5981138958	6/19									
5981138958	8/19				2011	z") Valu	ic to	Fl	2179	

TANK 4 AND LEACHATE TRANSMISSION SYSTEM REPORT

CONSTRUCTION QUALITY ASSURANCE (CQA)

ENVIRONMENTAL RESTORATION DISPOSAL FACILITY (ERDF)

SUPER CELLS 9

SUBCONTRACT S013213A00

JANUARY 2011 (010032)

APPENDIX C.

EARTHWORK TESTING

Soils and Proctor Summary

Test	Description	Pro	ctor	Sieve	Classification		
Number		Dry	Moisture	Passing			
		Density	%	-200%			
SF-01	Light Brown Sand with Silt	113.6	12.4%	22.6	SM	Silty Sand	
SF-02	Light Brown Silt with Sand	124.9	9.7%	12.4	SP-SM	Poorly Graded Sand w/ Silt	
SF-03	Black Sand w/ Gravel	120.6	14.0%	9.8	SW-SM	Well Graded Sand w/ Silt	
SF-04	Brown/Black Sand	120.5	12.8%	9.6	SW-SM	Well Graded Sand w/ Silt	
SF-05	Brown/Black Sand	124.2	12.5%	9.8	SW-SM	Well Graded Sand w/ Silt	
SF-06	Brown/Black Sand	120.8	14.3%	7.3	SW	Well Graded Sand	
SF-07	Lowest Layer of Excavation	117.3	11.5%	10.4	SW	Well Graded Sand	
SF-08	Manhole 21 Backfill	118	11.3%	1.8	SP	Poorly Graded Sand	
SF-09	WashDOT Base course	138.9	2.6%	3.1	GP	Poorly Graded Gravel	
SF-10	WashDOT Top course	135.2	6.0%	5.1	GP	Poorly Graded Gravel	
SF-11	Riser Trench Backfill	114.5	11.0%	1.6	SP	Poorly Graded Sand	

Summary Log:

Leachate Transmission Manholes

Client:

WCH

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

ENVIROTECH ENGINEERING & CONSULTING, INC

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. Ibs/cuft	% Moist Content	Percent Proctor	Dry Den. Ibs/cuft	Pass / Fail
Manhole # 21										
MH21-01	SF-01	Sub	9:00	12	27	119.7	7.3%	98.2%	111.6	Pass
MH21-02	SF-01	Sub	9:05	12	27	121.2	8.7%	98.2%	111.5	Pass
Manhole # 39										
MH39-01	SF-05	Sub	9:10	12	27	130.5	7.0%	98.2%	122.0	Pass
MH39-02	SF-05	Sub	9:15	12	27	128.7	6.0%	97.8%	121.4	Pass
Manhole #21										
MH21-03	SF-06	1	13:00	12	31	118.5	7.6%	91.2%	110.1	Pass
MH21-04	SF-06	2	13:10	12	31	120.7	9.0%	91.7%	110.7	Pass
MH21-05	SF-06	3	13:20	12	31	121.4	9.2%	92.0%	111.2	Pass
Manhole #21 (9	5% Compact	tion)								
MH21-06	SF-06	4	13:30	6	31	123.6	7.5%	95.2%	115.0	Pass
Manhole #39										
MH39-03	SF-06	1	13:40	12	31	127.8	8.0%	98.0%	118.3	Pass
MH39-04	SF-06	2	13:50	12	31	126.7	7.5%	97.6%	117.9	Pass
MH39-05	SF-06	3	14:00	12	31	127.8	7.7%	98.2%	118.7	Pass
Manhole #39 (95	5% Compact	ion)								
MH39-06	SF-06	4	14:10	6	31	127.6	8.8%	97.1%	117.3	Pass
Manhole #32										
MH32-01	SF-06	Sub	14:20	12	31	130.7	5.3%	102.7%	124.1	Pass
MH32-02	SF-06	Sub	14:25	12	31	126.0	4.9%	99.4%	120.1	Pass
Manhole #33										
MH33-01	SF-06	Sub	14:40	12	31	129.9	8.7%	98.9%	119.5	Pass
MH33-02	SF-06	Sub	14:45	12	31	131.0	9.1%	99.4%	120.1	Pass
Manhole #33										
MH33-03	SF-06	1	7:30	12	36	135.0	14.6%	97.5%	117.8	Pass
MH33-04	SF-06	2	7:55	12	36	131.4	9.7%	99.2%	119.8	Pass
*/lanhole #33 (95	% Compacti	on)								
MH33-05	SF-06	3	8:35	6	36	130.2	10.7%	97.4%	117.6	Pass

Summary Log:

Leachate Transmission Manholes

Client:

WCF

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

ENVIROTECH ENGINEERING & CONSULTING, INC.

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. Ibs/cuft	% Moist Content	Percent Proctor	Dry Den. Ibs/cuft	Pass / Fail
MH33-06	SF-06	4	9:15	6	36	127.9	7.3%	98.7%	119.2	Pass
Manhole #32										
MH32-03	SF-06	1	9:45	12	36	130.7	11.3%	97.2%	117.4	Pass
MH32-04	SF-06	2	10:45	12	36	125.0	7.4%	96.3%	116.4	Pass
MH32-05	SF-06	3	11:50	12	36	124.7	8.3%	95.3%	115.1	Pass
MH32-06	SF-06	4	13:00	12	36	128.4	7.9%	98.5%	119.0	Pass
Manhole #33 (9	5% Compact	ion)								
MH33-07	SF-06	5	14:00	6	36	128.2	10.7%	95.9%	115.8	Pass
MH33-08	SF-06	6	14:30	6	36	126.8	9.7%	95.7%	115.6	Pass
MH33-09	SF-06	7	15:00	6	36	128.1	10.9%	95.6%	115.5	Pass
MH33-10	SF-06	8	15:30	6	36	127.6	10.1%	95.9%	115.9	Pass
MH33-11	SF-06	9	15:45	6	36	129.4	11.3%	96.2%	116.3	Pass
MH33-12	SF-06	10	16:10	6	36	128.8	9.6%	97.3%	117.5	Pass
Manhole #34										
MH34-01	SF-05	Sub	9:40	12	41	129.5	9.5%	95.2%	118.3	Pass
MH34-02	SF-05	Sub	9:45	12	41	130.2	8.1%	97.0%	120.4	Pass
Manhole #35										
MH35-01	SF-05	Sub	9:50	12	41	131.4	7.9%	98.1%	121.8	Pass
MH35-02	SF-05	Sub	9:55	12	41	130.5	8.6%	96.8%	120.2	Pass
Manhole #34										
MH34-03	SF-06	1	7:30	12	44	126.9	7.6%	97.6%	117.9	Pass
MH34-04	SF-06	2	8:15	12	44	132.6	12.7%	97.4%	117.7	Pass
MH34-05	SF-06	3	9:00	12	44	125.5	8.4%	95.8%	115.8	Pass
MH34-06	SF-06	4	9:45	12	44	127.1	6.4%	98.9%	119.5	Pass
MH34-07	SF-06	5	10:30	12	44	128.5	9.6%	97.1%	117.2	Pass
Manhole #35										
MH35-03	SF-05	1	12:00	12	44	130.4	7.7%	97.5%	121.1	Pass
MH35-04	SF-05	2	12:45	12	44	129.3	8.4%	96.0%	119.3	Pass
MH35-05	SF-05	3	13:50	12	44	130.4	9.1%	96.2%	119.5	Pass
MH35-06	SF-05	4	14:45	12	44	131.3	10.2%	95.9%	119.1	Pass

Summary Log:

Leachate Transmission Manholes

Client:

WCH

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

CENVIRUTED FINGINEERING & CONSULTING

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. Ibs/cuft	% Moist Content	Percent Proctor	Dry Den. Ibs/cuft	Pass / Fail
MH35-07	SF-05	5	15:30	12	44	129.1	8.7%	95.6%	118.8	Pass
Manhole #36										
MH36-01	SF-05	Sub	14:45	12	51	132.9	5.2%	101.7%	126.3	Pass
MH36-02	SF-05	Sub	14:50	12	51	134.5	4.8%	103.3%	128.3	Pass
Manhole #37										
MH37-01	SF-05	Sub	15:00	12	51	127.8	5.3%	97.7%	121.4	Pass
MH37-02	SF-05	Sub	15:05	12	51	132.0	4.6%	101.6%	126.2	Pass
Manhole #38 (9	5% Compac	tion)								
MH38-1	SF-05	sub	14:30	12	53	133.7	4.0%	103.5%	128.6	Pass
MH38-2	SF-05	sub	14:35	12	53	127.5	2.6%	100.1%	124.3	Pass
Manhole #37										
MH37-03	SF-07	1	7:30	12	55	121.4	8.1%	95.7%	112.3	Pass
MH37-04	SF-07	2	7:51	12	55	122.6	9.6%	95.4%	111.9	Pass
MH37-05	· SF-07	3	8:21	12	55	123.7	9.1%	96.7%	113.4	Pass
MH37-06	SF-07	4	8:42	12	55	125.6	11.4%	96.1%	112.7	Pass
MH37-07	SF-07	5	9:10	12	55	122.5	8.3%	96.4%	113.1	Pass
Manhole #36										
MH36-03	SF-05	1	10:25	12	55	130.5	8.8%	96.6%	119.9	Pass
MH36-04	SF-05	2	10:55	12	55	131.2	9.1%	96.8%	120.3	Pass
MH36-05	SF-05	3	11:50	12	55	133.6	12.3%	95.8%	119.0	Pass
MH36-06	SF-05	4	12:45	12	55	132.1	9.8%	96.9%	120.3	Pass
Manhole #34										
MH34-08	SF-08	6	8:28	12	169	123.3	8.0%	96.8%	114.2	Pass
Manhole #34 (95	5% Compacti	on)								
MH34-09	SF-08	7	9:14	6	169	121.6	7.7%	95.7%	112.9	Pass
MH34-10	SF-08	8	9:18	6	169	121.5	7.4%	95.9%	113.1	Pass
MH34-11	SF-08	9	9:40	6	169	122.1	8.0%	95.8%	113.1	Pass
MH34-12	SF-08	10	9:44	6	169	120.5	6.8%	95.6%	112.8	Pass
MH34-13	SF-08	11	13:43	6	169	122.6	7.0%	97.1%	114.6	Pass
MH34-14	SF-08	12	13:48	6	169	122.5	6.8%	97.2%	114.7	Pass

Summary Log:

Leachate Transmission Manholes

Client:

WCH

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

ENVIROTECH ENGINEERING & CONSULTING, INC.

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. Ibs/cuft	% Moist Content	Percent Proctor	Dry Den. Ibs/cuft	Pass / Fail
Manhole #35										
MH35-08	SF-08	6	8:13	12	169	127.2	11.5%	96.7%	114.1	Pass
Manhole #35 (9	5% Compact	ion)								
MH35-09	SF-08	7	8:54	6	169	123.1	8.6%	96.1%	113.4	Pass
MH35-10	SF-08	8	8:51	6	169	122.0	5.4%	98.1%	115.7	Pass
MH35-11	SF-08	9	15:40	6	169	123.7	8.8%	96.4%	113.7	Pass
MH35-12	SF-08	10	15:45	6	169	122.5	7.6%	96.5%	113.8	Pass
MH35-13	SF-08	11	15:48	6	169	120.7	7.7%	95.0%	112.1	Pass
MH35-14	SF-08	12	15:51	6	169	127.8	12.3%	96.4%	113.8	Pass
MH35-15	SF-08	13	15:59	6	169	123.8	8.2%	97.0%	114.4	Pass
Manhole #36 (95	5% Compact	ion)								
MH36-07	SF-08	5	9:27	6	178	122.3	7.5%	96.4%	113.8	Pass
MH36-08	SF-08	6	9:29	6	178	125.5	11.3%	95.6%	112.8	Pass
MH36-09	SF-08	7	9:32	6	178	124.4	7.0%	98.5%	116.3	Pass
MH36-10	SF-08	8	9:37	6	178	125.1	8.7%	97.5%	115.1	Pass
Manhole #36 (95	5% Compact	ion)								
MH36-11	SF-08	9	9:00	6	182	122.5	6.4%	97.6%	115.1	Pass
MH36-12	SF-08	10	9:05	6	182	122.4	6.8%	97.1%	114.6	Pass
MH36-13	SF-08	11	10:17	6	182	124.0	5.2%	99.9%	117.9	Pass
MH36-14	SF-08	12	10:22	6	182	124.6	5.7%	99.9%	117.9	Pass
MH36-15	SF-08	13	15:22	6	182	120.7	4.6%	97.8%	115.4	Pass
									•	

Summary Log:

Leachate Transmission Line

Client:

WCH

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

ENVIROTECH ENGINEERING & CONSULTING, INC.

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. Ibs/cuft	% Moist Content	Percent Proctor	Dry Den. Ibs/cuft	Pass / Fail
Leachate Trans	mission Lin	e: MH-3	3 to Cres	t Pad 10 (95% Modifi	ed under Cre	est Pad)			
LT-1	SF-05	1	9:35	6	53	135.2	9.9%	99.1%	123.0	Pass
LT-2	SF-05	2	9:55	6	53	128.5	8.1%	95.7%	118.9	Pass
LT-3	SF-05	3	10:30	6	53	129.2	8.1%	96.2%	119.5	Pass
LT-4	SF-05	4	10:55	6	53	129.6	9.6%	95.2%	118.2	Pass
LT-5	SF-05	5	11:55	6	53	127.6	10.5%	93.0%	115.5	Fail
LT-5A	SF-05	5	12:00	6	53	133.4	10.8%	96.9%	120.4	Pass
LT-5B	SF-05	5	12:05	6	53	131.3	9.6%	96.5%	119.8	Pass
Cell 10 Dischar The Discharge L pipe was excava	ine from MH ated, and rein	-33 to Co	rest Pad 1 at the corre	0 was inst	alled with th					
the compaction	of the reinsta	lled pipe).							
LT-006	SF-06	1	8:05	12	57	122.7	6.9%	95.0%	114.8	Pass
LT-007	SF-06	2	8:15	6	57	122.2	6.4%	95.1%	114.8	Pass
LT-008	SF-06	3	8:25	6	57	125.9	6.4%	98.0%	118.3	Pass
LT-009	SF-06	4	8:45	6	57	126.3	5.8%	98.8%	119.4	Pass
LT-010	SF-06	5	9:15	6	57	119.4	5.3%	93.9%	113.4	Pass
LT-011	SF-06	6	9:45	6	57	128.4	10.6%	96.1%	116.1	Pass
LT-012	SF-06	7	10:05	6	57	127.3	9.3%	96.4%	116.5	Pass
LT-013	SF-06	8	10:20	6	57	126.4	9.7%	95.4%	115.2	Pass
Leachate Trans	mission Lin	e: MH-3	2 to Crest	Pad 9						
LT-09	SF-06	1	9:15	12	60	122.7	9.4%	92.8%	112.2	Pass
LT-10	SF-06	2	9:45	6	60	121.0	7.4%	93.3%	112.7	Pass
LT-11	SF-06	3	10:45	6	60	125.3	11.4%	93.1%	112.5	Pass
LT-12	SF-06	4	12:00	6	60	118.5	6.8%	91.9%	111.0	Pass
LT-13	SF-06	5	15:10	6	60	134.5	13.7%	97.9%	118.3	Pass
LT-14	SF-06	6	15:50	6	60	122.8	10.8%	91.7%	110.8	Pass
Leachate Trans	mission Line	e: MH-3	2 to Crest	Pad 9						
LT -15	SF-06	7	7:22	6	61	123.3	10.0%	92.8%	112.1	Pass
LT-16	SF-06	8	9:00	6	61	124.9	12.6%	91.8%	110.9	Pass

Summary Log:

Leachate Transmission Line

Client:

WCH

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

ENVIROTECH ENGINEERING & CONSULTING, INC.

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. Ibs/cuft	% Moist Content	Percent Proctor	Dry Den. lbs/cuft	Pass /
LT-17	SF-06	9	9:41	6	61	120.1	9.2%	91.0%	110.0	Pass
LT-18	SF-06	10	12:45	6	61	129.5	14.2%	93.9%	113.4	Pass
eachate Trans	mission Lin	e: MH-3	2 to MH-3	33						
LT-19	SF-06	0	8:55	12	71	123.0	11.2%	91.6%	110.6	Pass
LT-20	SF-06	0	9:00	12	71	122.4	11.2%	91.1%	110.1	Pass
LT-21	SF-06	1	12:05	12	71	123.7	9.0%	93.9%	113.5	Pass
LT-22	SF-06	1	12:10	12	71	123.5	7.8%	94.8%	114.6	Pass
LT-23	SF-06	2	14:15	12	71	122.9	7.9%	94.3%	113.9	Pass
LT-24	SF-06	2	14:20	12	71	123.3	8.6%	94.0%	113.5	Pass
eachate Trans	mission Lin	e: MH-3	2 to MH-3	3 (95 % C	compaction)					
LT-25	SF-06	3	6:45	6	72	125.5	9.1%	95.2%	115.0	Pass
LT-26	SF-06	3	6:50	6	72	127.4	9.7%	96.1%	116.1	Pass
LT-27	SF-06	4	8:05	6	72	126.3	7.1%	97.6%	117.9	Pass
LT-28	SF-06	4	8:10	6	72	125.9	6.5%	97.9%	118.2	Pass
eachate Trans	mission Lin	e: MH-3	2 to MH-3	3 (95 % (Compaction)					
LT-29	SF-06	5	6:25	6	73	126.8	9.9%	95.5%	115.4	Pass
LT-30	SF-06	5	6:27	6	73	125.5	8.5%	95.8%	115.7	Pass
LT-31	SF-06	6	7:25	6	73	127.4	10.3%	95.6%	115.5	Pass
LT-32	SF-06	6	7:29	6	73	126.3	9.5%	95.5%	115.3	Pass
LT-33	SF-06	7	8:10	6	73	125.9	6.5%	97.9%	118.2	Pass
LT-34	SF-06	7	8:14	6	73	128.5	11.2%	95.7%	115.6	Pass
LT-35	SF-06	8	10:50	6	73	125.9	9.5%	95.2%	115.0	Pass
LT-36	SF-06	8	10:53	6	73	126.4	10.2%	95.0%	114.7	Pass
LT-37	SF-06	9	12:30	6	73	127.3	10.5%	95.4%	115.2	Pass
LT-38	SF-06	9	12:33	6	73	126.1	9.6%	95.2%	115.1	Pass
LT-39	SF-06	10	16:10	6	73	126.4	9.4%	95.6%	115.5	Pass
LT-40	SF-06	10	16:15	6	73	125.7	7.5%	96.8%	116.9	Pass
eachate Trans	mission Lin	e: MH-39	to Tank	3						
LT-41	SF-04	1	13:00	6	76	120.9	5.2%	95.4%	114.9	Pass
LT-42	SF-04	2	13:10	6	76	129.1	8.7%	98.6%	118.8	Pass

Summary Log:

Leachate Transmission Line

Client:

WCH

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

ENVIROTED ENGINEERING & CONSULTING

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. Ibs/cuft	% Moist Content	Percent Proctor	Dry Den. Ibs/cuft	Pass / Fail
LT-43	SF-04	3	13:20	6	76	125.4	7.3%	97.0%	116.9	Pass
LT-44	SF-04	4	13:30	6	76	129.7	9.9%	97.9%	118.0	Pass
Leachate Trans	mission Lin	e: MH-2	1 to Tank	3						
LT-45	SF-04	1	13:40	6	76	125.2	6.6%	97.5%	117.4	Pass
LT-46	SF-04	2	13:50	6	76	124.4	8.4%	95.2%	114.8	Pass
LT-47	SF-04	3	14:00	6	76	124.4	8.0%	95.6%	115.2	Pass
LT-48	SF-04	4	14:10	6	76	125.6	8.7%	95.9%	115.5	Pass
Leachate Trans	mission Lin	e: Tank	3 to Pum	p House						
LT-49	SF-04	1	14:20	6	76	124.6	8.1%	95.7%	115.3	Pass
Leachate Trans	mission Lin	e: Tank	3 to Tran	sducer						
LT-50	SF-04	1	14:30	6	76	124.0	7.7%	95.5%	115.1	Pass
Leachate Trans	mission Lin	e: Tank	3 to Pum	p House						
LT-51	SF-04	2	14:40	6	76	127.3	9.2%	96.7%	116.6	Pass
Leachate Trans	mission Lin	e: Tank	3 to Trans	sducer						
LT-52	SF-04	2	14:50	6	76	126.1	9.4%	95.7%	115.3	Pass
Leachate Trans	mission Lin	e: Tank	3 to Pum	p House						
LT-53	SF-04	3	15:00	6	76	123.9	8.3%	94.9%	114.4	Pass
Leachate Trans	mission Lin	e: Tank	3 to Trans	sducer						
LT-54	SF-04	3	15:10	6	76	125.0	9.1%	95.1%	114.6	Pass
Leachate Trans	mission: Mi	1-32 to I	VIH-34							
LT-55	SF-05	SG	12:30	12	77	125.0	7.1%	94.0%	116.7	Pass
LT-56	SF-05	SG	12:35	12	77	124.3	7.6%	93.0%	115.5	Pass
LT-57	SF-05	1	13:45	12	77	125.1	8.3%	93.0%	115.5	Pass
LT-58	SF-05	1	13:50	12	77	130.2	9.4%	95.8%	119.0	Pass
_eachate Trans	eachate Transmission: MH-32 to MH-34									
LT-59	SF-06	2	7:30	12	78	118.3	7.9%	90.8%	109.6	Pass
LT-60	SF-06	2	7:35	12	78	124.2	7.8%	95.4%	115.2	Pass
LT-61	SF-06	3	8:30	12	78	132.5	11.4%	98.5%	118.9	Pass
	SF-06	3	8:35	12	78	125.2	7.8%	96.1%	116.1	Pass

Summary Log:

Leachate Transmission Line

Client:

WCH

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

ENVIROTECH ENGINEERING & CONSULTING, INC

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. Ibs/cuft	% Moist Content	Percent Proctor	Dry Den. Ibs/cuft	Pass / Fail
LT-63	SF-06	4	10:00	6	78	124.8	6.9%	96.6%	116.7	Pass
LT-64	SF-06	4	10:35	6	78	126.6	8.1%	96.9%	117.1	Pass
LT-65	SF-06	5	11:30	6	78	129.7	10.2%	97.4%	117.7	Pass
LT-66	SF-06	5	11:35	6	78	129.6	10.4%	97.2%	117.4	Pass
LT-67	SF-06	6	13:00	6	78	122.6	5.5%	96.2%	116.2	Pass
LT-68	SF-06	6	13:05	6	78	124.3	6.4%	96.7%	116.8	Pass
LT-69	SF-06	7	14:40	6	78	121.5	5.4%	95.4%	115.3	Pass
LT-70	SF-06	7	14:45	6	78	127.4	7.4%	98.2%	118.6	Pass
Leachate Trans	mission: Mi	1-32 to I	VH-34 (95	5 % Comp	action)					
LT-71	SF-06	8	8:20	6	79	127.4	7.0%	98.6%	119.1	Pass
LT-72	SF-06	8	8:25	6	79	127.9	7.3%	98.7%	119.2	Pass
LT-73	SF-06	9	10:00	6	79	127.7	8.4%	97.5%	117.8	Pass
LT-74	SF-06	9	10:05	6	79	128.9	8.6%	98.3%	118.7	Pass
LT-75	SF-06	10	13:00	6	79	128.1	8.1%	98.1%	118.5	Pass
LT-76	SF-06	10	13:05	6	79	125.1	8.7%	95.3%	115.1	Pass
LT-77	SF-06	11	16:05	6	79	126.9	9.2%	96.2%	116.2	Pass
LT-78	SF-06	11	16:10	6	79	126.3	8.9%	96.0%	116.0	Pass
Leachate Trans	mission: MH	1-35 to N	/H-36							
LT-79	SF-06	1	13:45	12	84	128.6	6.5%	100.0%	120.8	Pass
LT-80	SF-06	1	13:50	12	84	127.2	8.1%	97.4%	117.7	Pass
LT-81	SF-06	2	14:00	12	84	120.7	7.1%	93.3%	112.7	Pass
LT-82	SF-06	3	14:08	12	84	121.1	9.3%	91.7%	110.8	Pass
LT-83	SF-06	2	15:00	12	84	124.3	7.2%	96.0%	116.0	Pass
LT-84	SF-06	3	16:20	12	84	120.6	4.8%	95.3%	115.1	Pass
eachate Trans	mission: MH	-35 to N	1H-36							
LT-85	SF-06	4	8:41	12	87	128.9	6.7%	100.0%	120.8	Pass
LT-86	SF-06	4	12:22	12	87	125.4	5.3%	98.6%	119.1	Pass
eachate Transi	mission: MH	-35 to N	IH-36 (95		action)					
LT-87	SF-06	5	15:16	6	87	128.7	8.1%	98.6%	119.1	Pass
LT-88	SF-06	5	15:19	6	87	129.0	7.6%	99.2%	119.9	Pass

Summary Log:

Leachate Transmission Line

Client:

WCH

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

ENVIROTED TEC

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. lbs/cuft	% Moist Content	Percent Proctor	Dry Den. lbs/cuft	Pass /
Leachate Trans	mission: Mi	H-35 to	MH-36 (95		action)					
LT-89	SF-06	6	13:00	6	88	128.1	8.5%	97.7%	118.1	Pass
LT-90	SF-06	6	13:04	6	88	128.2	9.3%	97.1%	117.3	Pass
LT-91	SF-06	7	15:16	6	88	128.2	6.2%	99.9%	120.7	Pass
LT-92	SF-06	7	15:19	6	88	126.9	7.2%	98.0%	118.4	Pass
Leachate Trans	mission: Mi	1-35 to	MH-36 (95	% Comp	action)					
LT-93	SF-06	8	7:06	6	89	125.3	6.2%	97.7%	118.0	Pass
LT-94	SF-06	8	7:11	6	89	124.9	4.2%	99.2%	119.9	Pass
LT-95	SF-06	9	11:46	6	89	126.1	7.3%	97.3%	117.5	Pass
LT-96	SF-06	9	13:04	6	89	128.2	6.3%	99.8%	120.6	Pass
Leachate Trans	mission: Mł	1-35 to	MH-36 (95	% Compa	action)					
LT-97	SF-06	10	7:06	6	90	130.7	8.7%	99.5%	120.2	Pass
LT-98	SF-06	10	7:11	6	90	129.5	9.5%	97.9%	118.3	Pass
Leachate Trans	mission: Mh	1-35 to	MH-36 (95	% Compa	action)					
LT-99	SF-06	11	11:55	6	91	125.0	6.4%	97.3%	117.5	Pass
LT-100	SF-06	11	11:59	6	91	123.5	7.5%	95.1%	114.9	Pass
Transmission L	ine MH-37 to	MH-38	3							
Tests LT-101, LT	Γ-102, and LT	Γ-103 w	ere accept	ed by WC	H under SD	DR-23				
LT-101	SF-06	1	13:21	6	94	119.1	10.9%	88.9%	107.4	Pafi
LT-102	SF-06	1	13:56	6	94	117.7	12.0%	87.0%	105.1	Fall
Leachate Trans	mission MH	-37 to N	MH-38							
LT-101	SF-08	1	13:21	6	95	119.1	10.9%	91.0%	107.4	Pass
LT-102	SF-08	1	13:56	6	95	117.7	12.0%	89.1%	105.1	Fail
LT-103	SF-08	2	7:45	6	95	116.9	11.0%	89.3%	105.3	Fail
LT-104	SF-08	2	9:32	6	95	118.3	9.9%	91.2%	107.6	Pass
LT-105	SF-08	3	12:32	6	95	115.0	7.3%	90.8%	107.2	Pass
LT-106	SF-08	3	12:35	6	95	114.2	6.3%	91.0%	107.4	Pass
LT-107	SF-08	4	15:12	6	95	116.3	8.0%	91.3%	107.7	Pass
LT-108	SF-08	4	15:18	6	95	116.5	9.3%	90.3%	106.6	Pass

Summary Log:

Leachate Transmission Line

Client:

WCH

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. Ibs/cuft	% Moist Content	Percent Proctor	Dry Den. Ibs/cuft	Pass / Fail
LT-109	SF-08	6	11:51	12	96	121.7	8.6%	95.0%	112.1	Pass
LT-110	SF-08	6	11:56	12	96	120.4	11.7%	91.3%	107.8	Pass
Leachate Trans	smission Mi	H-37 to	MH-38 (95	% Comp	action)					
LT-111	SF-08	6	13:08	6	97	117.6	10.4%	90.3%	106.5	Pass
LT-112	SF-08	6	13:12	6	97	113.7	6.5%	90.5%	106.8	Pass
Leachate Trans	mission Lin	e MH-2	1 to Tank	3						
LT-113	SF-01	5	9:30	6	111	122.6	12.8%	95.7%	108.7	Pass
LT-114	SF-01	6	10:00	6	111	122.6	10.9%	97.3%	110.6	Pass
LT-115	SF-01	7	14:10	6	111	123.3	12.2%	96.7%	109.9	Pass
LT-116	SF-01	8	14:35	6	111	122.9	11.8%	96.8%	109.9	Pass
Leachate Trans	mission Lin	e: MH-3	2 Drain Li	ne						
LT-117	SF-08	1	13:08	12	112	124.8	7.8%	98.1%	115.8	Pass
LT-118	SF-08	2	13:10	6	112	126.7	8.1%	99.3%	117.2	Pass
LT-119	SF-08	3	13:05	6	112	122.2	7.1%	96.7%	114.1	Pass
LT-120	SF-08	4	13:13	6	112	120.5	6.9%	95.5%	112.7	Pass
LT-121	SF-08	5	14:35	6	112	124.2	8.9%	96.7%	114.0	Pass
LT-122	SF-08	6	14:44	6	112	124.4	7.5%	98.1%	115.7	Pass
Drain Line Bacl	kfill from MH	-33 Dra	in Line							
LT-123	SF-08	1	16:15	6	112	131.7	8.1%	103.2%	121.8	Pass
LT-124	SF-08	2	16:18	6	112	130.2	10.5%	99.9%	117.8	Pass
LT-125	SF-08	3	16:21	6	112	120.9	5.8%	96.8%	114.3	Pass
Drain Line Back	cfill from MH	-33 Dra	in Line							
ifts 1, 2, and 3	of MH-33 Dra	in Line	were retes	ted on Re	port day 114					
LT-126	SF-08	1	10:05	6	114	127.2	8.6%	99.3%	117.1	Pass
LT-127	SF-08	2	10:41	6	114	125.9	7.4%	99.3%	117.2	Pass
LT-128	SF-08	3	11:03	6	114	124.1	5.6%	99.6%	117.5	Pass
LT-129	SF-08	4	12:35	6	114	125.5	6.1%	100.2%	118.3	Pass
LT-130	SF-08	5	15:01	6	114	124.9	6.7%	99.2%	117.1	Pass
rain Line Back	fill from MH	-34 and	MH-35							
LT-131	SF-08	1	15:03	12	126	125.3	8.0%	98.3%	116.0	Pass

Summary Log:

Leachate Transmission Line

Client:

WCH

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

ENVIROTECH ENGINEERING & CONSULTING INC

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. Ibs/cuft	% Moist Content	Percent Proctor	Dry Den. lbs/cuft	Pass /
LT-132	SF-08	1	16:02	12	126	115.9	7.1%	91.7%	108.2	Pass
LT-133	SF-08	1	16:08	12	126	129.6	11.1%	98.9%	116.7	Pass
Orain Line Bac	kfill from MH	1-38 to 1	ИН-39							
LT-134	SF-08	1	6:55	12	127	119.1	8.5%	93.0%	109.8	Pass
Drain Line Bac	kfill from MH	1-34 and	MH-35							
LT-135	SF-08	2	10:05	12	129	122.7	8.7%	95.7%	112.9	Pass
LT-136	SF-08	2	10:08	12	129	126.8	10.7%	97.1%	114.5	Pass
LT-137	SF-08	2	10:11	12	129	121.6	7.1%	96.2%	113.5	Pass
LT-138	SF-08	3	14:40	12	129	125.9	7.1%	99.6%	117.6	Pass
LT-139	SF-08	3	14:43	12	129	125.4	6.5%	99.8%	117.7	Pass
LT-140	SF-08	3	14:48	12	129	119.6	6.3%	95.3%	112.5	Pass
Orain Line Bac	kfill from MH	l-38 and	MH-39 (9	5% Comp	action)					
LT-141	SF-08	2	12:40	6	129	126.1	9.1%	98.0%	115.6	Pass
LT-142	SF-08	3	15:15	6	129	118.9	4.8%	96.1%	113.5	Pass
Backfill from M	H-34 and MF	1-35								
LT-143	SF-08	4	10:09	12	130	129.0	12.7%	97.0%	114.5	Pass
LT-144	SF-08	4	10:12	12	130	124.2	9.3%	96.3%	113.6	Pass
LT-145	SF-08	4	10:15	12	130	123.1	8.8%	95.9%	113.1	Pass
LT-146	SF-08	5	14:35	12	130	123.4	9.6%	95.4%	112.6	Pass
LT-147	SF-08	5	14:37	12	130	124.7	8.5%	97.4%	114.9	Pass
LT-148	SF-08	5	14:40	12	130	129.8	10.1%	99.9%	117.9	Pass
Backfill from M	H-34 and MF	I-35 (95	% Compa	ction)						
LT-149	SF-08	6	9:10	6	131	125.0	6.4%	99.6%	117.5	Pass
LT-150	SF-08	6	9:13	6	131	128.0	9.3%	99.2%	117.1	Pass
LT-151	SF-08	6	9:15	6	131	129.0	11.0%	98.5%	116.2	Pass
LT-152	SF-08	7	13:25	6	131	129.0	12.0%	97.6%	115.2	Pass
LT-153	SF-08	7	13:29	6	131	130.1	12.6%	97.9%	115.5	Pass
LT-154	SF-08	7	13:34	6	131	127.4	9.4%	98.7%	116.5	Pass
ackfill from M	H-38 and MH	- 39 (95°	% Compac	ction)						
LT-155	SF-08	4	10:35	6	131	122.7	8.9%	95.5%	112.7	Pass

Summary Log:

Leachate Transmission Line

Client:

WCH

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

ENVIROTECH ENGINEERING & CONSULTING, INC.

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. lbs/cuft	% Moist Content	Percent Proctor	Dry Den. lbs/cuft	Pass / Fail
Backfill from M	H-34 and Mi	H-35 (95	5% Compa	ction)						
LT-156	SF-08	8	14:31	6	132	126.5	7.3%	99.9%	117.9	Pass
LT-157	SF-08	8	14:34	6	132	121.7	7.0%	96.4%	113.7	Pass
LT-158	SF-08	8	14:39	6	132	126.8	8.5%	99.0%	116.9	Pass
Backfill from M	H-34 and MI	H -35 (95	% Compa	ction)						
LT-159	SF-08	9	12:19	6	133	126.6	7.5%	99.8%	117.8	Pass
LT-160	SF-08	9	12:31	6	133	121.4	3.1%	99.8%	117.7	Pass
LT-161	SF-08	9	12:34	6	133	123.8	5.1%	99.8%	117.8	Pass
Backfill from M	H-34 and MI	1-35 (95	% Compa	ction)						
LT-162	SF-08	10	8:10	6	134	122.0	5.4%	98.1%	115.7	Pass
LT-163	SF-08	10	8:13	6	134	120.7	3.1%	99.2%	117.1	Pass
LT-164	SF-08	10	8:16	6	134	117.5	3.9%	95.8%	113.1	Pass
LT-165	SF-08	11	15:53	6	134	127.3	9.0%	99.0%	116.8	Pass
LT-166	SF-08	11	15:56	6	134	127.6	8.7%	99.5%	117.4	Pass
LT-167	SF-08	10	15:59	6	134	128.9	9.9%	99.4%	117.3	Pass
Backfill from M	H-38 and Mi	1-9								
LT-168	SF-08	1	15:15	12	135	116.4	8.9%	90.6%	106.9	Pass
LT-169	SF-08	2	15:30	12	135	122.5	6.7%	97.3%	114.8	Pass
Backfill from MI	H-38 and MI	1-9 (95%	6 Compact	ion)						
LT-170	SF-08	3	6:48	6	136	121.5	6.6%	96.6%	114.0	Pass
LT-171	SF-08	4	7:20	6	136	126.1	8.4%	98.6%	116.3	Pass
LT-172	SF-08	5	8:15	6	136	120.3	6.8%	95.5%	112.6	Pass
Backfill Leacha	te Transmis	sion Lir	ne MH-36 t	o MH-37						
LT-173	SF-08	1_	13:40	12	141	122.9	5.0%	99.2%	117.0	Pass
LT-174	SF-08	1	15:12	12	141	123.5	8.0%	96.9%	114.4	Pass
LT-175	SF-08	1	15:15	12	141	118.1	10.9%	90.2%	106.5	Pass
Backfill Leacha	te Transmis	sion Lir	ne MH-36 t	o MH-37						
LT-176	SF-08	2	6:50	12	142	120.3	7.1%	95.2%	112.3	Pass
LT-177	SF-08	2	6:55	12	142	122.0	7.4%	96.3%	113.6	Pass
LT-178	SF-08	3	9:00	12	142	121.9	11.4%	92.7%	109.4	Pass

Summary Log:

Leachate Transmission Line

Client:

WCH

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

CENVIROTECH ENGINEERING & CONSULTING INC

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. Ibs/cuft	% Moist Content	Percent Proctor	Dry Den. Ibs/cuft	Pass / Fail
LT-179	SF-08	3	9:05	12	142	122.6	10.0%	94.5%	111.5	Pass
LT-180	SF-08	4	10:50	12	142	121.1	6.9%	96.0%	113.3	Pass
LT-181	SF-08	4	10:55	12	142	119.0	9.1%	92.4%	109.1	Pass
LT-182	SF-08	5	14:00	12	142	125.7	6.3%	100.2%	118.3	Pass
Backfill Leacha	te Transmis	sion Lir	ne MH-36	to MH-37	(95% Comp	action)				
LT-183	SF-08	5	14:05	6	142	131.2	6.9%	104.0%	122.7	Pass
Backfill Leacha	te Transmis	sion Lir	ne MH-36	to MH-37						
LT-184	SF-08	6	15:45	12	142	129.2	6.6%	102.7%	121.2	Pass
Backfill Leacha	te Transmis	sion Lir	ne MH-36	to MH-37	(95% Comp	action)				
LT-185	SF-08	6	15:50	6	142	127.7	5.7%	102.4%	120.8	Pass
LT-186	SF-05	7	8:15	6	144	128.2	8.0%	95.6%	118.7	Pass
Backfill Leacha	te Transmis	sion Lir	ne MH-36	to MH-37						
LT-187	SF-05	7	8:20	12	144	124.4	8.2%	92.6%	115.0	Pass
Backfill Leacha	te Transmis	sion Lin	e MH-36	to MH-37	(95% Comp	action)				
LT-188	SF-05	8	10:45	6	144	129.1	8.3%	96.0%	119.2	Pass
LT-189	SF-05	8	10:50	6	144	130.4	6.4%	98.7%	122.6	Pass
LT-190	SF-05	9	13:10	6	144	132.2	9.0%	97.7%	121.3	Pass
LT-191	SF-05	9	13:15	6	144	129.0	8.3%	95.9%	119.1	Pass
LT-192	SF-05	10	14:45	6	144	130.1	8.6%	96.5%	119.8	Pass
LT-193	SF-05	10	14:50	6	144	129.3	7.3%	97.0%	120.5	Pass
LT-194	SF-05	11	16:15	6	144	126.9	6.3%	96.1%	119.4	Pass
LT-195	SF-05	11	16:20	6	144	130.1	6.2%	98.6%	122.5	Pass
Backfill Leachat	e Transmis	sion Lin	e MH-36 t	o MH-37	(95% Compa	action)				
LT-196	SF-05	12	9:05	6	145	128.1	6.9%	96.5%	119.8	Pass
LT-197	SF-05	12	9:15	6	145	128.4	7.5%	96.2%	119.4	Pass
LT-198	SF-05	13	12:55	6	145	129.1	8.1%	96.2%	119.4	Pass
LT-199	SF-05	13	13:00	6	145	127.7	5.8%	97.2%	120.7	Pass
Backfill Leachat	e Transmiss	sion Lin	e MH-36 t	o MH-37 ((95% Compa	action)				
LT-200	SF-05	14	6:54	6	146	135.7	9.5%	99.8%	123.9	Pass
LT-201	SF-05	14	7:00	6	146	132.9	7.4%	99.6%	123.7	Pass

Summary Log:

Leachate Transmission Line

Client:

WCH

Note:

Unless otherwise noted, all testing was verified to 90% modified Proctor

ENVIROTECH ENGINEERING & CONSULTING, INC.

Test No	Proctor	Lift Num	Time	Test Depth	Report Number	Wet Den. Ibs/cuft	% Moist Content	Percent Proctor	Dry Den. lbs/cuft	Pass /
LT-202	SF-09	15	8:22	6	146	142.2	6.4%	96.2%	133.6	Pass
LT-203	SF-09	15	8:27	6	146	145.1	5.3%	99.2%	137.8	Pass
LT-204	SF-09	16	13:55	6	146	142.0	2.8%	99.4%	138.1	Pass
LT-205	SF-09	16	13:59	6	146	144.8	4.0%	100.2%	139.2	Pass

Summary Log:

Tank 4 Subgrade

Client:

WCH

Note:

All testing was verified to 90% modified Proctor

ENVIROTECH

Summary Log:

Tank 4 Subgrade

Client:

WCH

Note:

All testing was verified to 90% modified Proctor

Test No	Proctor	Lift Num	Time	Report Number	Wet Den. Ibs/cuft	Moist Content (%)	Percent Proctor	Dry Den. Ibs/cuft	Pass / Fail
T4-23	SF-08	SG	7:07	159	120.3	6.5%	95.7%	113.0	Pass
ank #4 Ringwa	all Backfill								
T4-24	SF-08	1	14:40	175	125.5	11.6%	95.3%	112.5	Pass
T4-25	SF-08	1	14:43	175	124.8	9.3%	96.8%	114.2	Pass
T4-26	SF-08	2	14:48	175	121.3	8.1%	95.1%	112.2	Pass
T4-27	SF-08	2	14:52	175	123.3	8.2%	96.6%	114.0	Pass
T4-28	SF-08	3	14:58	175	124.2	10.4%	95.3%	112.5	Pass
T4-29	SF-08	3	15:02	175	123.7	8.9%	96.3%	113.6	Pass
T4-30	SF-08	4	15:10	175	122.8	9.3%	95.2%	112.4	Pass
T4-31	SF-08	4	15:14	175	122.9	9.2%	95.4%	112.5	Pass

TANK 4 AND LEACHATE TRANSMISSION SYSTEM REPORT

CONSTRUCTION QUALITY ASSURANCE (CQA)

ENVIRONMENTAL RESTORATION DISPOSAL FACILITY (ERDF)

SUPER CELLS 9

SUBCONTRACT S013213A00

JANUARY 2011 (010032)

C.1

STRUCTURAL FILL PROCTORS

Client:

Washington Closure Hanford

Form: 05-18A Earthwork Data Sheet

2500 N. 13th Street | Enid, OK | 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skib	а		Sample ID:	SF-01	
Project:	S013213A00)		Sample Des:	Brown Sand	
Project Location	n: ERDF Cells	9-10		Sampling Date:	2/12/2010	
Tested By:	P. Davis	Date:	2/13/2010	Sampled By:	L. Hay	
Reviewed By:	J. Voss	Date:	2/15/2010	Date Received:	2/12/2010	

Natural Moisture Content

Natural	Moisture	N/A

Atterberg Limits Test Results (ASTM D-4318)

Flow Index	Non-Plastic	Spec
Liquid Limit	Non-Plastic	
Plastic Limit	Non-Plastic	
Plasticity Index	Non-Plastic	

Particle Size Anaylsis (ASTM D-422) 200 Wash Sieve Analysis (ASTM D-1140)

Sieve No	Sieve Opening	% Passing	Spec
3/4 "	19.000	100.0	
3/8 "	9.500	99.5	
No.4	4.750	99.1	
No. 10	2.000	98.5	
No. 40	0.425	89.2	
No. 50	0.300	84.5	
No. 100	0.150	57.5	
No. 200	0.075	22.6	
Pan	-	0.0	

Cu	N/A
Cc	N/A

Unified Soil Classification (ASTM D-2487)

SM: Silty Sand

Deviations from ASTM: None

Grain Size Analysis

Particle Size Anaylais (ASTM D-

422)

Envirotech

4/30/10

Date

Client: Washington Closure Hanford

Washington Closure Hanford 05-18A Earthwork Data Sheet

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Estx (580) 237-4302

Sample Information

Form:

Contact Name.	Charlie Skiba			Sample ID.	SF-02	
Project:	S013213A00			Sample Des:	Brown/Black Sand	
Project Location	: ERDF Cells 9	-10		Sampling Date:	2/12/2010	
Tested By:	P. Davis	Date:	2/13/2010	Sampled By:	L. Hay	
Reviewed By:	J. Voss	Date:	2/15/2010	Date Received:	2/12/2010	

Natural Moisture Content

Natural	Moisture	N/A

Atterberg Limits Test Results (ASTM D-4318)

Flow Index	Non-Plastic	Spec
Liquid Limit	Non-Plastic	
Plastic Limit	Non-Plastic	
Plasticity Index	Non-Plastic	

Particle Size Analysis (ASTM D-422) 200 Wash Sieve Analysis (ASTM D-1140)

Sieve No	Sieve Opening	% Passing	Spec
1"	25.000	100.0	
3/4 "	19.000	99.6	
3/8 "	9.500	99.1	
No.4	4.750	98.7	
No. 10	2.000	96.2	
No. 40	0.425	61 6	
No. 50	0.300	56.1	
No. 100	0.150	36 1	
No. 200	0.075	12.4	

Си	5.80
Cc	0.66

Unified Soil Classification (ASTM D-2487)

SP-SM: Pooly-Graded Sand with Silt

Deviations from ASTM: None

Grain Size Analysis

Particle Size Analysis (ASTM D-422)

THE PLUE SHOWING

Envirotech

4/30/10

Date

Client: Address:

Washington Closure Hanford 05-18A Earthwork Data Sheet

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 1 Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba			Sample ID:	SF-03	
Project:	S013213A00			Sample Des:	Black Sand w/ Gravel	
Project Location	: ERDF Cells 9	-10		Sampling Date:	2/24/2010	
Tested By:	L. Hay	Date:	3/8/2010	Sampled By:	L. Hay	
Reviewed By:	T. Williams	Date:	3/8/2010	Date Received:	2/24/2010	

Natural Moisture Content

Natural Moisture	8.2

Atterberg Limits Test Results (ASTM D-4318)

Flow Index	N/A	Spec
Liquid Limit	Non-Plastic	
Plastic Limit	Non-Plastic	
Plasticity Index	Non-Plastic	

Particle Size Anaylsis (ASTM D-422) 200 Wash Sieve Analysis (ASTM D-1140)

Sieve No	Sieve Opening	% Passing	Spec
1 "	25.000	100.0	
3/4 "	19.000	99.0	
3/8 "	9.500	96.4	
No.4	4.750 93.3		
No. 10	2.000	88.3	
No. 40	0.425	39.7	
No. 100	0.150	18.4	
No. 200	0.075 9.8		
Pan	- du	0	

Cu	11.17
Cc	1.27

Unified Soil Classification (ASTM D-2487) SW-SM: Well Graded Sand with Silt

Deviations from ASTM: None

5-4-1C Date

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Sheet

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba			Sample ID:	SF-04	
Project:	S013213A00			Sample Des:	Brown/Black Sand	
Project Location	: ERDF Cells 9	-10		Sampling Date:	3/1/2010	
Tested By:	L. Hay	Date:	3/8/2010	Sampled By:	L. Hay	
Reviewed By:	T. Williams	Date:	3/9/2010	Date Received:	3/1/2010	

Natural Moisture Content

Natural Moisture	8.2

Atterberg Limits Test Results (ASTM D-4318)

Flow Index	Non-Plastic	Spec
Liquid Limit	Non-Plastic	
Plastic Limit	Non-Plastic	
Plasticity Index	Non-Plastic	

Particle Size Anaylsis (ASTM D-422) 200 Wash Sieve Analysis (ASTM D-1140)

Sieve No	Sieve Opening	% Passing	Spec	
1 "	25.000 100.0			
3/4 "	19.000	100.0		
3/8 "	9,500	99.5		
No.4	4.750	98.8		
No. 10	2.000	96.2		
No. 40	0.425	56.0		
No. 100	0.150	22.6		
No. 200	0.075	9.6		
Pan	-	0		

Cu	7.25
Сс	0.95

Unified Soil Classification (ASTM D-2487) SW-SM: Well Graded Sand with Silt

Deviations from ASTM: None

Envirotech

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Shee!

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 1 Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba			Sample ID:	SF-05	
Project:	S013213A00			Sample Des:	Black Sand	
Project Location	n: ERDF Cells 9	-10		Sampling Date:	3/3/2010	
Tested By:	L. Hay	Date:	3/8/2010	Sampled By:	L. Hay	
Reviewed By:	T. Williams	Date:	3/9/2010	Date Received:	3/3/2010	

Natural Moisture Content

Natural	Moistur	e	4.7

Atterberg Limits Test Results (ASTM D-4318)

Flow Index	Non-Plastic	Spec
Liquid Limit	Non-Plastic	
Plastic Limit	Non-Plastic	
Plasticity Index	Non-Plastic	

Particle Size Anaylsis (ASTM D-422) 200 Wash Sieve Analysis (ASTM D-1140)

Sieve No	Sieve Opening	% Passing	Spec	
1 "	25.000	97.6		
3/4 "	19.000	97.4		
3/8 "	9.500	96 7		
No.4	4.750 93.2			
No. 10	2.000	87.5		
No. 40	0.425	33.6		
No. 100	0.150	19.0		
No. 200	0.075	9.8		
Pan	-	0		

Cu	7.25
Cc	0.95

Unified Soil Classification (ASTM D-2487)

SW-SM: Well Graded Sand with Silt

Deviations from ASTM: None

Envirotech

5-4-10 Date

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Shee!

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba			Sample ID:	SF-06	
Project:	S013213A00		obsession of the second of the	Sample Des:	Brown/Black Sand	
Project Location	n: ERDF Cells 9	-10		Sampling Date:	3/9/2010	
Tested By:	L. Hay	Date:	3/10/2010	Sampled By:	L. Hay	
Reviewed By:	T. Williams	Date:	3/11/2010	Date Received:	3/9/2010	

Natural Moisture Content

I	Natural	Moisture	5.7

Atterberg Limits Test Results (ASTM D-4318)

Flow Index	Non-Plastic	Spec
Liquid Limit	Non-Plastic	
Plastic Limit	Non-Plastic	
Plasticity Index	Non-Plastic	

Particle Size Anaylsis (ASTM D-422) 200 Wash Sieve Analysis (ASTM D-1140)

Sieve No	Sieve Opening	% Passing	Spec
1 "	25.000	100 0	
3/4 "	19.000	100.0	
3/8 "	9.500	99.0	
No.4	4.750	97.2	
No. 10	2.000	93.4	
No. 40	0.425	27.3	
No. 100	0.150	11 3	
No. 200	0.075	7.3	
Pan	~	0.0	

Cu	7.18
Cc	1.99

Unified Soil Classification (ASTM D-2487) SW: Well Graded Sand

Deviations from ASTM: None

5-4-10 Date

Client: Address: Washington Closure Hanford

05-18A Earthwork Data Sheet

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba			Sample ID:	SF-07	
Project:	S013213A00			Sample Des:	Brown Sand	
Project Location	n: ERDF Cells 9	-10		Sampling Date:	3/17/2010	
Tested By:	L. Hay	Date:	3/18/2010	Sampled By:	L. Hay	
Reviewed By:	T. Williams	Date:	3/19/2010	Date Received:	3/17/2010	

Natural Moisture Content

Natural Moisture	6.0%

Atterberg Limits Test Results (ASTM D-4318)

Flow Index	Non-Plastic	Spec
Liquid Limit	Non-Plastic	
Plastic Limit	Non-Plastic	
Plasticity Index	Non-Plastic	

Particle Size Anaylsis (ASTM D-422) 200 Wash Sieve Analysis (ASTM D-1140)

Sieve No	Sieve Opening	% Passing	Spec
1 "	25.000	100.0	
3/4 "	19.000	100.0	
3/8 "	9.500	10000.0	
No.4	4.750	99.9	
No. 10	2.000	98 1	
No. 40	0.425	50.2	
No. 100	0.150	19.1	
No. 200	0.075	10.4	
Pan	**	0.0	

Cu	10.71
Cc	1 19

Unified Soil Classification (ASTM D-2487) SW: Well Graded Sand

Deviations from ASTM: None

Page 1 of 1

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Sheet

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 1 Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skib	а		Sample ID:	SF-08
Project:	S013213A0)		Sample Des:	Brown Sand:MH-37 to MH-38 Fill
Project Location: ERDF Cells 9-10				Sampling Date:	6/22/2010
Tested By:	L. Hay	Date:	6/23/2010	Sampled By:	L. Hay
Reviewed By:	J. Voss	Date:	6/24/2010	Date Received:	6/22/2010

Natural Moisture Content

Natural	Moisture	7.6%	

Atterberg Limits Test Results (ASTM D-4318)

Flow Index	Non-Plastic	Spec
Liquid Limit	Non-Plastic	
Plastic Limit	Non-Plastic	
Plasticity Index	Non-Plastic	

Particle Size Analysis (ASTM D-422) 200 Wash Sieve Analysis (ASTM D-1140)

Sieve No	Sieve Opening	% Passing	Spec
1 1	25.000	100.0	
3/4 "	19.000	100.0	
3/8 "	9.500	99.0	
No.4	4.750	99.6	
No. 10	2.000	98.1	
No. 40	0.425	60 4	
No. 100	0.150	20.7	
No. 200	0.075	1.8	
Pan	10	0.1	

Cu	3.93
Сс	1.01

Unified Soil Classification (ASTM D-2487) SP: Pooly Graded Sand

Deviations from ASTM: None

Grain Size Analysis

arocke Size (mail)

Particle Size Anayleis (ASTM D-422)

Envirotech

6/24/10

Date

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Sheet

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skit	ра		Sample ID:	SF-09
Project:	S013213A0	0		Sample Des:	Round Rock Base Course
Project Location	: ERDF Cells	9-10		Sampling Date:	7/16/2010
Tested By:	QISI	Date:	7/30/2010	Sampled By:	L. Hay
Reviewed By:	J. Voss	Date:	8/2/2010	Date Received:	7/16/2010

Natural Moisture Content

Natural Moisture	N/A	

Atterberg Limits Test Results (ASTM D-4318)

Flow Index	Non-Plastic	Spec
Liquid Limit	Non-Plastic	
Plastic Limit	Non-Plastic	
Plasticity Index	Non-Plastic	

Particle Size Analysis (ASTM D-422) 200 Wash Sieve Analysis (ASTM D-1140)

Sieve No	Sieve Opening	% Passing	Spec
1 1/2 "	37.500	100.0	
1 "	25.000	94.3	
3/4 "	19.000	712	
1/2 "	12.500	45.6	
No.4	4.750	25.1	
No. 10	2.000	16 1	
No. 40	0 425	8.1	
No. 200	0.075	3.1	

Unified Soil Classification (ASTM D-2487) GP: Pooly Graded Gravel

Deviations from ASTM: None

Grain Size Analysis

Particle Size Anaylsis (ASTM D-422)

Envirotech

8/2/10

Date

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Sheet

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skib	а		Sample ID:	SF-10	
Project:	S013213A0	0		Sample Des:	Top Course	
Project Location	n: ERDF Cells	9-10		Sampling Date:	7/16/2010	
Tested By:	QISI	Date:	7/30/2010	Sampled By:	L. Hay	
Reviewed By:	J. Voss	Date:	8/2/2010	Date Received:	7/16/2010	

Natural Moisture Content

Natural Moisture N	Α

Atterberg Limits Test Results (ASTM D-4318)

Flow Index	Non-Plastic	Spec
Liquid Limit	Non-Plastic	
Plastic Limit	Non-Plastic	
Plasticity Index	Non-Plastic	

Particle Size Anaylsis (ASTM D-422) 200 Wash Sieve Analysis (ASTM D-1140)

Sieve No	Sieve Opening	% Passing	Spec
1 1/2 "	37.500	100.0	
1"	25.000	100.0	
3/4 "	19.000	100.0	
1/2 "	12.500 92.2		
3/8 "	9.500	80.0	
No.4	4.750	30.3	
No. 10	2.000	27.5	
No. 40	0.425	25 11.8	
No. 200	0.075	5.1	

Сп	22.93
Сс	7.90

Unified Soil Classification (ASTM D-2487) **GP: Pooly Graded Gravel**

Deviations from ASTM None

Grain Size Analysis

Particle Size Anaylais (ASTM 0-422)

Envirotech 8/10/10

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Sheet

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 1 Fax (580) 237-4302

Sample Information

Contact Name:	Chartie Skil	oa		Sample ID:	SF-11	
Project:	S013213A0	0		Sample Des:	Riser Trench Backfill	
Project Location	n: ERDF Cells	9-10		Sampling Date:	7/23/2010	
Tested By:	L. Hay	Date	7/26/2010	Sampled By:	L. Hay	
Reviewed By:	J. Voss	Date:	7/26/2010	Date Received:	7/23/2010	

Natural Moisture Content

Natural Moisture	11.1%

Atterberg Limits Test Results (ASTM D-4318)

Flow Index	Non-Plastic	Spec
Liquid Limit	Non-Plastic	
Plastic Limit	Non-Plastic	
Plasticity Index	Non-Plastic	

Particle Size Analysis (ASTM D-422) 200 Wash Sieve Analysis (ASTM D-1140)

Sieve No	Sieve Opening	% Passing	Spec
1 11	25.000	100.0	
3/4 "	19.000	100.0	
3/8 "	9.500	98.8	
No.4	4.750	98.3	
No. 10	2.000	97.0	
No. 40	0.425	51.0	
No. 100	0.150	11.2	
No. 200	0.075	16	
Pan	-	0.0	

Cu	5.23
Сс	0 76

Unified Soil Classification (ASTM D-2487)

SP: Pooly Graded Sand

Deviations from ASTM: None

8/2/10

Date

TANK 4 AND LEACHATE TRANSMISSION SYSTEM REPORT

CONSTRUCTION QUALITY ASSURANCE (CQA)

ENVIRONMENTAL RESTORATION DISPOSAL FACILITY (ERDF)

SUPER CELLS 9

SUBCONTRACT S013213A00

JANUARY 2011 (010032)

C.2

STRUCTURAL FILL SOIL CLASSIFICATIONS

Client

Washington Closure Hanford

Form:

05-18A Earthwork Data Sheets

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba			Sample ID:	SF-01
Project:	S013213A00			Sample Des:	Base Soil
Project Location:	ERDF Cells	ERDF Cells 9-10		Sampling Date	e: 2/12/2010
Tested By:	P. Davis	Date:	2/13/2010	Sampled By:	L. Hay
Reviewed By:	J. Voss	Date:	2/15/2010	Date Received	d: 2/12/2010
Comments:				Report No.	05-016-004

DENSITY DATA (lbs)

Mold + Wet Soil	13.30	13.38	13.50	13.39	
Mold Wt.	9.27	9.27	9.27	9.27	
Wet Soil	4.03	4.11	4.22	4.12	
tbs/cu ft. (wet)	120.9	123.2	126.7	123.6	
ibs/cu. ft. (dry)	109.5	110.9	113.0	108.1	

MOISTURE DATA (grams)

Tin No.	1	2	3	4	
Wet Soil + Tin	711.00	725.50	706.50	706.10	
Dry Soil + Tin	643.70	652.70	630.00	617.60	
Tin Wt.	0.00	0.00	0.00	0.00	
Dry Soil	643.70	652.70	630.00	617.60	
% Moisture	10.5%	11.2%	12.1%	14.3%	
% Saturation	52.4%	57.9%	66.8%	69.2%	

MAXIMUM DRY DENSITY (PCF) 113.6

OPTIMUM MOISTURE CONTENT (%) 12.4%

Client:

Washington Closure Hanford

Form:

05-18A Earthwork Data Sheets

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name.	Charlie Skiba			Sample ID:	SF-02
Project:	S013213A00		roject: S013213A00	Sample Des:	Brown/Black
Project Location:	ERDF Cells 9-10			Sampling Date	2/12/2010
Tested By:	P. Davis	Date:	2/13/2010	Sampled By:	L. Hay
Reviewed By:	J. Voss	Date:	2/15/2010	Date Received	2/12/2010
Comments:				Report No.	05-016-004

DENSITY DATA (lbs)

Mold + Wet Soil	13.45	13.62	13.84	13.77	
Mold Wt.	9.27	9.27	9.27	9.27	
Wet Soil	4.18	4.35	4.56	4.50	
lbs/cu. ft. (wet)	125.3	130.4	136.9	135.0	
lbs/cu ft. (dry)	119.2	121.6	124.2	120.5	

MOISTURE DATA (grams)

Envirotech

Tin No.	1	2	3	4	
Wet Soil + Tin	722.20	720.50	637.20	743.50	
Dry Soil + Tin	687.00	672.00	578.10	663.40	
Tin Wt.	0.00	0.00	0.00	0.00	
Dry Soil	687.00	672.00	578.10	663.40	
% Moisture	5.1%	7.2%	10.2%	12.1%	
% Saturation	33.5%	50.6%	77.4%	81.8%	

MAXIMUM DRY DENSITY (PCF)

OPTIMUM MOISTURE CONTENT (%)

Date

Page 1 of 1

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Sheets

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Si	kiba	2	Sample ID:	SF-03
Project:	S013213/	A00		Sample Des:	Black Sand with Gravel
Project Location:	ERDF Cells 9-10			Sampling Date	2/24/2010
Tested By:	LH	Date:	3/1/2010	Sampled By:	L. Hay
Reviewed By.	TW	Date:	3/1/2010	Date Received	2/24/2010
Comments	Method C	- (ASTM D4718)		Report No.	1/11/1900

DENSITY DATA (lbs)

Mold + Wet Soil	12.95	13.08	13.27	13.22	
Mold Wt.	8.72	8.72	8.72	8.72	
Wet Soil	4.23	4 36	4.55	4.50	
lbs/cu ft. (wet)	126.9	130.8	136.5	135.0	
bs/cu. ft. (dry)	115.5	116.9	119.2	116.2	

MOISTURE DATA (grams)

Envirotech

Tin No.	E3	E2	E5	E1	
Wet Soil + Tin	913.20	976.10	1122.60	1032.10	
Dry Soil + Tin	853.10	898.40	1011.50	922.70	
Tin Wt.	246.30	246.80	246.60	245.30	
Dry Soil	606.80	651.60	764.90	677.40	
% Moisture	9.9%	11.9%	14.5%	16.1%	
% Saturation	56.9%	71.1%	92.4%	94.7%	

MAXIMUM DRY DENSITY (PCF) OPTIMUM MOISTURE CONTENT (%) 119.3 14.5% 120.6 14.0% Corrected ZAV. Gs = 2.73 130.00 125.00 Pusity Density Density 120.00 115.00 110.00 10% 11% 12% 13% 14% 15% 16% 17% 18% 19% Moisture Content (%) 5-4-10

Date

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Sheets

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name.	Charlie Sk	iba		Sample ID.	SF-04
Project:	S013213A	00		Sample Des:	Brown/Black Sand
Project Location:	ERDF Cell	s 9-10		Sampling Date	te: 3/1/2010
Tested By:	LH	Date:	3/4/2010	Sampled By:	LH
Reviewed By:	TW	Date:	3/4/2010	Date Receive	d: 3/1/2010
Comments				Report No.	05-016-017

DENSITY DATA (lbs)

Mold + Wet Soil	12.91	13.05	13.18	13.24	13.29
Mold Wt.	8.72	8.72	8.72	8.72	8.72
Wet Soil	4,19	4.33	4.46	4.52	4.57
lbs/cu. ft. (wet)	125.6	129.8	133.8	135.5	137.1
lbs/cu. ft. (dry)	116.7	118.4	120.5	120.3	118.4

MOISTURE DATA (grams)

Envirotech

Tin No.	XIII	E-1	V-1	E-2	E-5
Wet Soil + Tin	1025.10	1110.90	930.30	959.10	960.30
Dry Soil + Tin	965.10	1035.40	855.30	879.30	863.20
Tin Wt.	181.50	247.30	174.00	246.90	246.60
Dry Soil	783.60	788 10	681.30	632.40	616.60
% Moisture	7.7%	9.6%	11.0%	12.6%	15.7%
% Saturation	45.5%	59.7%	72.7%	82.9%	98.1%

MAXIMUM DRY DENSITY (PCF) 120.5

OPTIMUM MOISTURE CONTENT (%) 12.8%

Page 1 of 1

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Sheets

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name.	Charlie S	Charlie Skiba		Sample ID:	SF-05
Project:	S013213/	A00		Sample Des:	Black Sand
Project Location.	ERDF Ce	lis 9-10		Sampling Date	3/3/2010
Tested By:	LH	Date:	3/8/2010	Sampled By:	LH
Reviewed By:	TW	Date:	3/10/2010	Date Received	3/3/2010
Comments	Gs Estima	ated based on Sa	aturation	Report No.	05-016-021

DENSITY DATA (lbs)

Mold + Wet Soil	13.12	13.24	13.35	13.41	13.39
Mold Wt.	8.72	8.72	8.72	8.72	8.72
Wet Soil	4,40	4.51	4.63	4.68	4.66
lbs/cu. ft. (wet)	132.0	135.4	138.9	140.5	139.9
lbs/cu. ft. (dry)	121.8	123.0	124.3	123.9	121.7

MOISTURE DATA (grams)

Tin No.	A	k	A11	BBB	ddd
Wet Soil + Tin	539.30	575.20	614.90	574.10	609.30
Dry Soil + Tin	501.80	527.10	555.50	512.17	536.80
Tin Wt.	50.40	50.20	49.80	50.10	50.10
Dry Soil	451.40	476 90	505.70	462.07	486.70
% Moisture	8.3%	10.1%	11.7%	13.4%	14.9%
% Saturation	55.5%	69.6%	84.0%	94.7%	99.1%

MAXIMUM DRY DENSITY (PCF)

OPTIMUM MOISTURE CONTENT (%) 12.5%

Envirotech Communication

S-4-10

Page 1 of 1

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Sheets

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba	1		Sample ID:	SF-06
Project:	S013213A00			Sample Des:	Brown/Black Sand
Project Location:	ERDF Cells 9	RDF Cells 9-10		Sampling Date	3/9/2010
Tested By:	L. Hay	Date:	3/11/2010	Sampled By:	L. Hay
Reviewed By:	T. Williams	Date:	3/11/2010	Date Received	3/9/2010
Comments:				Report No.	05-016-022

DENSITY DATA (lbs)

Mold + Wet Soil	13.08	13.20	13.31	13.31	13.31
Mold Wt.	8.72	8.72	8.72	8.72	8.72
Wet Soil	4.35	4.48	4.59	4.59	4.59
lbs/cu ft. (wet)	130.6	134.3	137 6	137.7	137.6
lbs/cu ft. (dry)	117.9	119.3	120.8	119.0	118.1

MOISTURE DATA (grams)

Tin No.	K	A9	A12	A8	A7
Wet Soil + Tin	540.00	577.40	632.00	622.30	588.80
Dry Soil + Tin	492.20	518.10	560.70	544.60	512.40
Tin Wt.	50.20	48.50	50.00	50.00	49.60
Dry Soil	442.00	469.60	510.70	494.60	462.80
% Moisture	10.8%	12.6%	14.0%	15.7%	16.5%
% Saturation	58.6%	70.8%	81.2%	87.4%	89.9%

MAXIMUM DRY DENSITY (PCF) 120.8

OPTIMUM MOISTURE CONTENT (%) 14.3%

Envirotech

5-4-10 Date

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Sheets

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba			Sample ID:	SF-07
Project:	S013213A00			Sample Des:	Brown Sand
Project Location:	ERDF Cells 9	-10		Sampling Date	3/17/2010
Tested By:	L. Hay	Date:	3/18/2009	Sampled By:	L. Hay
Reviewed By:	T. Williams	Date:	3/19/2010	Date Received	3/9/2010
Comments:	Proctor for us	e on Subgrade	of test pad	Report No.	05-016-027

DENSITY DATA (lbs)

Mold + Wet Soil	12.92	13.03	13.13	13.19	13.24
Mold Wt.	8.72	8.72	8.72	8.72	8.72
Wet Soil	4.20	4.31	4.41	4.47	4.52
lbs/cu. ft. (wet)	126.1	129.3	132.4	134.2	135.7
lbs/cu. ft. (dry)	116.2	117.2	1173	116.3	115.7

MOISTURE DATA (grams)

Tin No.	VI	В	LH	Bx	IIIX
Wet Soil + Tin	656.80	712.10	575.90	750.20	727.20
Dry Soil + Tin	609.30	649.80	516.10	656.70	627.40
Tin Wt.	50.20	48.50	50.00	50.00	49.60
Dry Soil	559.10	601.30	466.10	606.70	577.80
% Moisture	8.5%	10.4%	12.8%	15.4%	17.3%
% Saturation	44.2%	55.2%	68.6%	80.3%	88.8%

MAXIMUM DRY DENSITY (PCF) 117.3

OPTIMUM MOISTURE CONTENT (%) 11.5%

Moisture Content (%)

Enviroteen

5-4-10 Date

Page 1 of 1

Client:

Washington Closure Hanford

Address: 05-

05-18A Earthwork Data Sheets

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba	Charlie Skiba		Sample ID:	SF-08
Project:	S013213A00	013213A00		Sample Des:	Brown Sand
Project Location:	ERDF Cells 9-			Sampling Date	6/22/2010
Tested By:	L. Hay	Date.	6/23/2010	Sampled By:	L. Hay
Reviewed By:	J. Voss	Date:	6/24/2010	Date Received	6/22/2010
Comments:	Proctor for use	on Subgrade of	f test pad	Report No.	05-016-095

DENSITY DATA (lbs)

Mold + Wet Soil	12.91	13.00	13.09	13.07	13.03
Mold Wt.	8.72	8.72	8.72	8.72	8.72
Wet Soil	4.19	4 28	4.37	4.35	4.31
lbs/cu_ft. (wet)	125.6	128.5	131.2	130.4	129.4
fbs/cu. ft. (dry)	116.8	117.3	117.8	115.4	111.5

MOISTURE DATA (grams)

Tin No.	MO	M7	M8	M9	M6
Wet Soil + Tin	634.70	636.70	505.20	623.80	653.80
Dry Soil + Tin	593.50	585.40	458.70	557.90	570.10
Tin Wt.	50.00	50.00	50.10	49.80	49.60
Dry Soil	543.50	535.40	408.60	508.10	520.50
% Moisture	7.6%	9.6%	11.4%	13.0%	16.1%
% Saturation	46.2%	59.3%	71.4%	76.2%	85.0%

MAXIMUM DRY DENSITY (PCF)

OPTIMUM MOISTURE CONTENT (%) 11.3%

130.00
125.00
120.00
110.00
5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 16% 17% 18%

Moisture Content (%)

Envirotech Elva

6/24/10 Date

Page 1 of 1

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Sheets

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba			Sample ID:	SF-09
Project:	S013213A00			Sample Des:	Base Course
Project Location.	ERDF Cell 9-1			Sampling Date	7/16/2010
Tested By:	QISI	Date:	7/30/2010	Sampled By:	L. Hay
Reviewed By:	J. Voss	Date:	8/2/2010	Date Received	7/16/2010
Comments:	Method C - (ASTM D4718)			Report No.	5-16-123

DENSITY DATA (lbs)

Mold + Wet Soil	23.91	24.50	24.21	23.85	
Mold Wt.	14.42	14.42	14.42	14.42	
Wet Soil	9.49	10.08	9.79	9.43	
bs/cu. ft. (wet)	126 5	134.4	130 5	125.7	
bs/cu. ft. (dry)	120.0	129.8	127.2	117.2	

MOISTURE DATA (grams)

Tin No.					
Wet Soil + Tin	3477.90	4276.10	4557.40	3395.20	
Dry Soil + Tin	3299.20	4128.40	4440.60	3164.40	
Tin Wt.	0.00	0.00	0.00	0.00	
Dry Soil	3299.20	4128.40	4440.60	3164.40	
% Moisture	5.4%	3.6%	2.6%	7.3%	
% Saturation	36.2%	32.4%	21.9%	45.0%	

Page 1 of 1

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Sheets

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 1 Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba			Sample ID.	SF-10
Project:	S013213A0	00		Sample Des:	Top Course
Project Location:	ERDF Cell	RDF Cell 9-10		Sampling Date	7/16/2010
Tested By:	QISI	Date:	7/30/2010	Sampled By:	L. Hay
Reviewed By:	J. Voss	Date:	8/2/2010	Date Received	7/16/2010
Comments				Report No.	5-16-123

DENSITY DATA (lbs)

Mold + Wet Soil	13.41	13.63	13.94	13.79	
Mold Wt.	9.27	9.27	9.27	9.27	
Wet Soil	4.14	4 36	4.67	4.52	
bs/cu. ft. (wet)	124.2	130.8	140.1	135.6	
bs/cu. ft. (dry)	120.2	124.6	131.0	126.1	

MOISTURE DATA (grams)

Tin No.					
Wet Soil + Tin	1933.40	1976.00	2026.30	2026.40	
Dry Soil + Tin	1870.60	1881.70	1894.20	1884.90	
Tin Wt.	0.00	0.00	0.00	0.00	
Dry Soil	1870.60	1881.70	1894.20	1884.90	
% Moisture	3.4%	5.0%	7.0%	7 5%	
% Saturation	22.5%	38.4%	65.7%	60.4%	

Page 1 of 1

Client:

Washington Closure Hanford

Address:

05-18A Earthwork Data Sheets

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name.	Charlie Ski	ba		Sample ID:	SF-11
Project:	S013213A0	00		Sample Des:	Riser Trench Fill
	oject Location: ERDF Cells 9-10			Sampling Date	7/22/2010
Tested By:	Ryan S.	Date:	7/26/2010	Sampled By:	L. Hay
Reviewed By:	J. Voss	Date:	7/26/2010	Date Received	7/22/2010
Comments:	Proctor for	riser trenches		Report No.	5-16-119

DENSITY DATA (lbs)

Mold + Wet Soil	5758.90	5794.40	5849.40	5886.10	5904.80
Mold Wt.	3954.80	3954.80	3954.80	3954.80	3954.80
Wet Soil	3.98	4.06	4.18	4.26	4.30
lbs/cu. ft. (wet)	119.3	121.7	125.3	127.7	129.0
lbs/cu. ft. (dry)	112.7	112.8	114.0	114.2	113.5

MOISTURE DATA (grams)

Tin No.	E1	Bx	LH	E4	XIII
Wet Soil + Tin	2047.20	1990.60	2023.10	2061.20	2124.00
Dry Soil + Tin	1947,80	1858.90	1857.00	1861.60	1891.50
Tin Wt.	245.30	174.10	175.30	174.40	181.00
Dry Soil	1702.50	1684.80	1681.70	1687.20	1710.50
% Moisture	5.8%	7.8%	9.9%	11.8%	13.6%
% Saturation	31.9%	42.8%	55.9%	67.2%	75.8%

MAXIMUM DRY DENSITY (PCF) 114.5

OPTIMUM MOISTURE CONTENT (%) 11.0%

Page 1 of 1

TANK 4 AND LEACHATE TRANSMISSION SYSTEM REPORT

CONSTRUCTION QUALITY ASSURANCE (CQA)

ENVIRONMENTAL RESTORATION DISPOSAL FACILITY (ERDF)

SUPER CELLS 9

SUBCONTRACT S013213A00

JANUARY 2011 (010032)

C.3

FIELD DENSITY TESTING

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701 '580) 234-8780 | Fax (580) 237-4302

Soil Information

Revised 3/25/2010

3/18/2010

2208

Project:

ERDF Cells 9-10 Expansion

Project ID:

S013213A00

Report No.

05-016-027 Date

Subgrade for Manholes 21 and 39

Description: Troxler ID:

27881

Maist Std: Moist offset: 645 Density Std:

Density offset:

Allowable Moisture Range: Necessary % Proctor:

N/A

95%

Proctor:

SF-01

Max Dry Density (pcf):

113.6 12.4%

Optimum Moisture (%): SF-05

Max Dry Density (pcf):

124.4

Optimum Moisture (%):

12.5%

Max Dry Density (pcf):

Optimum Moisture (%):

Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Mant	nole # 21									
Manhole #21 Subgrade	SF-01	Sub	9:00	LH	12	119.7	7.3%	98.2%	111.6	PASS
Manhole #21 Subgrade	SF-01	Sub	9:05	LH	12	121.2	8.7%	98.2%	111.5	PASS
Mant	nole # 39)								
Manhole #39 Subgrade	SF-05	Sub	9:10	LH	12	130.5	7.0%	98.0%	122.0	PASS
Manhole #39 Subgrade	SF-05	Sub	9:15	LH	12	128.7	6.0%	97.6%	121.4	PASS
Sand Cone	Verificati	on Te	st							
Pipe Laydown Yard	SF-01	N/A	13:30	LH	6	116.9	9.1%	94.3%	107.1	N/A
	Manhole #21 Subgrade Manhole #21 Subgrade Manhole #39 Subgrade Manhole #39 Subgrade Sand Cone	Manhole # 21 Manhole #21 Subgrade SF-01 Manhole #21 Subgrade SF-01 Manhole #39 Subgrade SF-05 Manhole #39 Subgrade SF-05 Sand Cone Verificati	Manhole # 21 Manhole #21 Subgrade SF-01 Sub Manhole #21 Subgrade SF-01 Sub Manhole #39 Manhole #39 Subgrade SF-05 Sub Manhole #39 Subgrade SF-05 Sub Sand Cone Verification Te	Manhole # 21 Manhole #21 Subgrade SF-01 Sub 9:00 Manhole #21 Subgrade SF-01 Sub 9:05 Manhole # 39 Manhole # 39 Subgrade SF-05 Sub 9:10 Manhole #39 Subgrade SF-05 Sub 9:15 Sand Cone Verification Test	Manhole # 21 Manhole #21 Subgrade SF-01 Sub 9:00 LH Manhole #21 Subgrade SF-01 Sub 9:05 LH Manhole # 39 Manhole #39 Subgrade SF-05 Sub 9:10 LH Manhole #39 Subgrade SF-05 Sub 9:15 LH Sand Cone Verification Test	Manhole # 21 Manhole #21 Subgrade SF-01 Sub 9:00 LH 12 Manhole #21 Subgrade SF-01 Sub 9:05 LH 12 Manhole #39 Subgrade SF-05 Sub 9:10 LH 12 Manhole #39 Subgrade SF-05 Sub 9:15 LH 12 Sand Cone Verification Test	Location Pr. Lift Time Oper (in.) Depth (in.) Density (pcf) Manhole # 21 Manhole #21 Subgrade SF-01 Sub 9:00 LH 12 119.7 Manhole #21 Subgrade SF-01 Sub 9:05 LH 12 121.2 Manhole #39 Subgrade SF-05 Sub 9:10 LH 12 130.5 Manhole #39 Subgrade SF-05 Sub 9:15 LH 12 128.7 Sand Cone Verification Test	Location	Location	Location

Envirotech Engineering & Consulting. Inc

5/5/10

BY SAND CONE (ASTM 1556)

Client:

WCH

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK | 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name: Charlie Skiba			Sample ID:	SCV-04	
Project:	S013213A00			Sample Description:	Light Brown sand w/ silt
Project Location: ERDF Cells 9-10			Sampling Date:	3/18/2010	
Tested By:	L. Hay	Date:	3/18/2010	Sampled By:	L. Hay
Reviewed By:	T. Williams Tu	Date:	3/19/2010	Date Received:	3/18/2010
Comments				Report No.:	05-016-027

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3956.50 g
Mass of Proctor mold + sand, W₂	5399.30 g
3. Volume of mold, V ₁	0.03 ft
4. Dry unit weight, $Y_{d (sand)} = \frac{W_2 - W_1}{V_1}$	95 43 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	4599.20 g
6.	Mass of bottle + cone + sand (after use), W ₄	2944 90 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.65 lb

8. Mass of bottle + cone + sand (before use), W ₆	6440.4 g
9. Mass of bottle + cone + sand (after use), W ₈	2317.6 g
10. Volume of hole, $V_2 = W_8 - W_8 - W_c$ $ y d (sand) $	0.0570 ft ³
11. Mass of gallon can, W₅	0.00 g
12. Mass of gallon can + moist soil, W ₇	3009.40 g
13. Mass of gallon can + dry soil, W _g	2744.00 g
14. Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	116.34 lb/ft ³
15. Moisture content in the field, w (%) = $\frac{W_7 - W_9}{W_9 - W_5}$ X 100	9.7%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	106.08 lb/ft ³
17. Comparision moisture content =	9.1%
18. Dry unit weight comparison =	116.9 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

Project ID:

Report No

Description: Troxler ID:

Moist Std:

Moist offset:

Allowable Moisture Range:

Necessary % Proctor:

ERDF Cells 9-10 Expansion

S013213A00

3/24/2010 05-016-031 Date Brown/Black Sand

27881

648 Density Std:

N/A

Density offset: -

2190

90%

Proctor:

SF-05

Max Dry Density (pcf):

124.4 Optimum Moisture (%): 12.5%

Proctor:

SF-06

Max Dry Density (pcf):

120.8 Optimum Moisture (%): 14.3%

Proctor:

Max Dry Density (pcf):

Optimum Moisture (%):

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
	Ma	nhole #21									
MH21-03	West Side MH21	SF-06	1	13:00	LH	12	118.5	7.6%	91.2%	110.1	PASS
MH21-04	North Side MH21	SF-06	2	13:10	LH	12	120.7	9.0%	91.7%	110.7	PASS
MH21-05	East Side MH21	SF-06	3	13:20	LH	12	121.4	9.2%	92.0%	111.2	PASS
MH21-06	South Side MH21	SF-06	4	13:30	LH	6	123.6	7.5%	95.2%	115.0	PASS
	Ma	nhole #39)								
MH39-03	West Side MH21	SF-06	1	13:40	LH	12	127.8	8.0%	98.0%	118.3	PASS
MH39-04	North Side MH21	SF-06	2	13:50	LH	12	126.7	7.5%	97.6%	117.9	PASS
MH39-05	South Side MH21	SF-06	3	14:00	LH	12	127.8	7.7%	98.2%	118.7	PASS
MH39-06	East Side MH21	SF-06	4	14:10	LH	6	127.6	8.8%	97.1%	117.3	PASS
	Mai	nhole #32									
MH32-01	Manhole 32	SF-06	Sub	14:20	LH	12	130.7	5.3%	102.7%	124.1	PASS
MH32-02	Manhole 32	SF-06	Sub	14:25	LH	12	126.0	4.9%	99.4%	120.1	PASS
	Mai	nhole #33									
MH33-01	Manhole 33	SF-06	Sub	14:40	LH	12	129.9	8.7%	98.9%	119.5	PASS
MH33-02	Manhole 33	SF-06	Sub	14:45	LH	12	131.0	9.1%	99.4%	120.1	PASS
					-						

Reviewed by:

Envirotech Engineering & Consulting. Inc

5/5/10

BY SAND CONE (ASTM 1556)

Client:

WCH

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK | 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Ski	ba		Sample ID:	MH39-06
Project:	S013213A0	00		Sample Description:	Brown Black Sand
Project Location: ERDF Cells 9-10			Sampling Date:	3/24/2010	
Tested By:	L. Hay	Date:	3/24/2010	Sampled By:	L. Hay
Reviewed By:	T. Williams	Turate.	3/25/2010	Date Received:	3/24/2010
Comments				Report No.:	05-016-031

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3955.80 g
2. Mass of Proctor mold + sand, W ₂	5396.10 g
3. Volume of mold, V ₁	0.03 ft
4 Dry unit weight, $Y_{d (sand)} = \frac{W_2 - W_1}{V_1}$	95.26 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6718.40 g
6.	Mass of bottle + cone + sand (after use), W ₄	5097.10 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.57 lb

8. Mass of bottle + cone + sand (before use), W ₈	6408.0 g
9. Mass of bottle + cone + sand (after use), W ₈	2269.2 g
10. Volume of hole, $V_2 = \frac{W_6 - W_4 - W_5}{\gamma}$ d (sand)	0.0583 ft ³
11. Mass of gallon can, W ₅	0.00 g
12. Mass of gallon can + moist soil, W ₇	3347.40 g
13. Mass of gallon can + dry soil, W ₉	3080.80 g
14. Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	126.66 lb/ft ³
15. Moisture content in the field, w (%) = $W_7 - W_8 = X$ 100 $W_9 - W_5$	8.7%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	116.57 lb/ft ³
17. Comparision moisture content =	8.8%
18. Dry unit weight comparison =	117.3 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

5-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project: Project ID:

Report No.

Troxler ID:

Moist Std:

Moist offset:

Allowable Moisture Range:

Necessary % Proctor:

Description:

ERDF Cells 9-10 Expansion

S013213A00

05-016-36 Date

03 / 31 / 2010

Brown / Black Sand

27881

639

Density Std:

2213

Density offset: -

N/A

95%

Proctor:

SF-05

Max Dry Density (pcf):

124.4

Optimum Moisture (%):

12.5%

Proctor:

SF-06

Max Dry Density (pcf): Optimum Moisture (%): 120.8 14.3%

Proctor:

Max Dry Density (pcf):

Optimum Moisture (%):

Test No	LocationC26	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
	Ma	nhole #33									
MH33-03	Manhole #33	SF-06	1	7:30	LH	12"	135.0	14.6%	97.5%	117.8	PASS
MH33-04	Manhole #33	SF-06	2	7:55	LH	12"	131.4	9.7%	99.2%	119.8	PASS
MH33-05	Manhole #33	SF-06	3	8:35	LH	6"	130.2	10.7%	97.4%	117.6	PASS
MH33-06	Manhole #33	SF-06	4	9:15	LH	6"	127.9	7.3%	98.7%	119.2	PASS
	Ma	nhole #32									
MH32-03	Manhole#32	SF-06	1	9:45	LH	12"	130.7	11.3%	97.2%	117,4	PASS
MH32-04	Manhole#32	SF-06	2	10:45	LH	12"	125.0	7.4%	96.3%	116.4	PASS
MH32-05	Manhole#32	SF-06	3	11:50	LH	12"	124.7	8.3%	95.3%	115.1	PASS
MH32-06	Manhole#32	SF-06	4	13:00	LH	12"	128.4	7:9%	98.5%	119.0	PASS
	Mai	nhole #33									
MH33-07	Manhole#33 (SC)	SF-06	5	14:00	LH	6"	128.2	10.7%	95.9%	115.8	PASS
MH33-08	Manhole#33	SF-06	6	14:30	LH	6"	126.8	9.7%	95.7%	115.6	PASS
MH33-09	Manhole#33	SF-06	7	15:00	LH	6"	128.1	10.9%	95.6%	115.5	PASS
MH33-10	Manhole#33	SF-06	8	15:30	LH	6"	127.6	10.1%	95.9%	115.9	PASS
MH33-11	Manhole#33	SF-06	9	15:45	LH	6"	129.4	11.3%	96.2%	116.3	PASS
MH33-12	Manhole#33	SF-06	10	16:10	LH	6"	128.8	9.6%	97.3%	117.5	PASS
Reviewed b	y: Tu	/									

Envirotech Engineering & Consulting. Inc

5/5/10

BY SAND CONE (ASTM 1556)

Client:

WCH

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 1 Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba	3		Sample ID:	MH33-07
Project:	S013213A00		-	Sample Description:	Brown Sand
Project Location:	ERDF Cells	9-10		Sampling Date:	3/31/2010
Tested By:	Lucas Hay	Date:	3/31/2010	Sampled By:	Lucas Hay
Reviewed By:	T. Williams	Topate:	4/1/2010	Date Received:	3/31/2010
Comments				Report No.:	05-016-036

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1. Mass of Proctor mold, W,	3955.80 g
2. Mass of Proctor mold + sand, W ₂	5396.10 g
3. Volume of mold, V ₁	0.03 ft
4. Dry unit weight, $Y_{d (sand)} = W_2 - W_1$	95.26 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6718.40 g
6.	Mass of bottle + cone + sand (after use), W ₄	5097.10 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.57 lb

8. Mass of bottle + cone + sand (before use), W ₆	6268.2 g
9. Mass of bottle + cone + sand (after use), W ₈	2348.0 g
10. Volume of hole, $V_2 = \frac{W_a - W_g - W_c}{7} d$ (sand)	0.0532 ft ³
11. Mass of gallon can, W ₅	0.00 g
12. Mass of gallon can + moist soil, W ₇	3125.60 g
13. Mass of gallon can + dry soil, W _s	2814.10 g
14. Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	129.52 lb/ft ³
15. Moisture content in the field, w (%) = $W_7 - W_9 - X$ 100 $W_9 - W_5$	11.1%
16. Dry unit weight in the field, d (send) = 7 / (1+(w (%)/100)	116.61 lb/ft ³
17. Comparision moisture content =	10.7%
18. Dry unit weight comparison =	115.8 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID:

S013213A00

Report No

05-016-041 Date 4/7/2010

Description

Brown/Black Sand

Troxler ID:

27881

Moist Std:

647 2227 Density Std:

Moist offset:

Density offset:

N/A

Allowable Moisture Range: Necessary % Proctor:

95%

Proctor:

SF-05

Max Dry Density (pcf):

124.4 Optimum Moisture (%): 12.5%

Proctor:

SF-06

Max Dry Density (pcf): Optimum Moisture (%):

120.8 14.3%

Proctor:

SF-07

Max Dry Density (pcf):

117.3

Optimum Moisture (%): 12.5%

Test No	Location	PG	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
Cell 9 Cre	st Pad				·genrunerennum	y					
CP9-01	Cell 9 Crest Pad Bldg.	SF-06	Sub	9:00	LH	12	128.6	9.3%	97.4%	117.7	PASS
CP9-02	Cell 9 Crest Pad Bldg.	SF-06	Sub	9:05	LH	12	129.6	10.1%	97.4%	117.7	PASS
CP9-03	Cell 9 Crest Pad Bldg.	SF-07	1	9:25	LH	6	127.4	13.5%	95.7%	112.2	PASS
CP9-04	Cell 9 Crest Pad Bldg.	SF-07	1	9:30	LH	6	126.6	12.3%	96.1%	112.7	PASS
CP9-05	Cell 9 Crest Pad Bldg.	SF-07	2	10:45	LH	6	128.7	14.8%	95.6%	112.1	PASS
CP9-06	Cell 9 Crest Pad Bldg.	SF-07	2	10:50	LH	6	132.8	15.0%	98.4%	115.5	PASS
CP9-07	Cell 9 Crest Pad Bldg.	SF-07	3	12:45	LH	6	125.5	9.9%	97.4%	114.2	PASS
CP9-08	Cell 9 Crest Pad Bldg.	SF-07	3	12:50	LH	6	131.1	15.1%	97.1%	113.9	PASS
CP9-09	Cell 9 Crest Pad Bldg.	SF-07	4	13:50	LH	6	127.4	12.8%	96.3%	112.9	PASS
CP9-10	Cell 9 Crest Pad Bldg.	SF-07	4	13:55	LH	6	130.0	15.4%	96.0%	112.7	PASS
Leachate	Transmission Line		,								
MH34-01	MH-34 Subgrade	SF-05	Sub	9:40	LH	12	129.5	9.5%	95.1%	118.3	PASS
MH34-02	MH-34 Subgrade	SF-05	Sub	9:45	LH	12	130.2	8.1%	96.8%	120.4	PASS
MH35-01	MH-35 Subgrade	SF-05	Sub	9:50	LH	12	131.4	7.9%	97.9%	121.8	PASS
MH35-02	MH-35 Subgrade	-SF-05	Sub	9:55	LH	12	130.5	8.6%	96.6%	120.2	PASS

Reviewed by

Envirotech Engineering & Consulting. Inc

5/5/10

BY SAND CONE (ASTM 1556)

Client:

WCH

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 1 Fax (580) 237-4302

Sample Information

Charlie Skiba			Sample ID:	CP9-07	
S013213A00			Sample Description:	Brown Sand	
ERDF Cells 9	9-10		Sampling Date:	4/7/2010	
L. Hay	Date:	4/7/2010	Sampled By:	L.Hay	
J. Voss IN	Date:	4/8/2010	Date Received:	4/7/2010	
4			Report No.:	05-016-041	
	S013213A00 ERDF Cells 9 L. Hay		S013213A00 ERDF Cells 9-10 L. Hay Date: 4/7/2010	S013213A00 Sample Description: ERDF Cells 9-10 Sampling Date: L. Hay Date: 4/7/2010 Sampled By: J. Voss Date: 4/8/2010 Date Received:	

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3955.80 g
2. Mass of Proctor mold + sand, W ₂	5396.10 g
3. Volume of mold, V ₁	0.03 ft
4. Dry unit weight, Y _{d (sand)} = W ₂ - W ₁ V ₁	95.26 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6718.40 g
6.	Mass of bottle + cone + sand (after use), W ₄	5097.10 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.57 lb

8. Mass of bottle + cone + sand (before use), W ₆	6424.5 g
9 Mass of bottle + cone + sand (after use), W ₈	3146.1 g
10. Volume of hole, $V_2 = W_6 - W_8 - W_c$	0.0384 ft ³
11. Mass of gallon can, W ₅	0.00 g
12. Mass of gallon can + moist soil, W ₇	2188.30 g
13. Mass of gallon can + dry soil, W₂	1993.90 g
14. Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	125.80 lb/ft ³
15. Moisture content in the field, w (%) = $\frac{W_7 - W_9}{W_9 - W_5}$ X 100	9.7%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	114.62 lb/ft ³
17. Comparision moisture content =	9.9%
18. Dry unit weight comparison =	114.2 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK | 73701 (580) 234-8780 | Fax (580) 237-4302

SF-05

124.4

12.5%

SF-06

Soil Information

Project:
Project ID:
Report No

Report No.
Description:
Troxler ID:

Moist Std:
Moist offset:

Allowable Moisture Range. Necessary % Proctor: ERDF Cells 9-10 Expansion

S013213A00

05-016-044 Date Brown/Black Sand

27881

645 Density Std:
- Density offset:

N/A 95% 4/12/2010

2199

Proctor:

Max Dry Density (pcf):

Optimum Moisture (%)

Proctor:
May Dry Density (not

Max Dry Density (pcf): 120.8
Optimum Moisture (%): 14.3%

Proctor:

Max Dry Density (pcf):

Optimum Moisture (%):

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
	Man	hole MH-3	34								
MH34-03	Manhole #34	SF-06	1	7:30	LH	12	126.9	7.6%	97.6%	117.9	PASS
MH34-04	Manhoie #34	SF-06	2	8:15	LH	12	132.6	12.7%	97.4%	117.7	PASS
MH34-05	Manhole #34	SF-06	3	9:00	LH	12	125.5	8.4%	95.8%	115.8	PASS
MH34-06	Manhole #34	SF-06	4	9:45	LH	12	127.1	6.4%	98.9%	119.5	PASS
MH34-07	Manhole #34	SF-06	5	10:30	LH	12	128.5	9.6%	97.1%	117.2	PASS
	Man	hole MH-3	5								
MH35-03	Manhole #35	SF-05	1 -	12:00	LH	12	130.4	7.7%	97.3%	121.1	PASS
MH35-04	Manhole #35	SF-05	2	12:45	LH	12	129.3	8.4%	95.9%	119.3	PASS
MH35-05	Manhole #35	SF-05	3	13:50	LH	12	130.4	9.1%	96.1%	119.5	PASS
MH35-06	Manhole #35	SF-05	4	14:45	LH	12	131.3	10.2%	95.8%	119.1	PASS
MH35-07	Manhole #35	SF-05	5	15:30	LH	12	129.1	8.7%	95.5%	118.8	PASS
	<i>f</i>										

Reviewed by:

Envirotech Engineering & Consulting. Inc

5/5/10

BY SAND CONE (ASTM 1556)

Client:

WCH

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street T Enid, OK 73701 (580) 234-8780 T Fax (580) 237-4302

Sample Information

Contact Name: Charlie Skiba				Sample ID:	MH34-06	
Project:	S013213A	00		Sample Description	Brown/Black Sand	
Project Location:	ERDF Cell	s 9-10		Sampling Date:	4/12/2010	
Tested By:	L. Hay	Date	4/12/2010	Sampled By:	L. Hay	
Reviewed By:	T. Williams	Typate:	4/13/2010	Date Received:	4/12/2010	
Comments				Report No.:	05-016-044	

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3955.80 g
2. Mass of Proctor mold + sand, W ₂	5396.10 g
3. Volume of mold, V ₁	0.03 ft
4. Dry unit weight, Y _{d (send)} = W ₂ - W ₁	95.26 lb/ft ³
V ₁	93.20 IB/IL

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6718.40 g
6.	Mass of bottle + cone + sand (after use), W ₄	5097.10 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.57 lb

8. Mass of bottle + cone + sand (before use), W ₆	6279.4 g
9. Mass of bottle + cone + sand (after use), W ₈	2753.6 g
10. Volume of hole, $V_2 = W_6 - W_6 - W_6$ \neq d (sand)	0.0441 ft ³
11. Mass of gallon can, W ₅	385.20 g
12. Mass of gallon can + moist soil, W ₇	2936.40 g
13. Mass of gallon can + dry soil, W ₉	2754.40 g
14. Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	127.61 lb/ft ³
15. Moisture content in the field, w (%) = $\frac{W_7 - W_9}{W_9 - W_5}$ X 100	7.7%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	118.50 lb/ft ³
17. Comparision moisture content =	6.4%
18. Dry unit weight comparison =	119.5 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID:

S013213A00

Proctor:

SF-05

Max Dry Density (pcf):

124.4

Report No.

05-016-051 Date

Optimum Moisture (%):

12.5%

Brown/Black Sand

Proctor

Proctor:

Description

Max Dry Density (pcf):

SF-06

Troxler ID: Moist Std:

27881

120.8

637 Density Std: 2223

4/21/2010

Optimum Moisture (%): 14.3%

Moist offset:

Density offset: N/A

Max Dry Density (pcf):

Allowable Moisture Range: Necessary % Proctor:

95%

Optimum Moisture (%):

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass /
	Mani	nole #36						-			
MH36-01	Manhole #36 Subgrade	SF-05	Sub	14:45	TW	12	132.9	5.2%	101.6%	126.3	PASS
MH36-02	Manhole #36 Subgrade	SF-05	Sub	14:50	TW	12	134.5	4.8%	103.2%	128.3	PASS
	Mani	nole #36									
MH37-01	Manhole #37 Subgrade	SF-05	Sub	15:00	TW	12	127.8	5.3%	97.6%	121.4	PASS
MH37-02	Manhole #37 Subgrade	SF-05	Sub	15:05	TW	12	132.0	4.6%	101.4%	126.2	PASS
	Crest f	Pad Cell	9								
CP9-11	Discharge line CP #9	SF-06	1	13:45	TW	6	121.6	17.0%	86.0%	103.9	FAIL
SCV-05	N. Berm West of CP #9	SF-06		15:30	TW	6	120.6	4.4%	95.6%	115.5	
300-03	N. Deim West of Cr. #3	31-00		10.30	1 9 4	0	120.0	4,470	95.076	110,5	-
					Programme Control of the Control of						

Envirotech Engineering & Consulting. Inc

Reviewed by

BY SAND CONE (ASTM 1556)

Client:

WCH

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK | 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba			Sample ID:	SCV-05
Project:	S013213A00			Sample Description:	Brown/Black Sand
Project Location:	ERDF Cells 9	9-10		Sampling Date:	4/21/2010
Tested By:	T. Williams,	Date:	4/21/2010	Sampled By:	T. Williams
Reviewed By:	J. Voss (A)	Date:	4/22/2010	Date Received:	4/21/2010
Comments	4			Report No.:	05-016-051

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1. Mass of Proctor mold, W₁	3955.80 g
2. Mass of Proctor mold + sand, W ₂	5396.10 g
3. Volume of mold, V ₁	0.03 ft
4. Dry unit weight, $Y_{d \text{ (sand)}} = \frac{W_2 - W_1}{V_1}$	95.26 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6718.40 g
6.	Mass of bottle + cone + sand (after use), W ₄	5097.10 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.57 lb

8. Mass of bottle + cone + sand (before use), W ₆	6399.0 g
9. Mass of bottle + cone + sand (after use), W ₈	3218.8 g
10. Volume of hole, $V_2 = \frac{W_6 - W_8 - W_c}{\gamma d \text{ (sand)}}$	0.0361 ft ³
11. Mass of gallon can, W ₅	174.30 g
12. Mass of gallon can + moist soil, W ₇	2182.80 g
13. Mass of gallon can + dry soil, W ₉	2075.50 g
14. Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	122.73 lb/ft ³
15. Moisture content in the field, w (%) = $W_7 - W_9 - W_5$ X 100 $W_9 - W_5$	5.6%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	116.18 lb/ft ³
17. Comparision moisture content =	4.4%
18. Dry unit weight comparison =	115.5 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID:

S013213A00

Report No.

05-016-053 Date 4/23/2010

Description:

Troxier ID: Moist Std: Moist offset 27881

641

Density Std: 2203

Density offset:

N/A

95%

Proctor

SF-05 Max Dry Density (pcf): 124.4

Optimum Moisture (%): 12.5%

Proctor:

SF-06 120.8

Max Dry Density (pcf): 14.3% Optimum Moisture (%):

Proctor:

SF-07

Max Dry Density (pcf):

117.3

Necessary % Proctor (Structural Fill)

Allowable Moisture Range:

Optimum Moisture (%):

12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Cell	9 Crest Pad Building Dr	ain Line	Back	fill - Pro	ctor = 9	5%					
CP9-14A	CP-9 Drain line backfill	SF-07	1	6:40	TW	6	124.2	8.3%	97.8%	114.7	PASS
Le	achate Transmission Li	ne - Nec	essa	ry Procte	or = 90%	la		nini parameter de la constanta			
LT-1	Drain Line from MH-33 to CP-10	SF-05	1	9"35	TW	6	135.2	9.9%	98.9%	123.0	PASS
LT-2	Drain Line from MH-33 to CP-10	SF-05	2	9:55	TW	6	128.5	8.1%	95.6%	118.9	PASS
LT-3	Drain Line from MH-33 to CP-10	SF-05	3	10:30	TW	6	129.2	8.1%	96.1%	119.5	PASS
LT-4	Drain Line from MH-33 to CP-10	SF-05	4	10:55	TW	6	129.6	9.6%	95.1%	118.2	PASS
LT-5	Drain Line from MH-33 to CP-10	SF-05	5	11:55	TW	6	127.6	10.5%	92.8%	115.5	PASS
LT-5A	Drain Line from MH-33 to CP-10	SF-05	5	12:00	TW	6	133.4	10.8%	96.8%	120.4	PASS
LT-5B	Drain Line from MH-33 to CP-10	SF-05	5	12:05	TW	6	131,3	9.6%	96.3%	119.8	PASS
N	lanhole No. 38 Subgrad	e - Nece	ssary	Proctor	= 95%						
MH38-1	MH-38 Subgrade	SF-05	sub	14:30	TW	12	133.7	4.0%	103.3%	128.6	PASS
VH38-2	MH-38 Subgrade	SF-05	sub	14:35	TW	12	127.5	2.6%	99.9%	124.3	PASS
	Sand Cone Verification	- Neces	sary I	Proctor	= N/A						
SCV-107	W. of Crest Pad 9	N/A	~	15:30	TW	6	120.2	4.1%	-	115.5	_

Envirotech Engineering & Consulting. Inc

5/5/10

BY SAND CONE (ASTM 1556)

Client:

WCH

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK | 73701 | (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skiba	1		Sample ID:	SCV-07
Project:	S013213A00			Sample Description:	Brown/Black Sand
Project Location:	ERDF Cells	3 -10		Sampling Date:	4/23/2010
Tested By:	T. Williams	Date:	4/23/2010	Sampled By:	T. Williams
Reviewed By	J. Voss/(V	Date:	4/26/2010	Date Received:	4/23/2010
Comments	No			Report No.:	05-016-053

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1.	Mass of Proctor mold, W₁	3955.60 g
2.	Mass of Proctor mold + sand, W ₂	5511.00 g
3.	Volume of mold, V ₁	0.03 ft
4.	Dry unit weight, $Y_{d (sand)} = \frac{W_2 - W_1}{V_1}$	102.87 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	7146.30 g
6.	Mass of bottle + cone + sand (after use), W ₄	5507.30 g
7.	Weight of sand to fill the cone, $W_c = W_4 - W_3$	3.61 lb

8. Mass of bottle + cone + sand (before use), W ₆	6167.4 g
9. Mass of bottle + cone + sand (after use), W ₈	3046.0 g
10. Volume of hole, $V_2 = \frac{W_6 - W_8 - W_6}{\gamma}$ d (sand)	0.0318 ft ³
11. Mass of gallon can, W ₅	174.00 g
12. Mass of gallon can + moist soil, W ₇	2105.70 g
13. Mass of gallon can + dry soil, W ₉	2014.60 g
14. Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	134.05 lb/ft ³
15. Moisture content in the field, w (%) = $\frac{W_7 - W_9}{W_9} \times 100$	4.9%
16. Dry unit weight in the field, d (sand) = -7 / (1+(w (%)/100)	127.73 lb/ft ³
17. Comparision moisture content =	4.1%
18. Dry unit weight comparison =	115.5 lb/ft ³

-				
1	1	e	27	**

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701

(580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

Project ID

Report No

Description:

Troxler ID:

Moist Std

Moist offset:

Allowable Moisture Range: Necessary % Proctor:

ERDF Cells 9-10 Expansion

S013213A00

05-016-055 Date 4/27/2008

Brown/Black Sand

27881

635

Density Std: Density offset:

N/A

90%

2207

Proctor:

Max Dry Density (pcf):

124.4 Optimum Moisture (%): 12.5%

Proctor:

SF-06 120.8

Max Dry Density (pcf): Optimum Moisture (%):

Proctor

117.3 Max Dry Density (pcf):

Optimum Moisture (%):

12.5%

14.3%

SF-07

SF-05

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
	Manhole MH-37: Ne	cessary	Proc	tor = 95°	%						
MH37-03	Manhole 37	SF-07	1	7:30	LH	12	121.4	8.1%	95.7%	112.3	PASS
MH37-04	Manhole 37	SF-07	2	7:51	LH	12	122.6	9.6%	95.4%	111.9	PASS
MH37-05	Manhole 37	SF-07	3	8:21	LH	12	123.7	9.1%	96.7%	113.4	PASS
MH37-06	Manhole 37	SF-07	4	8:42	LH	12	125.6	11.4%	96.1%	112.7	PASS
MH37-07	Manhole 37	SF-07	5	9:10	LH	12	122.5	8.3%	96.4%	113.1	PASS
	Manhole MH-36: Ne	cessary	Proc	tor = 95°	%						
MH36-03	Manhole 36	SF-05	1	10:25	LH	12	130.5	8.8%	96.4%	119.9	PASS
MH36-04	Manhole 36	SF-05	2	10:55	LH	12	131.2	9.1%	96.7%	120.3	PASS
MH36-05	Manhole 36	SF-05	3	11:50	LH	12	133.6	12.3%	95.6%	119.0	PASS
MH36-06	Manhole 36	SF-05	4	12:45	LH	12	132.1	9.8%	96.7%	120.3	PASS
	Sand Cone	Verific	ation								
SCV-08	Northeast side of Project	*	-	15:30	LH	6	106.0	3.9%	~	102.0	
-											

Reviewed by:

Envirotech Engineering & Consulting. Inc

Date

5/5/10

BY SAND CONE (ASTM 1556)

Client:

WCH

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK | 73701 (580) 234-8780 | Fax (580) 237-4302

Sample Information

Contact Name: Charlie Skiba			Sample ID:	SCV-08		
Project:	S013213A00			Sample Description:	Brown/Black Sand	
Project Location:	ERDF Cells 9	-10		Sampling Date:	4/27/2010	
Tested By:	L. Hay.	Date:	4/27/2010	Sampled By:	L. Hay	
Reviewed By:	J. Voss ACV	Date:	4/28/2010	Date Received:	4/27/2010	
Comments	J.			Report No.:	05-016-055	

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3956.60 g
2. Mass of Proctor mold + sand, W ₂	5394.30 g
3. Volume of mold, V ₁	0.03 ft
4. Dry unit weight, Y _{d (sand)} = W ₂ - W ₁ V ₁	95.09 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	3768.20 g
6.	Mass of bottle + cone + sand (after use). W ₄	2132.50 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.61 lb

Mass of bottle + cone + sand (before use), W₆	6459.2 g
9. Mass of bottle + cone + sand (after use), W ₈	3138.0 g
10. Volume of hole, $V_2 = \frac{W_6 - W_8 - W_c}{y}$ d (sand)	0.0391 ft ³
11. Mass of gallon can, W ₅	0.00 g
12. Mass of gallon can + moist soil, W ₇	1886.90 g
13. Mass of gallon can + dry soil, W ₉	1823.10 g
14. Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	106.45 lb/ft ³
15. Moisture content in the field, w (%) = $W_7 - W_9 - X$ 100 $W_9 - W_5$	3.5%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	102.85 lb/ft ³
17. Comparision moisture content =	3.9%
18. Dry unit weight comparison =	102.0 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

Project ID:

Report No.

Description: Troxler ID:

Maist Std:

Moist offset: Allowable Moisture Range:

Necessary % Proctor:

ERDF Cells 9-10 Expansion

S013213A00

05-16-057 Date Crest Pad and Manholes

27881

644 2187 Density Std: Density offset:

> N/A 90%

4/29/2010

Proctor:

SF-05 124.4

Max Dry Density (pcf): Optimum Maisture (%): 12.5%

Proctor:

SF-06 120.8

Max Dry Density (pcf):

Optimum Moisture (%): 14.3% SF-07

Proctor*

Max Dry Density (pcf): 117.3

Optimum Moisture (%):

12.5%

Necessary % Proctor: 95%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Cell 1	0 Discharge Line Utility	Trench:	Nece	ssary Pr	octor =	90%					
LT-006	Crest Pad 10 to MH-33	SF-06	.1	8.05	LH	12	122.7	6.9%	95.0%	114.8	PASS
LT-007	Crest Pad 10 to MH-33	SF-06	2	8:15	LH	6	122.2	6.4%	95.1%	114.8	PASS
LT-008	Crest Pad 10 to MH-33	SF-06	3	8:25	LH	6	125.9	6.4%	98.0%	118.3	PASS
LT-009	Crest Pad 10 to MH-33	SF-06	4	8:45	LH	6	126.3	5.8%	98.8%	119.4	PASS
LT-010	Crest Pad 10 to MH-33	SF-06	5	9:15	LH	6	119.4	5.3%	93.9%	113.4	PASS
LT-011	Crest Pad 10 to MH-33	SF-06	6	9:45	LH	6	128.4	10.6%	96.1%	116.1	PASS
LT-012	Crest Pad 10 to MH-33	SF-06	7	10:05	LH	6	127.3	9.3%	96.4%	116.5	PASS
LT-013	Crest Pad 10 to MH-33	SF-06	8	10:20	LH	6	126.4	9.7%	95.4%	115.2	PASS
	Crest Pad 10 Earthwork	: Neces	sary F	roctor	= 95%						
CP10-01	Crest Pad 10 Subgrade	SF-06	SG	13:15	LH	12	129.8	12.9%	95.2%	115.0	PASS
CP10-02	Crest Pad 10 Subgrade	SF-06	SG	13:20	LH	12	128.5	9.9%	96.8%	116.9	PASS
CP10-03	Crest Pad 10 Fill	SF-07	1	14:15	LH	6	129.1	11.9%	98.4%	115.4	PASS
CP10-04	Crest Pad 10 Fill	SF-07	1	14:25	LH	6	127.3	11.2%	97.6%	114.5	PASS
CP10-05	Crest Pad 10 Fill	SF-07	2	16:10	LH	6	131.4	14.3%	98.0%	115.0	PASS
CP10-06	Crest Pad 10 Fill	SF-07	2	16:15	LH	6	130.4	14.9%	96.8%	113.5	PASS

Reviewed by:

Envirotech Engineering & Consulting. Inc

5/5/10

BY SAND CONE (ASTM 1556)

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Client:

WCH

Submittal:

05-18B Earthwork Field Data

Sample Information

Contact Name: Charlie Skiba				Sample ID:	CP10-03	
Project:	roject: S013213A00		MANUFORM PROMISE	Sample Description:	Brown/Black Sand	
Project Location:	ERDF Cells 9	-10	-	Sampling Date:	4/29/2010	
Tested By:	L. Hay	Date	4/29/2010	Sampled By:	L. Hay	
Reviewed By:	J Voss 14	Date:	4/30/2010	Date Received:	4/29/2010	
Comments	1			Report No.:	05-016-057	

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3956.60 g
2. Mass of Proctor mold + sand, W ₂	5394.30 g
3. Volume of mold, V ₁	0.03 ft
4. Dry unit weight. $Y_{d (sand)} = \frac{W_2 - W_1}{V_1}$	95.09 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	3768.20 g
6.	Mass of bottle + cone + sand (after use), W ₄	2132.50 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.61 lb

O Many of habita to annot be need the form and 1861	5000 5
8. Mass of bottle + cone + sand (before use), W ₈	5833.5 g
Mass of bottle + cone + sand (after use), W₈	2869.5 g
10. Volume of hole, $V_2 = W_6 - W_8 - W_c$	0.0000.03
y d (sand)	0.0308 ft ³
11. Mass of gallon can, W₅	0.00 g
12. Mass of gallon can + moist soil, W ₇	1810.60 g
13. Mass of gallon can + dry soil, W ₉	1615.70 g
14. Moist unit weight of soil in field, $\gamma_1 = W_7 - W_5 / V_2$	129.61 lb/ft ³
15. Moisture content in the field, w (%) = W ₇ - W ₉ X 100	12.1%
W ₉ ~ W ₅	12.170
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	115.66 lb/ft ³
17. Comparision moisture content =	11.9%
18. Dry unit weight comparison =	115.4 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-188 Earthwork Field Data

2500 N. 11th Street T Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

SF-06

Soil Information

Project:

Project ID: Report No.

Description: Troxler ID:

Moist Std: Moist offset:

Allowable Moisture Range: Necessary % Proctor:

ERDF Cells 9-10 Expansion

S013213A00

5/4/2010 05-016-060 Date Brown/Black Sand

27881

647 Density Std: 2181 Density offset:

> N/A 95%

Proctor:

SF-05 Max Dry Density (pcf): 124.4

Optimum Moisture (%): 12.5%

Proctor:

120.8 Max Dry Density (pcf): 14.3%

Optimum Moisture (%):

Proctor: SF-07 Max Dry Density (pcf): 117.3

Optimum Moisture (%): 12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
	Leachate Transmiss	ion Lin	e: 90°	% Procto	or						
LT-09	Discharge line CP9 to MH-32	SF-06	1	9:15	LH	12	122.7	9.4%	92.8%	112.2	PASS
LT-10	Discharge line CP9 to MH-32	SF-06	2	9:45	LH	6	121.0	7.4%	93.3%	112.7	PASS
LT-11	Discharge line CP9 to MH-32	SF-06	3	10:45	LH	6	125.3	11.4%	93.1%	112.5	PASS
LT-12	Discharge line CP9 to MH-32	SF-06	4	12:00	LH	6	118.5	6.8%	91.9%	111.0	PASS
LT-13	Discharge line CP9 to MH-32	SF-06	5	15:10	LH	6	134.5	13.7%	97.9%	118.3	PASS
LT-14	Discharge line CP9 to MH-32	SF-06	6	15:50	LH	6	122.8	10.8%	91.7%	110.8	PASS
	Crest Pad 10): 95% F	rocto	r	,						
CP10-7	Crest Pad 10	SF-07	3	10:20	LH	6	116.9	4.2%	95.6%	112.2	PASS
CP10-8	Crest Pad 10	SF-07	3	10:25	LH	6	116.2	3.6%	95.6%	112.2	PASS

Reviewed by:

Envirotech Engineering & Consulting. Inc

5/5/10

BY SAND CONE (ASTM 1556)

Client:

WCH

Submittal:

05-18B Earthwork Field Data

2500 N 11th Street 1 Enid, OK 73701 (580) 234-8780 1 Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skib	а		Sample ID:	LT-12	
Project: S013213A00		0	POLICE CONTRACTOR CONT	Sample Description:	Brown/Black Sand	
Project Location:	ERDF Cells	9-10		Sampling Date:	5/4/2010	
Tested By:	L. Hay	Date:	5/4/2010	Sampled By:	L.Hay	
Reviewed By:	T. Williams	Twoate:	5/5/2010	Date Received:	5/4/2010	
Comments				Report No.:	05-016-060	

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1.	Mass of Proctor moid, W ₁	3956.60 g
2.	Mass of Proctor mold + sand, W ₂	5394.30 g
3.	Volume of mold, V ₁	0.03 ft
4.	Dry unit weight, $Y_{d \text{ (sand)}} = \frac{W_2 - W_4}{W_1}$	95.09 lb/ft ³
	V ₁	

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	3768.20 g
6.	Mass of bottle + cone + sand (after use), W ₄	2132.50 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.61 lb

8. Mass of bottle + cone + sand (before use), W ₆	5958.9 g
9. Mass of bottle + cone + sand (after use), W ₈	2550.7 g
10. Volume of hole, $V_2 = \frac{W_8 - W_8 - W_c}{7} d$ (sand)	0 0411 ft ³
11. Mass of gallon can, W ₅	394.40 g
12. Mass of gallon can + moist soil, W ₇	2619.30 g
13. Mass of gallon can + dry soil, W ₉	2466.50 g
14. Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	119.36 lb/ft ³
15 Moisture content in the field, w (%) = $W_7 - W_9 - X$ 100 $W_9 - W_5$	7.4%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	111.16 lb/ft ³
17. Comparision moisture content =	6.8%
18. Dry unit weight comparison =	111.0 lb/ft ³

-					
-	3	2	-	27	*
	ŧ	ŧ	e	11	ъ.

Washington Closure Hanford

Submittal:

5-18B Earthwork Field Data

N/A

90%

ENVIROTECH

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project: ERDF Cells 9-10 Expansion Project ID: S013213A00 5-16-061 5/5/2010 Report No Date Brown/Black Sand Description: 27881 Troxler ID Moist Std. 637 Density Std: 2195 Moist offset: Density offset:

Allowable Moisture Range:

Necessary % Proctor:

Proctor:	SF-01
11. 0. 0 1. 1.	-0 4400

Max Dry Density (pcf): 113.6 Optimum Moisture (%): 12.4%

Proctor SF-06

Max Dry Density (pcf): 120.8 Optimum Moisture (%): 14.3%

Proctor. SF-07

Max Dry Density (pcf): 117.3 Optimum Moisture (%): 12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
	Leachate Transmiss	ion Lin	e: 90°	6 Procto	or						
LT-15	Discharge line CP9 to MH-32	SF-06	7	7:22	LH	6	123.3	10.0%	92.8%	112.1	PASS
LT-16	Discharge line CP9 to MH-32	SF-06	8	9:00	LH	6	124.9	12.6%	91.8%	110.9	PASS
LT-17	Discharge line CP9 to MH-32	SF-06	9	9:41	LH	6	120.1	9.2%	91.0%	110.0	PASS
LT-18	Discharge line CP9 to MH-32	SF-06	10	12:45	LH	6	129.5	14.2%	93.9%	113.4	PASS
	Sand Cone	Verific	ation								
SCV-10	NE end of project	N/A	N/A	14:25	LH	6	108.1	4.1%	N/A	103.8	N/A
			the state of the s								
	Marie a constitue de la consti			***************************************							

Reviewed by:	
1.121/-	8120/10
Envirotech Engineering & Consulting. Inc	Date

BY SAND CONE (ASTM 1556)

Client:

WCH

Submittal:

05-18B Earthwork Field Data

2500 N - 11th Street - L Enid, OK - 73701 - 580) 234-8780 - L Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Ski	iba		Sample ID:	SCV-10
Project:	S013213A	00	over the second	Sample Description:	Lt. Brown Sand w/ Slit
Project Location:	ERDF Cell	s 9-10	-	Sampling Date:	5/5/2010
Tested By:	L. Hay	Date:	5/5/2010	Sampled By:	L.Hay
Reviewed By:	T. Williams	Date:	5/6/2010	Date Received:	5/5/2010
Comments				Report No.:	05-016-061

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3956.60 g
2 Mass of Proctor mold + sand, W ₂	5394.30 g
 Volume of mold, V₁ 	0.03 ft
4. Dry unit weight. $Y_{d \text{ (sand)}} = \frac{W_2 - W_1}{V_2}$	95.09 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	3768.20 g
6.	Mass of bottle + cone + sand (after use), W ₄	2132.50 g
7.	Weight of sand to fill the cone, $W_c = W_4 - W_3$	3.61 lb

8. Mass of bottle + cone + sand (before use), W ₆	6237.6 g
9. Mass of bottle + cone + sand (after use), Wa	2765.2 g
10. Volume of hole, $V_2 = W_a - W_{g} - W_{g}$ y d (sand)	0.0426 ft ³
11. Mass of gallon can, W ₅	394.10 g
12. Mass of gallon can + moist soil, W ₇	2487.50 g
13. Mass of gallon can + dry soil, W ₉	2403.70 g
14. Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	108.38 lb/ft ³
15. Moisture content in the field, w (%) = $\frac{W_7 - W_9}{V_9} \times 100$	4.2%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	104.04 lb/ft ³
17. Comparision moisture content =	4.1%
18. Dry unit weight comparison =	103.8 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701

(580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID:

S013213A00

Report No

05-016-071 Date 5/19/2010

Description:

Brown/Black Sand

Troxler ID: Moist Std

27881 2245 650 Density Std:

Moist offset:

Density offset:

Allowable Moisture Range

N/A

90%

Proctor:

SF-01

Max Dry Density (pcf):

Max Dry Density (pcf):

113.6

Optimum Moisture (%):

12.4%

Proctor:

SF-06

120.8

Optimum Moisture (%):

14.3%

Proctor:

SF-07

Max Dry Density (pcf)

117.3 12.5%

Necessar		90	90%	-		Optimum N	Moisture (%):	12.5%	-		
Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
	Leachate Transmi	ssion T	rench	Backfill	1						
LT-19	Backfill MH-32 to MH-33	SF-06	0	8:55	LH	12	123.0	11.2%	91.6%	110.6	PASS
LT-20	Backfill MH-32 to MH-33	SF-06	0	9:00	LH	12	122.4	11.2%	91.1%	110.1	PASS
LT-21	Backfill MH-32 to MH-33	SF-06	1	12:05	LH	12	123.7	9.0%	93.9%	113.5	PASS
LT-22	Backfill MH-32 to MH-33	SF-06	1	12:10	LH	12	123.5	7.8%	94.8%	114.6	PASS
LT-23	Backfill MH-32 to MH-33	SF-06	2	14:15	LH	12	122.9	7.9%	94.3%	113.9	PASS
LT-24	Backfill MH-32 to MH-33	SF-06	2	14:20	LH	12	123.3	8.6%	94.0%	113.5	PASS

Reviewed by:

Envirotech Engineering & Consulting. Inc

5-20-2010

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

ENVIROTECH

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project: Project ID S013213A00 Report No. Description 27881

Troxler ID Moist Std: Moist offset:

Allowable Moisture Range Necessary % Proctor

ERDF Cells 9-10 Expansion

5/19/2010 05-016-071 Date Brown/Black Sand 650 Density Std: 2245

> N/A 90%

Density offset:

Proctor: SF-01

Max Dry Density (pcf) 113.6 Optimum Moisture (%) 12.4%

Proctor: SF-06 Max Dry Density (pcf): 120.8

Optimum Moisture (%) 14.3% Proctor SF-07

Max Dry Density (pcf): 117.3 Optimum Moisture (%): 12.5%

Wet Moist Dry Depth % Proctor Pass / Test No Location Pr. Lift Time Oper Density Content Density (in.) (calc) Fail (pcf) (%) (calc) Leachate Transmission Trench Backfill LT-25 Backfill MH-32 to MH-33 | SF-06 3 125.5 6:45 LH 6 9.1% 95.2% 115.0 PASS LT-26 SF-06 3 6 Backfill MH-32 to MH-33 6:50 LH 127.4 9.7% 96.1% 116.1 PASS LT-27 Backfill MH-32 to MH-33 SF-06 8.05 LH 6 126.3 7.1% 97.6% 117.9 PASS LT-28 Backfill MH-32 to MH-33 SF-06 8:10 LH 6 125.9 6.5% 97.9% 118.2 PASS Crest Pad 9 Foundation Backfill CP9-15 Crest Pad 9 Backfill SF-06 1 9:00 LH 6 127.1 9.1% 96.4% PASS 116.5 CP9-16 Crest Pad 9 Backfill SF-06 2 10:00 LH 6 126.3 8.3% 96.5% 116.6 PASS CP9-17 Crest Pad 9 Backfill SF-06 6 3 12:30 LH 128.3 11.0% 95.7% 115.6 PASS CP9-18 Crest Pad 9 Backfill SF-06 6 129.0 4 14:00 LH 12.4% 95.0% 114.8 PASS

Reviewed by:

Lik Will Envirotech Engineering & Consulting, Inc.

5-24-2010

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

Project ID:

Report No.

Description:

Troxler ID:

Moist Std:

Moist offset:

Allowable Moisture Range

Necessary % Proctor:

ERDF Cells 9-10 Expansion

S013213A00

05-016-073 Date

Brown/Black Sand

27881

638 Density Std:

Density offset:

N/A 90% 5/21/2010

2237

Proctor:

SF-01

Max Dry Density (pcf):

113.6

Optimum Moisture (%):

12.4% SF-06

Proctor:

120.8

Max Dry Density (pcf): Optimum Moisture (%):

14.3%

Proctor:

SF-07

Max Dry Density (pcf):

117.3

Optimum	Moisture	(%):	12.5%
---------	----------	------	-------

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass /
LT-29	Backfill MH-33 to MH-32	SF-06	5	6:25	LH	6	126.8	9.9%	95.5%	115.4	PASS
LT-30	Backfill MH-33 to MH-32	SF-06	5	6:27	LH	6	125.5	8.5%	95.8%	115.7	PASS
LT-31	Backfill MH-33 to MH-32	SF-06	6	7:25	LH	6	127.4	10.3%	95.6%	115.5	PASS
LT-32	Backfill MH-33 to MH-32	SF-06	6	7:29	LH	6	126.3	9.5%	95.5%	115.3	PASS
LT-33	Backfill MH-33 to MH-32	SF-06	7	8:10	LH	6	125.9	6.5%	97.9%	118.2	PASS
LT-34	Backfill MH-33 to MH-32	SF-06	7	8:14	LH	6	128.5	11.2%	95.7%	115.6	PASS
LT-35	Backfill MH-33 to MH-32	SF-06	8	10:50	LH	6	125.9	9.5%	95.2%	115.0	PASS
LT-36	Backfill MH-33 to MH-32	SF-06	8	10:53	LH	6	126.4	10.2%	95.0%	114.7	PASS
LT-37	Backfill MH-33 to MH-32	SF-06	9	12:30	LH	6	127.3	10.5%	95.4%	115.2	PASS
LT-38	Backfill MH-33 to MH-32	SF-06	9	12:33	LH	6	126.1	9.6%	95.2%	115.1	PASS
LT-39	Backfill MH-33 to MH-32	SF-06	10	16 10	LH	6	126.4	9.4%	95.6%	115.5	PASS
LT-40	Backfill MH-33 to MH-32	SF-06	10	16:15	LH	6	125.7	7.5%	96.8%	116.9	PASS
	1 /										

Reviewed by:

Envirotech Engineering & Consulting. Inc

5-25-2010

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street T Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

Project ID

Report No.

Description

Troxler ID

Moist Std

Moist offset:

Allowable Moisture Range:

Necessary % Proctor:

ERDF Cells 9-10 Expansion

S013213A00

05-016-076 Date 5/26/2010

Brown/Black Sand

27881

641 Density Std: 2225

Density offset:

N/A

95%

Proctor:

SF-01

Max Dry Density (pcf):

Optimum Moisture (%): 12.4%

Proctor:

SF-06

113.6

Max Dry Density (pcf):

120.8

Optimum Moisture (%):

14.3%

Proctor:

SF-04 117.3

Max Dry Density (pcf): Optimum Moisture (%):

12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
LT-41	MH-39 to Tank	SF-04	1	13:00	LH	6	120.9	5.2%	98.0%	114.9	PASS
LT-42	MH-39 to Tank	SF-04	2	13:10	LH	6	129.1	8.7%	101.3%	118.8	PASS
LT-43	MH-39 to Tank	SF-04	3	13:20	LH	6	125.4	7.3%	99.6%	116.9	PASS
LT-44	MH-39 to Tank	SF-04	4	13:30	LH	6	129.7	9.9%	100.6%	118.0	PASS
LT-45	MH-21 to Tank	SF-04	1	13:40	LH	6	125.2	6.6%	100.1%	117.4	PASS
LT-46	MH-21 to Tank	SF-04	2	13:50	LH	6	124.4	8.4%	97.8%	114.8	PASS
LT-47	MH-21 to Tank	SF-04	3	14:00	LH	6	124.4	8.0%	98.2%	115.2	PASS
LT-48	MH-21 to Tank	SF-04	4	14:10	LH	6	125.6	8.7%	98.5%	115.5	PASS
LT-49	Tank to Pump House	SF-04	1	14:20	LH	6	124.6	8.1%	98.3%	115.3	PASS
LT-50	Tank to Transducer	SF-04	1	14:30	LH	6	124.0	7.7%	98.2%	115.1	PASS
LT-51	Tank to Pump House	SF-04	2	14.40	LH	6	127.3	9.2%	99.4%	116.6	PASS
LT-52	Tank to Transducer	SF-04	2	14.50	LH	6	126.1	9.4%	98.3%	115.3	PASS
LT-53	Tank to Pump House	SF-04	3	15:00	LH	6	123.9	8.3%	97.5%	114.4	PASS
LT-54	Tank to Transducer	SF-04	3	15:10	LH	6	125.0	9.1%	97.7%	114.6	PASS
	4.000										

Reviewed by

Envirotech Engineering & Consulting. Inc

5/27/10

101	н	e	17	ŧ.

Washington Closure Hanford

Submittal:

05-188 Earthwork Subgrade

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project: ERDF Cells 9-10 Expansion Proctor: SF-01 S013213A00 Max Dry Density (pcf): 113.6 Project ID 5/27/2010 Optimum Moisture (%): 12.4% Report No 05-016-077 Date SF-04 Brown/Black Sand Proctor: Description: Troxler ID: 27881 Max Dry Density (pcf): 117.3 2243 Moist Std: 650 Density Std: Optimum Moisture (%): 12.5% Moist offset: Density offset: -Proctor: SF-05 Allowable Moisture Range N/A Max Dry Density (pcf): 124.4 Optimum Moisture (%): Necessary % Proctor: 95% 12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
	Tank #3 Subgrade (Ne	cessary	95 %	Compac	tion)						
T3-01	Tank Footprint	SF-04	1	9:20	LH	6	124.7	8.3%	98.2%	115.1	PASS
T3-02	Tank Footprint	SF-04	1	9:25	LH	6	127.0	9.3%	99.1%	116.2	PASS
Leachate	Transmission: MH-32 to	MH-34	(Nece	essary 90	0% Com	paction)					
LT-55	Backfill: MH-32 to MH-34	SF-05	SG	12:30	LH	12	125.0	7.1%	93.8%	116.7	PASS
LT-56	Backfill: MH-32 to MH-34	SF-05	SG	12:35	LH	12	124.3	7.6%	92.9%	115.5	PASS
LT-57	Backfill: MH-32 to MH-34	SF-05	1	13:45	LH	12	125.1	8.3%	92.9%	115.5	PASS
LT-58	Backfill: MH-32 to MH-34	SF-05	1	13:50	LH	12	130.2	9.4%	95.7%	119.0	PASS

Reviewed by: TVJ			
1 a/EVa		5-/20/10	
Envirotech Engineering & Consulting, Inc		Date	

01	2	-	_	4	
CI	ı	е	п	τ	

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 231-4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID

S013213A00

Report No.

5/28/2010 05-016-078 Date

Description:

Brown/Black Sand

Troxler ID: Moist Std:

27881

644

2245 Density Std: Density offset:

Moist offset: Allowable Moisture Range

Necessary % Proctor:

N/A 95% Proctor:

SF-06

Max Dry Density (pcf):

120.8 Optimum Moisture (%): 14.3%

Proctor:

SF-04

117.3

Max Dry Density (pcf): Optimum Moisture (%):

12.5%

Proctor:

SF-05

Max Dry Density (pcf):

124.4

Optimum Moisture (%):

12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass /
Leachate	Transmission: MH-32 to	MH-34	(Nece	ssary 90)% Com	paction)					
LT-59	Backfill: MH-32 to MH-34	SF-06	2	7:30	LH	12	118.3	7.9%	90.8%	109.6	PASS
LT-60	Backfill: MH-32 to MH-34	SF-06	2	7:35	LH	12	124.2	7.8%	95.4%	115.2	PASS
LT-61	Backfill: MH-32 to MH-34	SF-06	3	8:30	LH	12	132.5	11.4%	98.5%	118.9	PASS
LT-62	Backfill: MH-32 to MH-34	SF-06	3	8:35	LH	12	125.2	7.8%	96.1%	116.1	PASS
Leachate	Transmission: MH-32 to	MH-34	(Nece	ssary 95	% Com	paction)					
LT-63	Backfill: MH-32 to MH-34	SF-06	4	10:00	LH	6	124.8	6 9%	96.6%	116.7	PASS
LT-64	Backfill: MH-32 to MH-34	SF-06	4	10:35	LH	6	126.6	8.1%	96.9%	117.1	PASS
LT-65	Backfill: MH-32 to MH-34	SF-06	5	11:30	LH	6	129.7	10.2%	97.4%	117.7	PASS
LT-66	Backfill: MH-32 to MH-34	SF-06	5	11:35	LH	6	129.6	10.4%	97.2%	117.4	PASS
LT-67	Backfill: MH-32 to MH-34	SF-06	6	13:00	LH	6	122.6	5.5%	96.2%	116.2	PASS
LT-68	Backfill: MH-32 to MH-34	SF-06	6	13:05	LH	6	124.3	6.4%	96.7%	116.8	PASS
LT-69	Backfill: MH-32 to MH-34	SF-06	7	14:40	LH	6	121.5	5.4%	95.4%	115.3	PASS
LT-70	Backfill: MH-32 to MH-34	SF-06	7	14:45	LH	6	127.4	7.4%	98.2%	118.6	PASS
								The state of the s			

Reviewed by:

Envirotech Engineering & Consulting. Inc.

6/1/10

BY SAND CONE (ASTM 1556)

Client:

WCH

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street T Enid, OK 73701 (580) 234-8780 T Fax (580) 237-4302

Sample Information

Contact Name.	Charlie Skiba	1		Sample ID:	LT-66
Project:	S013213A00			Sample Description:	Brown/Black Sand
Project Location:	ERDF Cells 9	-10		Sampling Date:	5/28/2010
Tested By:	L. Hay	Date:	5/28/2010	Sampled By:	L.Hay
Reviewed By:	J. Voss/	Date:	6/1/2010	Date Received:	5/28/2010
Comments	740			Report No.:	05-016-078

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3955.60 g
2. Mass of Proctor mold + sand, W ₂	5404.60 g
3. Volume of mold, V ₁	0.03 ft
4. Dry unit weight, Y _{d (sand)} = W ₂ - W ₁	95.84 lb/ft ³
V_1	

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6374.50 g
6.	Mass of bottle + cone + sand (after use), W ₄	4749.20 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.58 lb

8. Mass of bottle + cone + sand (before use), W ₆	4958.4 g
9 Mass of bottle + cone + sand (after use), W ₈	1750.5 g
10. Volume of hole, $V_2 = W_6 - W_8 - W_c$	0.0264 63
y d (sand)	0.0364 ft ³
11. Mass of gallon can, W ₅	506.10 g
12. Mass of gallon can + moist soil, W ₇	2655.60 g
13. Mass of gallon can + dry soil, W ₉	2447.50 g
14. Moist unit weight of soil in field, $\gamma_1 = W_7 - W_5 / V_2$	130.16 lb/ft ³
15. Moisture content in the field, w (%) = W ₇ - W ₉ X 100	10.79/
W_9 - W_5	10.7%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	117.56 lb/ft ³
17. Comparision moisture content =	10.4%
18. Dry unit weight comparison =	117.4 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

95%

2500 N. 11th Street | Enid, OK 73701 580) 234-8780 | Fax 580) 237-4302

Soil Information

Project: ERDF Cells 9-10 Expansion S013213A00 Project ID 6/1/2010 Report No. 05-016-079 Date Brown/Black Sand Description: Troxler ID 27881 Moist Std 643 Density Std: 2232 Density offset: Moist offset: N/A Allowable Moisture Range

Tru

Necessary % Proctor:

SF-06 Proctor: 120.8 Max Dry Density (pcf): Optimum Moisture (%): 14.3% Proctor: SF-04 Max Dry Density (pcf): 117.3 Optimum Moisture (%): 12.5% SF-05 Proctor 124.4 Max Dry Density (pcf): Optimum Moisture (%): 12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Leachate	Transmission: MH-32 to	MH-34	(Nece	ssary 95	% Com	paction)					
LT-71	Backfill: MH-32 to MH-34	SF-06	8	8:20	LH	6	127.4	7.0%	98.6%	119.1	PASS
LT-72	Backfill; MH-32 to MH-34	SF-06	8	8:25	LH	6	127.9	7.3%	98.7%	119.2	PASS
LT-73	Backfill: MH-32 to MH-34	SF-06	9	10:00	LH	6	127.7	8.4%	97.5%	117.8	PASS
LT-74	Backfill: MH-32 to MH-34	SF-06	9	10:05	LH	6	128.9	8.6%	98.3%	118.7	PASS
LT-75	Backfill: MH-32 to MH-34	SF-06	10	13:00	LH	6	128.1	8.1%	98.1%	118.5	PASS
LT-76	Backfill: MH-32 to MH-34	SF-06	10	13:05	LH	6	125.1	8.7%	95.3%	115.1	PASS
LT-77	Backfill: MH-32 to MH-34	SF-06	11	16:05	LH	6	126.9	9.2%	96.2%	116.2	PASS
LT-78	Backfill: MH-32 to MH-34	SF-06	11	16:10	LH	6	126.3	8.9%	96.0%	116.0	PASS

Reviewed by.	
Aut EVa	6/3/10
Envirotech Engineering & Consulting. Inc	Date

-		
5	0.00	4
1.00	33-	F 2 4.

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project: Project ID:

Report No Description: Troxler ID:

Moist Std Moist offset

Allowable Moisture Range Necessary % Proctor:

ERDF Cells 9-10 Expansion

S013213A00

6/8/2010 05-016-084 Date Brown/Black Sand

27881

2233 648 Density Std: Density offset:

> N/A 90%

Proctor SF-06

120.8 Max Dry Density (pcf) Optimum Moisture (%): 14.3%

Proctor SF-04 Max Dry Density (pcf): 117.3

Optimum Moisture (%): 12.5%

Proctor: SF-05 Max Dry Density (pcf) 124.4

Optimum Moisture (%): 12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass /
Leachate	Transmission: MH-35 to	MH-36	(Nece	ssary 90	% Com	paction)					
LT-79	MH-35 to MH-36 West Fill	SF-06	1	13:45	LH	12	128.6	6.5%	100 0%	120.8	PASS
LT-80	MH-35 to MH-36 East Fill	SF-06	1	13:50	LH	12	127.2	8.1%	97.4%	117.7	PASS
LT-81	MH-35 to MH-36 East Fill	SF-06	2	14:00	LH	12	120.7	7.1%	93.3%	112.7	PASS
LT-82	MH-35 to MH-36 East Fill	SF-06	3	14:08	LH	12	121.1	9.3%	91.7%	110.8	PASS
LT-83	MH-35 to MH-36 West Fill	SF-06	2	15:00	LH	12	124.3	7.2%	96.0%	116.0	PASS
LT-84	MH-35 to MH-36 West Fill	SF-06	3	16:20	ΓH	12	120.6	4.8%	95.3%	115.1	PASS
					Anni Anni Anni Anni Anni Anni Anni Anni						
					- Andrews - Andr						

14) Reviewed by:

Envirotech Engineering & Consulting. Inc.

6/10/10

m	ŧ	:	À.	-	4.
C	ı	ŧ	e	П	ι.,

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

ENVIROTECH

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

Project ID: Report No Description:

Troxler ID Moist Std

Moist offset: Allowable Moisture Range:

Necessary % Proctor:

ERDF Cells 9-10 Expansion

S013213A00

5-16-087 Date Brown/Black Sand

27881

646 Density Std: Density offset: -

> N/A 90%

6/11/2010

2253

Proctor:

SF-06

120.8 Max Dry Density (pcf): Optimum Moisture (%): 14.3%

Proctor:

SF-04

Max Dry Density (pcf): Optimum Moisture (%):

117.3 12.5%

Proctor:

SF-05 124.4

Max Dry Density (pcf): Optimum Moisture (%): 12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (In.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Leachate	Transmission: MH-35 to	MH-36	(Nece	ssary 90	% Com	paction)					
LT-85	MH-35 to MH-36 East Fill	SF-06	4	8:41	JS	12	128.9	6.7%	100.0%	120.8	PASS
LT-86	MH-35 to MH-36 West Fill	SF-06	4	12:22	JS	12	125.4	5.3%	98.6%	119.1	PASS
Leachate	Transmission: MH-35 to	MH-36	(Nece	ssary 95	% Com	paction)					
LT-87	MH-35 to MH-36 East Fill	SF-06	5	15:16	JS	6	128.7	8.1%	98.6%	119.1	PASS
LT-88	MH-35 to MH-36 West Fill	SF-06	5	15:19	JS	6	129.0	7.6%	99.2%	119.9	PASS

Envirotech Engineering & Consulting, Inc.

Reviewed by:

6/16/10

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street 1 Enid, OK 73701

(580) 234-8780 | Fax (580) 237-4302

Soil Information

Project

Project ID:

Report No Description

Troxler ID:

Moist Std:

Moist offset: Allowable Moisture Range:

Necessary % Proctor:

ERDF Cells 9-10 Expansion

S013213A00

5-16-088 Date

Brown/Black Sand

27881 643

Density Std: Density offset:

> N/A 95%

6/14/2010

2221

Proctor

SF-06 Max Dry Density (pcf): 120.8

Optimum Moisture (%): 14.3%

Proctor SF-04

Max Dry Density (pcf):

Optimum Moisture (%): 12.5%

Proctor:

SF-05 124.4

Max Dry Density (pcf): Optimum Moisture (%):

12.5%

117.3

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Leachate	Transmission: MH-35 to	MH-36	(Nece	ssary 95	% Com	paction)					
LT-89	MH-35 to MH-36 East Fill	SF-06	6	13:00	JS	6	128.1	8.5%	97.7%	118.1	PASS
LT-90	MH-35 to MH-36 West Fill	SF-06	6	13:04	JS	6	128.2	9.3%	97.1%	117.3	PASS
LT-91	MH-35 to MH-36 East Fill	SF-06	7	15:16	JS	6	128.2	6.2%	99.9%	120.7	PASS
LT-92	MH-35 to MH-36 West Fill	SF-06	7	15:19	JS	6	126.9	7.2%	98.0%	118.4	PASS

LINE		Von	
Envirotech Engineering	8	Consulting.	Inc

6/21/10

~	27		

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project: Project ID Report No

Description: Troxler ID Moist Std: Moist offset:

Allowable Moisture Range: Necessary % Proctor:

ERDF Cells 9-10 Expansion

S013213A00 6/15/2010 5-16-089 Date Brown/Black Sand

27881 642 Density Std: 2226 Density offset: -

> N/A 95%

Proctor: SF-06

Max Dry Density (pcf): 120.8 Optimum Moisture (%): 14.3%

Proctor:

SF-04 Max Dry Density (pcf): 117.3

Optimum Moisture (%): 12.5% SF-05

Proctor:

124.4 Max Dry Density (pcf):

Optimum Moisture (%): 12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass /
_eachate	Transmission: MH-35 to	MH-36	(Nece	ssary 95	% Com	paction)					
LT-93	MH-35 to MH-36 East Fill	SF-06	8	7:06	JS	6	125.3	6.2%	97.7%	118.0	PASS
LT-94	MH-35 to MH-36 West Fill	SF-06	8	7:11	JS	6	124.9	4.2%	99.2%	119.9	PASS
LT-95	MH-35 to MH-36 East Fill	SF-06	9	11:46	JS	6	126.1	7.3%	97.3%	117.5	PASS
LT-96	MH-35 to MH-36 West Fill	SF-06	9	13.04	JS	6	128.2	6.3%	99.8%	120.6	PASS
A STATE OF THE STA											
	•		_								

Envirotech Engineering & Consulting. Inc

Reviewed by

6/18/10

	4.00 PS	n n
-	lien	L.

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

95%

2500 N. 11th Street T Enid, OK 73701 (580) 234-8780 T Fax (580) 237-4302

Soil information

Necessary % Proctor:

Project:	ERDF Cell	ERDF Cells 9-10 Expansion						
Project ID:	S013213A	S013213A00						
Report No.	5-16-090	Date	6/16/2010					
Description:	Brown/Blac	k Sand						
Troxler ID:	27881							
Moist Std:	643	Density Std:	2207					
Moist offset:	-	Density offse	et: -					
Allowable Moisture Range		N/A	-					

Proctor	SF-06
Max Dry Density (pcf):	120.8
Optimum Moisture (%):	14.3%
Proctor:	SF-04
Max Dry Density (pcf):	117.3
Optimum Moisture (%):	12.5%
Proctor:	SF-05
Max Dry Density (pcf):	124.4
Optimum Moisture (%):	12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
Leachate	Transmission: MH-35 to	MH-36	(Nece	ssary 95	5% Com	paction)					
LT-97	MH-35 to MH-36 East Fill	SF-06	10	7:06	JS	6	130.7	8.7%	99.5%	120.2	PASS
LT-98	MH-35 to MH-36 West Fill	SF-06	10	7:11	JS	6	129.5	9.5%	97.9%	118.3	PASS
		15									

	and the state of t										

Reviewed by:	
1.121	6/18/10
Envirotech Engineering & Consulting. Inc	Date '

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

14.3%

SF-04

Soil Information

Project:

Project ID: Report No.

Description: Troxler ID:

Moist Std: Moist offset:

Allowable Moisture Range: Necessary % Proctor:

ERDF Cells 9-10 Expansion

S013213A00 5-16-091 Date

Brown/Black Sand 27881

643 Density Std: Density offset:

> N/A 95%

6/17/2010

2221

Proctor:

SF-06 Max Dry Density (pcf): 120.8

Optimum Moisture (%): Proctor:

Max Dry Density (pcf): 117.3 Optimum Maisture (%): 12.5% SF-05

Proctor:

Max Dry Density (pcf): 124.4 Optimum Moisture (%): 12.5%

Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass /
Transmission: MH-35 to	MH-36	(Nece	ssary 95	% Com	paction)					
MH-35 to MH-36 West Fill	SF-06	11	11:55	JS	6	125.0	6.4%	97.3%	117.5	PASS
MH-35 to MH-36 East Fill	SF-06	11	11:59	JS	6	123.5	7.5%	95.1%	114.9	PASS
	Transmission: MH-35 to	Transmission: MH-35 to MH-36 MH-35 to MH-36 West Fill SF-06	Transmission: MH-35 to MH-36 (Nece	Transmission: MH-35 to MH-36 (Necessary 95 MH-35 to MH-36 West Fill SF-06 11 11:55	Transmission: MH-35 to MH-36 (Necessary 95% Com MH-35 to MH-36 West Fill SF-06 11 11:55 JS	Transmission: MH-35 to MH-36 (Necessary 95% Compaction) MH-35 to MH-36 West Fill SF-06 11 11:55 JS 6	Location Pr. Lift Time Oper (in.) Depth (in.) Density (pcf) e Transmission: MH-35 to MH-36 (Necessary 95% Compaction) MH-35 to MH-36 West Fill SF-06 11 11:55 JS 6 125.0 125.0	Location Pr. Lift Time Oper (in.) Density (pcf) Content (%) e Transmission: MH-35 to MH-36 (Necessary 95% Compaction) MH-35 to MH-36 West Fill SF-06 11 11:55 JS 6 125.0 6.4%	Location Pr. Lift Time Oper Density (pcf) Content (%)	Location Pr. Lift Time Oper Depth (in.) Density (pcf) Content (%) Content (calc) Content (calc)

Reviewed by

Envirotech Engineering & Consulting. Inc

6/21/10

0	12.	-	-44	٠		
10	181	랟	2.5	1	ú	

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK | 73701

(580) 234-8780 | Fax (580) 237-4302

Soil Information

ERDF Cells 9-10 Expansion Project: S013213A00 Project ID 5-16-094 Date 6/22/2010 Report No. Description Brown/Black Sand 27881 Troxler ID: 2229 Moist Std 640 Density Std: Moist offset Density offset: N/A

Allowable Moisture Range

Necessary % Proctor:

Proctor: SF-06

120.8 Max Dry Density (pcf): Optimum Moisture (%): 14.3%

Proctor

SF-04

117.3 Max Dry Density (pcf):

Optimum Moisture (%): 12.5%

SF-05

Max Dry Density (pcf): Optimum Moisture (%):

Proctor

124.4 12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass /
Electrical	Duct Bank between Ce	Il 9 and	10 (Ne	cessary	95% Co	mpaction	1)				
EB-05	Duct Bank West End	SF-06	2	8:15	JS	6	121.8	6.0%	95.1%	114.9	PASS
EB-06	Duct Bank East End	SF-06	1	9:25	JS	6	129.8	11.5%	96.4%	116.4	PASS
EB-07	Duct Bank East End	SF-06	2	14:50	JS	6	129.0	12.0%	95.3%	115.2	PASS

95%/90%

s not performed on the firs	t lift on th	ie we	est end of	the duc	t back tr	ench, CQA	shall perfor	m the test in	Report 5-1	6-095
sion Line MH-37 to MH-3	38 (Nece	essar	y 90% Co	mpactic	n)					
MH-37 to MH-38 West	SF-06	1	13:21	JS	6	119.1	10.9%	88.9%	107.4	FAIL
MH-37 to MH-38 East	SF-06	1	13:56	JS	6	117.7	12.0%	87.0%	105.1	FAIL
	sion Line MH-37 to MH-3 MH-37 to MH-38 West	sion Line MH-37 to MH-38 (Nece MH-37 to MH-38 West SF-06	sion Line MH-37 to MH-38 (Necessar MH-37 to MH-38 West SF-06 1	sion Line MH-37 to MH-38 (Necessary 90% Co MH-37 to MH-38 West SF-06 1 13:21	sion Line MH-37 to MH-38 (Necessary 90% Compaction MH-37 to MH-38 West SF-06 1 13:21 JS	sion Line MH-37 to MH-38 (Necessary 90% Compaction) MH-37 to MH-38 West SF-06 1 13:21 JS 6	sion Line MH-37 to MH-38 (Necessary 90% Compaction) MH-37 to MH-38 West SF-06 1 13:21 JS 6 119.1	sion Line MH-37 to MH-38 (Necessary 90% Compaction) MH-37 to MH-38 West SF-06 1 13:21 JS 6 119.1 10.9%	sion Line MH-37 to MH-38 (Necessary 90% Compaction) MH-37 to MH-38 West SF-06 1 13:21 JS 6 119.1 10.9% 88.9%	MH-37 to MH-38 West SF-06 1 13:21 JS 6 119.1 10.9% 88.9% 107.4

The backfill material between MH-37 and MH-38 has changed consistancy; therefore, a new proctor shall be performed

Reviewed	by:	-

Envirotech Engineering & Consulting. Inc.

6/24/10 Date

-					
	î è		279	٠	٧
C	ŧŧ	c	11	π,	

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

ENVIROTECH

2500 N. 11th Street | Enid, OK 73701 580) 234-8780 | Fax (580) 237-4302

> SF-06 120.8 14.3% SF-08 118.0 11.3% DGC-01

> > Pass / Fail

Soil Information

Project:	ERDF Cells	9-10 Expansion	
Project ID:	S013213A	00	
Report No	5-16-095	Date	6/23/
Description	Brown/Blac	ck Sand	
Troxler ID	27881		
Moist Std	637	Density Std:	
Moist offset:	*	Density offse	t: -

Allowable Moisture Range

Necessary % Proctor:

DF Cells 9-1	0 Expan	sion		Proctor
13213A00				Max Dry Density (pcf):
16-095	Date	e	3/23/2010	Optimum Moisture (%).
own/Black S	Sand			Proctor
881				Max Dry Density (pcf):
7	Density	Std:	2227	Optimum Moisture (%):
	Density	offset:	-	Proctor:

Max Dry Density (pcf): 142.7 5.7% Optimum Moisture (%):

, , , , ,						-					
Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	F
											1

N/A

95%/90%

Transmission Line MH-37 to MH-38 (Necessary 90% Compaction) MH-37 to MH-38 West 116.9 11.0% 89.3% 105.3 FAIL LT-103 SF-08 2 7.45 JS 6 LT-104 MH-37 to MH-38 East SF-08 2 9:32 JS 6 118.3 9.9% 91.2% 107.6 PASS PASS SF-08 3 12:32 JS 6 115.0 7.3% 90.8% 107.2 LT-105 MH-37 to MH-38 West MH-37 to MH-38 East SF-08 3 12:35 JS 6 114.2 6.3% 91.0% 107.4 **PASS** LT-106 LT-107 MH-37 to MH-38 West SF-08 4 15:12 JS 6 116.3 8.0% 91.3% 107.7 PASS LT-108 MH-37 to MH-38 East SF-08 15:18 JS 116.5 9.3% 90.3% 106.6 PASS Transmission Line MH-37 to MH-38 From Report 5-16-094 (Necessary 90% Compaction) 10.9% 91.0% 107.4 PASS MH-37 to MH-38 West SF-08 13:21 JS 6 119.1 LT-101 JS 6 12.0% 89.1% 105.1 FAIL LT-102 MH-37 to MH-38 East SF-08 13:56 117.7 Missed Electrical Bank Test Between Cell 9 and 10 (Necessary 95% Compaction) 6.2% 1208 PASS EB-08 Cell 9 and 10 West SF-06 13:23 JS 12 128.3 100.0%

	1		1		 		A		
Reviewed by.	TW								
1.	181/n					8	120/10	ن	
Envirotech Engin	eering & Consulting.	Inc			-	Date			

1	5 .	-	_		
٠.	н	0	m	ч	7

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street T Enid, OK 73701 580: 234-8780 T Fax 580: 237 4302

Soil Information

Project [*]	ERDF Cells	s 9-10 Expansion	on	Proctor:	SF-07
Project ID:	S013213A0	00		Max Dry Density (pcf):	117.3
Report No	5-16-096	Date	6/24/2010	Optimum Moisture (%):	12.5%
Description	Brown/Blac	k Sand		Proctor	SF-08
Troxler ID	27881			Max Dry Density (pcf):	118.0
Moist Std:	643	Density Std:	2205	Optimum Moisture (%):	11.3%
Moist offset:	46.	Density offse	et: -	Proctor:	
Allowable Moisture Range	- company of the control of the cont	N/A		Max Dry Density (pcf):	
Necessary % Proctor		90%		Optimum Moisture (%):	

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Leachate	Transmission Line Nec	essary (Comp	action -	90%						
LT-109	MH-37 to MH-38 East	SF-08	6	11:51	JS	12	121.7	8.6%	95.0%	112.1	PASS
LT-110	MH-37 to MH-38 West	SF-08	6	11.56	JS	12	120.4	11.7%	91.3%	107.8	PASS
		STATE OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS									
		en (Congressor des									
		RAAAA RAAYA									
		W 4999									

Reviewed by: TW	
11/8/1/	7/12/10
Envirotech Engineering & Consulting. Inc	Date

~	 _	_	۸.
	0		

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID:

S013213A00

Report No.

5-16-097 Date

Brown/Black Sand

Description: Troxler ID:

Allowable Moisture Range:

Necessary % Proctor:

27881

Moist Std Moist offset: 647

Density Std

2237 Density offset:

6/25/2010

N/A

90%

Proctor:

SF-07

Max Dry Density (pcf):

117.3

Optimum Moisture (%):

12.5%

Proctor:

SF-08

Max Dry Density (pcf)

118.0 Optimum Moisture (%): 11.3%

Proctor:

Max Dry Density (pcf):

Optimum Moisture (%):

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
Leachate	Transmission Line Nec	essary (Comp	action -	90%						
LT-111	MH-37 to MH-38 East	SF-08	6	13:08	JS	6	117.6	10.4%	90.3%	106.5	PASS
LT-112	MH-37 to MH-38 West	SF-08	6	13:12	JS	6	1137	6.5%	90.5%	106.8	PASS
1											
o de la companya de l											

Envirotech, Engineering & Consulting. Inc

Reviewed by

7/11/10 Date

\sim	61	c	*	Æ	Ł	

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 13th Street | Enid, OK 73701 .580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID

S013213A00

05-016-111 Date

7/16/2010

Report No. Description: Troxler ID

Moist Std:

Moist offset:

Allowable Moisture Range:

Necessary % Proctor:

1/4 Base Rock - Brown/Black Sand

27881

646

Density Std: 2211

Density offset:

N/A

95%

Proctor

SF-01

Max Dry Density (pcf):

Optimum Moisture (%):

113.6 12.4%

Proctor:

Max Dry Density (pcf):

Optimum Moisture (%):

Proctor:

SF-09

Max Dry Density (pcf):

139.8

Optimum Moisture (%):

7.5%

Comments SF-09 is an estimated value based on historical data (SF-11 from Cells 7-8)

Comments SF-09 Proctor will be completed in the coming week

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
North East	Ramp (95% Modified	Proctor)									
R-03	East Ramp Fill	SF-09	2	6:55	LH	4	143.1	3.2%	99.2%	138.7	PASS
R-04	East Ramp Fill	SF-09	2	7:00	LH	4	146.6	3.6%	101.2%	141.5	PASS
Leachate T	ransmission Line (95	% Procto	r)			***************************************					
LT-113	Manhole No. 21	SF-01	5	9:30	LH	6	122.6	12.8%	95.7%	108.7	PASS
LT-114	Manhole No. 21	SF-01	6	10:00	LH	6	122.6	10.9%	97.3%	110.6	PASS
LT-115	Manhole No. 21	SF-01	7	14:10	LH	6	123.3	12.2%	96.7%	109.9	PASS
LT-116	Manhole No. 21	SF-01	8	14:35	LH	6	122.9	11.8%	96.8%	109.9	PASS

Reviewed by.	IW
	1/EV-
Envirotech Engine	ering & Consulting. Inc

7/26/10

BY SAND CONE (ASTM 1556)

Client:

WCH

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street 1 Enid, OK 73701 1580) 234-8780 1 Fax (580) 237-4302

Sample Information

Contact Name:	Charlie Skib	a E		Sample ID:	LT-116
Project:	S013213A00			Sample Description:	Brown/Black Sand
Project Location:	ERDF Cells	9-10	-	Sampling Date:	7/16/2010
Tested By:	L. Hay	Date.	7/16/2010	Sampled By.	L.Hay
Reviewed By:	T. Williams	Whate:	7/20/2010	Date Received:	7/16/2010
Comments				Report No.	05-016-111

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3955.30 g
2 Mass of Proctor mold + sand, W ₂	5387.10 g
3. Volume of mold, V ₁	0.03 ft
4. Dry unit weight, Y _{d (sand)} = W ₂ - W ₁	94.70 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	4832.80 g
6.	Mass of bottle + cone + sand (after use), W ₄	3215.40 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.57 lb

8. Mass of bottle + cone + sand (before use), W ₆	6115.7 g
9. Mass of bottle + cone + sand (after use), W ₈	3078.4 g
10. Volume of hole, $V_2 = \frac{W_8 - W_8 - W_c}{7 \text{ d (sand)}}$	0.0331 ft ³
11. Mass of gallon can, W ₅	505.70 g
12. Mass of gallon can + moist soil, W ₇	2325.40 g
13 Mass of gallon can + dry soil, W ₉	2123.80 g
14. Moist unit weight of soil in field. y = W ₇ - W ₅ / V ₂	121.36 lb/ft ³
15 Moisture content in the field, w (%) = $\frac{W_7 - W_9}{W_9 - W_5}$ X 100	12.5%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	107 92 lb/ft ³
17. Comparision moisture content =	11.8%
18. Dry unit weight comparison =	109.9 lb/ft ³

C		

Washington Closure Hanford

Submittal:

05-188 Earthwork Field Data

2500 N | 11th Street | Enid OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

SF-01 Proctor:

Project ID:

S013213A00

113.6 Max Dry Density (pcf)

Report No.

05-016-112 Date 7/19/2010

12.4% Optimum Moisture (%):

Description.

1/4 Base Rock - Brown/Black Sand

SF-08 Proctor

Troxier ID

27881

Max Dry Density (pcf): Optimum Moisture (%):

118.0 11.3%

Moist Std: Moist offset: 635 Density Std: Density offset:

Proctor

SF-09

Allowable Moisture Range

N/A

Max Dry Density (pcf)

148.0

Necessary % Proctor:

95%

Optimum Moisture (%):

3.5%

Comments SF-09 is an estimated value based on historical data. SF-09 Proctor will be completed in the coming week

2229

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
North Eas	st Ramp (95% Modified F	Proctor)									
R-05	East Ramp Fill	SF-09	3	13.20	LH	6	145.8	3.2%	95.5%	141.3	PASS
Leachate	Transmission Line										
LT-117	Drain Line from MH-32	SF-08	1	13:08	LH	12	124.8	7.8%	98.1%	115.8	PASS
LT-118	Drain Line from MH-32	SF-08	2	13:10	LH	6	126.7	8.1%	99.3%	117.2	PASS
LT-119	Orain Line from MH-32	SF-08	3	13:05	LH	6	122.2	7.1%	96.7%	114.1	PASS
LT-120	Drain Line from MH-32	SF-08	4	13:13	LH	6	120.5	6.9%	95.5%	112.7	PASS
LT-121	Drain Line from MH-32	SF-08	5	14:35	LH	6	124.2	8.9%	96.7%	114.0	PASS
LT-122	Drain Line from MH-32	SF-08	6	14:44	LH	6	124.4	7.5%	98.1%	115.7	PASS
LT-123	Drain Line from MH-33	SF-08	1	16:15	LH	6	131.7	8.1%	103.2%	121.8	PASS
LT-124	Drain Line from MH-33	SF-08	2	16.18	LH	6	130.2	10.5%	99.9%	117.8	PASS
LT-125	Drain Line from MH-33	SF-08	3	16:21	LH	6	120.9	5.8%	96.8%	114.3	PASS

	***************************************	-44	-
Reviewed	by	1	W

Envirotech Engineering & Consulting. Inc

7/26/100 Date

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

90%

2500 N. 11th Street T Enid OK 73701 (580) 234-8780 T Fax (580) 237-4302

Soil Information

Project: ERDF Cells 9-10 Expansion Project ID: S013213A00 Report No 05-016-114 Date 7/21/2010 Brown Black Sand Description 27881 Troxler ID: 2231 Moist Std: 646 Density Std: Moist offset: Density offset: Allowable Moisture Range. N/A

Necessary % Proctor:

Proctor:	SF-01
Max Dry Density (pcf):	113.6
Optimum Moisture (%):	12.4%
Proctor	SF-08
Max Dry Density (pcf):	118.0
Optimum Moisture (%):	11.3%
Proctor:	SF-09
Max Dry Density (pcf):	148.0
Optimum Moisture (%):	3.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Drain Line	Backfill from MH-33 (90% Com	pactio	on)							
LT-126	9' North of MH-33	SF-08	1	10:05	JS	6	127.2	8.6%	99.3%	117.1	PASS
LT-127	5' North of MH-33	SF-08	2	10:41	JS	6	125.9	7.4%	99.3%	117.2	PASS
LT-128	7' North of MH-33	SF-08	3	11:03	JS	6	124.1	5.6%	99.6%	117.5	PASS
LT-129	8' North of MH-33	SF-08	4	12:35	JS	6	125.5	6.1%	100.2%	118.3	PASS
LT-130	4' North of MH-33	SF-08	5	15:01	JS	6	124.9	6.7%	99.2%	117.1	PASS

Reviewed t	by:	TW	,
	1	1:11	

Envirotech Engineering & Consulting. Inc

8/2/10

Page 1 of 1 C.3: 44 of 87

~	٠.	_			
	H	ρ	п	Έ	1

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

SF-01

113.6

12.4%

SF-08

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID:

S013213A00

Report No.

05-016-126 Date 8/5/2010 Brown Black Sand

Description: Troxler ID

27881

Moist Std:

640 Density Std: 2227

Moist offset:

Density offset:

Allowable Moisture Range:

N/A

Necessary % Proctor:

Max Dry Density (pcf): 118.0 Optimum Moisture (%): 11.3% SF-09 Proctor: Max Dry Density (pcf): 148.0 90% Optimum Moisture (%): 3.5%

Proctor:

Proctor:

Max Dry Density (pcf):

Optimum Moisture (%):

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
Drain Line	Backfill from MH-34 a	nd MH-3	5 (90%	6 Compa	action)						
LT-131	6-ft W of MH-34	SF-08	1	15:03	JS	12	125.3	8.0%	98.3%	116.0	PASS
LT-132	200-ft W of MH-34	SF-08	1	16:02	JS	12	115.9	7.1%	91.7%	108.2	PASS
LT-133	50-ft E of MH-35	SF-08	1	16:08	JS	12	129.6	11.1%	98.9%	116.7	PASS
	30.00										
		-									

Reviewed by: TW

Envirotech Engineering & Consulting. Inc

8/10/10

-	12	٠.
-	пeп	τ:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N | 11th Street | Enid, OK | 73701 (580) 234-8780 | 1 Fax (580) 237-4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID

S013213A00

Report No

05-016-127 Date 8/6/2010

Description:

Brown Black Sand 27881

Troxler ID: Moist Std:

646

Moist offset

Density Std:

Density offset:

Allowable Moisture Range Necessary % Proctor:

N/A

2244

90%

Proctor

SF-01

Max Dry Density (pcf):

113.6

Optimum Moisture (%):

12.4%

Proctor:

SF-08

Max Dry Density (pcf): Optimum Moisture (%):

11.3%

Proctor

SF-09

Max Dry Density (pcf):

148.0

Optimum Moisture (%):

3.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Drain Line	Backfill from MH-38 to	MH-39	90%	Compac	tion)						
LT-134	30-ft North of MH-38	SF-08	1	6.55	JS	12	119.1	8.5%	93.0%	109.8	PASS
	464										

Reviewed by

Envirotech Engineering & Consulting. Inc

TW

8110/10

_							
C	ı	Ď	0		٦.	٠	7
~	6	Æ	c	3	1	٠.	

Washington Closure Hanford

Submittal:

05-188 Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID:

S013213A00

Report No. Description 05-016-129 Date Brown Black Sand

Troxler ID:

27881

Moist Std:

2226 644 Density Std: Density offset:

Moist offset: Allowable Moisture Range:

N/A

Necessary % Proctor:

90% / 95%

8/9/2010

Proctor

SF-01

Max Dry Density (pcf)

113.6 Optimum Moisture (%):

12.4%

Proctor:

SF-08 118.0

Max Dry Density (pcf): Optimum Moisture (%):

11.3%

Proctor

SF-09

Max Dry Density (pcf):

148.0

Optimum Moisture (%):

3.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Backfill fro	om MH-34 and MH-35 (90% Com	pacti	on)							
LT-135	150-ft E of MH-35	SF-08	2	10:05	JS	12	122.7	8.7%	95.7%	112.9	PASS
LT-136	50-ft E of MH-35	SF-08	2	10:08	JS	12	126.8	10.7%	97.1%	114.5	PASS
LT-137	15-ft W of MH-34	SF-08	2	10:11	JS	12	121.6	7.1%	96.2%	113.5	PASS
LT-138	120-ft E of MH-35	SF-08	3	14:40	JS	12	125.9	7.1%	99.6%	117.6	PASS
LT-139	70-ft E of MH-35	SF-08	3	14:43	JS	12	125.4	6.5%	99.8%	117.7	PASS
LT-140	30-ft W of MH-34	SF-08	3	14:48	JS	12	119.6	6.3%	95.3%	112.5	PASS
Backfill fro	om MH-38 and MH-39 (95% Com	pacti	on)							
LT-141	12-ft N of MH-38	SF-08	2	12:40	JS	6	126.1	9.1%	98.0%	1156	PASS
LT-142	20-ft N of MH-38	SF-08	3	15:15	JS	6	118.9	4.8%	96.1%	113.5	PASS
			and deposit of the								

Reviewed by.

Envirotech Engineering & Consulting. Inc.

8/12/10

~1	18.	_	 A	
		е		

Washington Closure Hanford

Submittal:

05-188 Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID:

S013213A00

Report No

8/10/2010 05-016-130 Date

Description

Brown Black Sand

Troxier ID Moist Std:

27881 649 Density Std 2206

Moist offset:

Density offset:

Necessary % Proctor:

Allowable Moisture Range

N/A

90%

Proctor

SF-01

Max Dry Density (pcf):

113.6

Optimum Moisture (%):

12.4%

Proctor:

SF-08

Max Dry Density (pcf):

118.0 11.3%

Optimum Moisture (%):

Proctor:

SF-09

Max Dry Density (pcf):

148.0

Optimum Moisture (%):

3.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Backfill fro	om MH-34 and MH-35 (90% Con	npacti	on)							
LT-143	100-ft W of MH-34	SF-08	4	10:09	St	12	129.0	12.7%	97.0%	114.5	PASS
LT-144	60-ft E of MH-35	SF-08	4	10:12	JS	12	124.2	9.3%	96.3%	113.6	PASS
LT-145	90-ft E of MH-35	SF-08	4	10:15	JS	12	123.1	8.8%	95.9%	113.1	PASS
LT-146	80-ft W of MH-34	SF-08	5	14:35	JS	12	123.4	9.6%	95.4%	112.6	PASS
LT-147	120-ft E of MH-35	SF-08	5	14:37	JS	12	124.7	8.5%	97.4%	114.9	PASS
LT-148	80-ft E of MH-35	SF-08	5	14:40	JS	12	129.8	10.1%	99.9%	117.9	PASS

TW Reviewed by

Envirotech Engineering & Consulting. Inc.

2/12/10

-	_	
~	ion	.4.
U.	ier	E.

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK | 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project: ERDF Cells 9-10 Expansion Project ID S013213A00 Report No. 05-016-131 Date 8/11/2010 Brown Black Sand Description Troxler ID 27881 Moist Std. 649 Density Std: 2240 Moist offset: Density offset:

Allowable Moisture Range:

Necessary % Proctor:

N/A

95%

Proctor SF-01 Max Dry Density (pcf): 113.6 Optimum Moisture (%): 12.4% Proctor SF-08 Max Dry Density (pcf): 118.0 Optimum Moisture (%): 11.3% Proctor: SF-09 Max Dry Density (pcf): 148.0

3.5% Optimum Moisture (%):

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
Backfill fro	om MH-34 and MH-35 (95% Con	pacti	on)							
LT-149	70-ft E of MH-35	SF-08	6	9:10	JS	6	125.0	6.4%	99.6%	117.5	PASS
LT-150	140-ft E of MH 35	SF-08	6	9:13	JS	6	128.0	9.3%	99.2%	117.1	PASS
LT-151	190-ft E of MH-35	SF-08	6	9:15	JS	6	129.0	11.0%	98.5%	116.2	PASS
LT-152	50-ft W of MH-34	SF-08	7	13:25	JS	6	129.0	12.0%	97.6%	115.2	PASS
LT-153	125-ft W. of MH-34	SF-08	7	13:29	JS	6	130.1	12.6%	97.9%	115.5	PASS
LT-154	180-ft W of MH-34	SF-08	7	13:34	JS	6	127.4	9.4%	98.7%	116.5	PASS
Backfill fro	om MH-38 and MH-39 (95% Com	pacti	on)							
LT-155	30-ft N. of MH-38	SF-08	4	10:35	JS	6	122.7	8.9%	95.5%	112.7	PASS
			- Indiana								

Reviewed by: Envirotech Engineering & Consulting. Inc

8/20/14

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, Ok. 73701

(580) 234-8780 | Fax (580) 237-4302

SF-01

Soil Information

Project ID:

Project ID:
Report No.
Description.
Troxler ID:
Moist Std:

Moist offset:
Allowable Moisture Range:
Necessary % Proctor:

ERDF Cells 9-10 Expansion

\$013213A00 5-16-132 Date 8/12/2010 Brown Black Sand 27881

648 Density Std: 2203
- Density offset: -

N/A 95% Proctor:

Max Dry Density (pcf): 113.6
Optimum Maisture (%): 12.4%
Proctor: SF-08

Max Dry Density (pcf): 118.0
Optimum Moisture (%): 11.3%

Proctor: SF-09

Max Dry Density (pcf): 148.0
Optimum Moisture (%): 3.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
Backfill fro	om MH-34 and MH-35	95% Con	pacti	оп)							
LT-156	90-ft E of MH-35	SF-08	8	14:31	JS	6	126.5	7.3%	99.9%	117.9	PASS
LT-157	160-ft of MH-35	SF-08	8	14:34	JS	6	121.7	7.0%	96.4%	113.7	PASS
LT-158	200-ft of MH-35	SF-08	8	14:39	JS	6	126.8	8.5%	99.0%	116.9	PASS
4											
			-								
			- Advantage								
	VIII.										

11/8/2	8/20/0
Envirotech Engineering & Consulting. Inc	Date

TW/

Reviewed by:

C		

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Fnid, OK 73701

(580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

Project ID Report No. Description Troxler ID Moist Std:

Moist offset: Allowable Moisture Range

Necessary % Proctor:

ERDF Cells 9-10 Expansion

S013213A00 5-16-133 Date

Brown Black Sand

27881 636

> Density offset: N/A

95%

Density Std:

8/13/2010

2212

Proctor:

SF-01 Max Dry Density (pcf) 113.6

Optimum Moisture (%): 12.4%

SF-08 Proctor:

Max Dry Density (pcf): 118.0 Optimum Moisture (%): 11.3%

Proctor: SF-09

148.0 Max Dry Density (pcf): Optimum Moisture (%): 3.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Backfill fr	om MH-34 and MH-35 (S	5% Con	pacti	on)							
LT-159	40-ft West of MH-34	SF-08	9	12:19	JS	6	126.6	7.5%	99.8%	117.8	PASS
LT-160	100-ft West of MH-34	SF-08	9	12:31	JS	6	121.4	3 1%	99 8%	117.7	PASS
LT-161	140-ft West of MH-34	SF-08	9	12:34	JS	6	123.8	5.1%	99.8%	117.8	PASS
		or common of the									

Reviewed	by:	1	W.
		1	10

Envirotech Engineering & Consulting. Inc.

8120/16

BY SAND CONE (ASTM 1556)

2500 N. 11th Street T Enid, OK 73701 -5801 234-8780 T Fax (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name:	Charlie Skiba		Sample ID:	LT-159
Project:	S013213A00		Sample Description:	Admix Soil
Project Location:	ERDF Cells 9-10		Sampling Date:	8/13/2010
Tested By:	J. Schut	8/13/2010	Sampled By:	J. Schut
Reviewed By.	J. Voss / 1/ Date.	8/16/2010	Date Received:	8/13/2010
Comments			Report No.;	5-16-133

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3955.00 g
2. Mass of Proctor mold + sand, W ₂	5394.20 g
3. Volume of mold, V ₁	0.03 ft
4. Dry unit weight, $Y_{d \text{ (sand)}} = \frac{W_2 - W_3}{V_3}$	95.19 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6370.20 g
6.	Mass of bottle + cone + sand (after use), W ₄	4754.00 g
7.	Weight of sand to fill the cone, W _a = W ₄ - W ₃	3.56 lb

8	Mass of bottle + cone + sand (before use), W ₆	5232.1 g		
9.	Mass of bottle + cone + sand (after use), W _a	2505.7 g		
10.	Volume of hole, $V_2 = W_8 - W_8 - W_c$ $V = V_8 - V_8 - V_6$	0.0257 ft ³		
11.	Mass of gallon can, W ₅	372.90 g		
12.	Mass of gallon can + moist soil, W ₇	1890.70 g		
13.	Mass of gallon can + dry soil, W ₉	1779.30 g		
14.	Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	130.13 lb/ft ³		
15.	Moisture content in the field, w (%) = $W_7 - W_9 = X \cdot 100$ $W_9 - W_5$	7.9%		
16.	Dry unit weight in the field, d (sand) = -7 / (1+(w (%)/100)	120.58 lb/ft ³		
17.	Comparision moisture content =	7.5%		
18	Dry unit weight comparison =	117.8 lb/ft ³		

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID

S013213A00

Report No.

8/16/2010 Date 5-16-134

Description

Brown Black Sand

Troxler ID

27881

Moist Std

2190 Density Std: 645

Moist offset:

Density offset: N/A

Allowable Moisture Range. Necessary % Proctor:

95%

Proctor:

SF-01

Max Dry Density (pcf):

113.6 Optimum Moisture (%): 12.4%

SF-08

Proctor

Max Dry Density (pcf): Optimum Moisture (%):

118.0 11.3%

Proctor:

SF-09

Max Dry Density (pcf):

148.0

Optimum Moisture (%):

3.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Backfill fr	om MH-34 and MH-35 (9	95% Com	pacti	on)							
LT-162	60-ft West of MH-34	SF-08	10	8:10	JS	6	122.0	5.4%	98.1%	115.7	PASS
LT-163	125-ft West of MH-34	SF-08	10	8:13	JS	6	120.7	3.1%	99.2%	117.1	PASS
LT-164	190-ft West of MH-34	SF-08	10	8:16	JS	6	117.5	3.9%	95.8%	113.1	PASS
LT-165	40-ft West of MH-34	SF-08	11	15:53	JS	6	127.3	9.0%	99.0%	116.8	PASS
LT-166	90-ft West of MH-34	SF-08	11	15:56	'JS	6	127.6	8.7%	99.5%	117.4	PASS
LT-167	120-ft West of MH-34	\$F-08	11	15:59	JS	6	128.9	9.9%	99.4%	117.3	PASS

Reviewed by:

Envirotech Engineering & Consulting. Inc.

TW.

8/20/10

BY SAND CONE (ASTM 1556)

2500 N - F1th Street - F. Enid, OK - 73701 - 580) 234-8780 - Fax - 580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name:	Charlie Skiba			Sample ID:	LT-164
Project:	S013213A00			Sample Description:	Admix Soil
Project Location.	ERDF Cells 9	-10	news) and	Sampling Date:	8/16/2010
Tested By:	J Schut /	1	8/16/2010	Sampled By:	J. Schut
Reviewed By.	J. Voss	Date:	8/17/2010	Date Received:	8/16/2010
Comments	Tester noted	inconsista	incies in soil	Report No :	5-16-134
	composition	during san	d cone test		

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1. Mass of Proctor me	old, W ₁	3955.00 g
2. Mass of Proctor me	old + sand, W ₂	5394.20 g
3. Volume of mold, V.	[0.03 ft
4. Dry unit weight, Y _d	$(sand) = W_2 - W_1$	95.19 lb/ft ³
	\vee_i	33.73 10/11

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6370.20 g
6.	Mass of bottle + cone + sand (after use). W ₄	4754.00 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.56 lb

8.	Mass of bottle + cone + sand (before use), W ₆	5835.7 g
9	Mass of bottle + cone + sand (after use), W ₈	3042.7 g
10.	Volume of hole, $V_2 = W_6 - W_8 - W_c$ \neq d (sand)	0 0273 ft ³
11.	Mass of gallon can, W₅	505.80 g
12.	Mass of gallon can + moist soil, W ₇	2076.70 g
13.	Mass of gallon can + dry soil, W ₉	2009.40 g
14	Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	127.06 lb/ft ³
15.	Moisture content in the field, w (%) = $W_7 - W_9 - X$ 100 $W_9 - W_5$	4.5%
16.	Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	121.62 lb/ft ³
17.	Comparision moisture content =	3.9%
18.	Dry unit weight comparison =	113.1 lb/ft ³

-			
No.	38	8911	ш.

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

95%

2500 N. 11th Street | Enid, OK 73701

(580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:	ERDF Cells 9-10 Expansion						
Project ID:	S013213A0	S013213A00					
Report No.	5-16-135	Date	8/17/2010				
Description	Brown Blad	Brown Black Sand					
Troxler ID:	27881						
Moist Std:	643	Density Std:	2206				
Moist offset:	- Density offset: -		rt: -				
Allowable Moisture Range	N/A						

Allowable Moisture Range

Necessary % Proctor

Proctor:	SF-01
Max Dry Density (pcf):	113.6
Optimum Moisture (%):	12.4%
Proctor:	SF-08
Max Dry Density (pcf)	118.0
Optimum Moisture (%).	11.3%
Proctor	SF-09
Man Day Danathy (mal)	140.0

Max Dry Density (pcf): Optimum Moisture (%): 3.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Backfill f	rom MH-38 and MH-9 (95	% Com	pactio	n)							
LT-168	MH-38 to MH-9	SF-08	1	15:15	LH	12	116.4	8.9%	90.6%	106.9	PASS
LT-169	MH-38 to MH-9	SF-08	2	15:30	LH	12	122.5	6.7%	97.3%	114.8	PASS
Sand Cor	ne Verification	Table of the state									
SCV-12	Sand Cone Verification	SF-01	N/A	16:08	LH	6	104.1	2.3%	89.6%	101.8	N/A
										-	

Reviewed by:	TW	
	1/2	1/2

Envirotech Engineering & Consulting. Inc.

8/18/10 Date

BY SAND CONE (ASTM 1556)

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 1 Fax (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name:	Charlie Skiba	3		Sample ID.	SCV-12	
Project:	S013213A00			Sample Description:	Brown Sand	
Project Location:	ERDF Cells	9-10		Sampling Date:	8/17/2010	
Tested By:	L. Hay		8/17/2010	Sampled By:	L. Hay	
Reviewed By:	J Voss Al	Date	8/18/2010	Date Received:	8/17/2010	
Comments	/+V	V		Report No	5-16-135	

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1. Ma	ass of Proctor mold, W ₁	3955.00 g
2. Ma	ass of Proctor mold + sand, W ₂	5394.20 g
3 Vo	plume of mold, V ₁	0.03 ft
4 Dr	y unit weight. $Y_{d (sand)} = \frac{W_2 - W_1}{V_1}$	95.19 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6370.20 g
6.	Mass of bottle + cone + sand (after use), W ₄	4754.00 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.56 lb

8.	Mass of bottle + cone + sand (before use), W ₆	5684.6 g
	Mass of bottle + cone + sand (after use), W _a	2114.6 g
-	Volume of hole, $V_2 = W_6 - W_8 - W_c$ $y ext{ d (sand)}$	0.0453 ft ³
11.	Mass of gallon can, W ₅	505.80 g
12.	Mass of gallon can + moist soil, W ₇	2679.90 g
13.	Mass of gallon can + dry soil, W ₉	2629.20 g
14.	Moist unit weight of soil in field. $\gamma = W_7 - W_5 / V_2$	105.92 lb/ft ³
15.	Moisture content in the field, w (%) = $\frac{W_2 - W_9}{W_9 - W_5}$ X 100	2.4%
16.	Dry unit weight in the field, d(sand) = 7 / (1+(w (%)/100)	103 45 lb/ft ³
17.	Comparision moisture content =	2.3%
18.	Dry unit weight comparison =	101.8 lb/ft ³

01	_	_	

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 1 Fax (580) 237-4302

Soil Information

ERDF Cells 9-10 Expansion Proctor SF-01 Project: Project ID: S013213A00 Max Dry Density (pcf): 113.6 8/18/2010 Report No 5-16-136 Date Optimum Moisture (%): 12.4% SF-08 Brown Black Sand Proctor: Description: 27881 Max Dry Density (pcf): 118.0 Troxier ID 2218 Optimum Moisture (%): 11.3% Moist Std 635 Density Std Proctor: SF-04 Moist offset: Density offset: Allowable Moisture Range NIA Max Dry Density (pcf): 120.5 Necessary % Proctor: 95% Optimum Moisture (%): 12.8%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Backfill fr	om MH-38 and MH-9 (9)	5% Comp	pactio	n)							
LT-170	30-ft West of MH-38	SF-08	3	6:48	JS	6	121.5	6.6%	96.6%	114.0	PASS
LT-171	35-ft West of MH-38	SF-08	4	7:20	JS	6	126.1	8.4%	98.6%	116.3	PASS
LT-172	40-ft West of MH-38	SF-08	5	8:15	JS	6	120.3	6.8%	95.5%	112.6	PASS

Reviewed by: Tu	v		negative of the second of the			
1120				8/	20/10	
Envirotech Engineering &	Consulting, Inc			Date		

BY SAND CONE (ASTM 1556)

2500 N. Lith Street F. Enid, OK. 73701 580) 234-8780 F. Fax (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name	Charlie Skil	ba		Sample ID	LT-170
Project:	S013213A0	00		Sample Description:	Brown Sand
Project Location:	ERDF Cells	s 9-10	Name of the last o	Sampling Date	8/18/2010
Tested By:	J. Schut		8/18/2010	Sampled By	J. Schut
Reviewed By:	J Voss	Date:	8/19/2010	Date Received:	8/18/2010
Comments				Report No.	5-16-136

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3955.00 g
2. Mass of Proctor mold + sand, W ₂	5394,20 g
3. Volume of mold, V ₁	0.03 ft
Dry unit weight, $Y_{d \text{ (sand)}} = \frac{W_2 - W_1}{V_1}$	95.19 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6370.20 g
6	Mass of bottle + cone + sand (after use), W ₄	4754.00 g
7.	Weight of sand to fill the cone. $W_c = W_4 - W_3$	3.56 lb

8 Mass of bottle + cone + sand (before use). W ₅	5821.3 g
9. Mass of bottle + cone + sand (after use), W ₈	2947.9 g
10. Volume of hole, $V_2 = W_6 - W_8 - W_c$ / d (sand)	0.0291 ft ³
11. Mass of gallon can, W ₅	505.70 g
12 Mass of gallon can + moist soil, W ₇	2137.80 g
13. Mass of gallon can + dry soil, W ₉	2028.80 g
14. Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	123.57 lb/ft ³
15. Moisture content in the field w (%) = $W_7 - W_9 - X$ 100 $W_9 - W_5$	7 2%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	115.32 lb/ft ³
17. Comparision moisture content =	6.6%
18. Dry unit weight comparison =	114.0 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid OK 73701

(580) 234-8780 1 Fax (580) 237-4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID:

S013213A00

Report No.

8/25/2010 5-16-141

Description

Brown Black Sand

Troxler ID

27881

Moist Std:

2206 Density Std: 639

Moist offset

Density offset:

Allowable Moisture Range Necessary % Proctor:

N/A

90%/95%

Proctor:

SF-01

Max Dry Density (pcf):

113.6

Optimum Moisture (%):

12.4%

Proctor

SF-08

Max Dry Density (pcf): Optimum Moisture (%): 118.0

11.3%

Proctor:

SF-04

Max Dry Density (pcf):

120.5

12.8% Optimum Moisture (%):

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
Backfill o	f Tank #3 Ringwall										
T3-11	Ringwall (RW) 25-ft NE of MH-39	SF-08	4	6:56	JS	6	124.4	8.4%	97.3%	114.8	PASS
T3-12	RW 75-ft NW of MH-39	SF-08	4	7:00	JS	6	124.3	9.2%	96.5%	113.8	PASS
T3-13	RW 65-ft NE of MH-39	SF-08	5	8:08	JS	6	121.5	8.4%	95.0%	112.1	PASS
T3-14	RW 30-ft NW of MH-39	SF-08	5	8:12	JS	6	121.5	6.1%	97.0%	114.5	PASS
T3-15	RW 65-ft NE of MH-39	SF-08	6	13:04	JS	6	127.6	8.8%	99.4%	117.3	PASS
T3-16	RW 60-ft NW of MH-39	SF-08	6	13:19	JS	6	123.3	7.5%	97.2%	114.7	PASS
Backfill L	eachate Transmission L	ine MH-	36 to	MH-37					7		
LT-173	18-ft W of MH-36	SF-08	1	13:40	JS	12	122.9	5.0%	99 2%	117.0	PASS
LT-174	200-ft W of MH-36	SF-08	1	15:12	JS	12	123.5	8.0%	96.9%	114.4	PASS
LT-175	350-ft W of MH-36	SF-08	1	15:15	JS	12	118.1	10.9%	90.2%	106.5	PASS

Reviewed by

Envirotech Engineering & Consulting. Inc

5/26/10

BY SAND CONE (ASTM 1556)

2500 N. 11th Street T Enid, OK 73701 (580) 234-8780 T Fax (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

	1		Sample ID:	T3-15
S013213A00			Sample Description:	Brown Sand
ERDF Cells	9-10		Sampling Date:	8/25/2010
J Schut /		8/25/2010	Sampled By:	J. Schut
I. Voss/	Date:	8/26/2010	Date Received:	8/25/2010
10			Report No.:	5-16-141
	RDF Cells (Schut / I. Voss/, /	RDF Cells 9-10 I Schut I Voss	RDF Cells 9-10 I Schut 8/25/2010 I Voss / Date: 8/26/2010	Schut

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3955.00 g
2. Mass of Proctor mold + sand, W ₂	5398.80 g
3. Volume of mold, V ₁	0.03 ft
4 Dry unit weight, Y _{d (sand)} = W ₂ - W ₁	95.49 lb/ft³
V_1	

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6369.40 g
6.	Mass of bottle + cone + sand (after use), W ₄	4748.00 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.57 lb

8. Mass of bottle + cone + sand (before use), W ₆	5151.1 g
9. Mass of bottle + cone + sand (after use), W _a	2284.9 g
10. Volume of hole, $V_2 = W_6 - W_8 - W_c$ \neq d (sand)	0.0287 ft ³
11. Mass of gallon can, W₅	372.20 g
12. Mass of gallon can + moist soil, W ₇	2047.10 g
13. Mass of gallon can + dry soil, W ₉	1891.90 g
14. Moist unit weight of soil in field, $y_1 = W_7 - W_5 / V_2$	128.49 lb/ft ³
15 Moisture content in the field, w (%) = $\frac{W_7 - W_9}{W_9 - W_5}$ X 100	10.2%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	116.58 lb/ft ³
17. Comparision moisture content =	8.8%
18. Dry unit weight comparison =	117.3 lb/ft ³

	6	n	

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street | Enid, OK | 73701 | 1580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:	ERDF Cells	9-10 Expansion		Proctor [*]	SF-01
Project ID:	S013213A	50		Max Dry Density (pcf):	113.6
Report No	5-16-142	Date	8/26/2010	Optimum Maisture (%):	12.4%
Description	Brown Blad	ck Sand		Proctor:	SF-08
Troxler ID	27881			Max Dry Density (pcf)	118.0
Moist Std	646	Density Std:	2216	Optimum Moisture (%):	11.3%
Moist offset:	-	Density offse	et: -	Proctor	SF-04
Allowable Moisture Range:		N/A		Max Dry Density (pcf):	120.5
Necessary % Proctor:		90%/95%		Optimum Moisture (%):	12.8%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Backfill Leachate Transmission Line MH-36 to MH-37											
LT-176	East half of the trench	SF-08	2	6:50	LH	12	120.3	7.1%	95.2%	112.3	PASS
LT-177	West half of the trench	SF-08	2	6:55	LH	12	122.0	7.4%	96.3%	113.6	PASS
LT-178	East half of the trench	SF-08	3	9:00	LH	12	121.9	11.4%	92.7%	109.4	PASS
LT-179	West half of the trench	SF-08	3	9:05	LH	12	122.6	10.0%	94.5%	111.5	PASS
LT-180	West half of the trench	SF-08	4	10:50	LH	12	121.1	6.9%	96.0%	113.3	PASS
LT-181	East half of the trench	SF-08	4	10.55	LH	12	119.0	9.1%	92.4%	109.1	PASS
LT-182	West half of the trench	SF-08	5	14:00	LH	12	125.7	6.3%	100.2%	118.3	PASS
LT-183	East half of the trench	SF-08	5	14:05	LH	6	131.2	6.9%	104.0%	122.7	PASS
LT-184	West half of the trench	SF-08	6	15:45	LH	12	129.2	6.6%	102.7%	121.2	PASS
LT-185	East half of the trench	SF-08	6	15:50	LH	6	127.7	5.7%	102.4%	120.8	PASS
Note: 6-in	tests require 95% proctor	and 12-	n test	s require	90% pr	roctor					

Reviewed by: TW	****					
112 Va			8/27	7/10		
Envirotech Engineering & Consulting. Inc			Date			

2500 N | 11th Street | 1 Enid_OK | 73701 | 580) 234-8780 | 1 Fax | 580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name:	Charlie Skiba		Sample ID:	LT-183
Project:	S013213A00		Sample Description.	Brown Sand
Project Location:	ERDF Cells 9-10		Sampling Date:	8/26/2010
Tested By:	L. Hay	8/26/2010	Sampled By:	L. Hay
Reviewed By:	J Voss A Date:	8/27/2010	Date Received:	8/26/2010
Comments	// 0		Report No.	5-16-142

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1.	Mass of Proctor mold, W ₁	3955.00 g
2.	Mass of Proctor mold + sand, W ₂	5398.80 g
3.	Volume of mold, V ₁	0.03 ft
4.	Dry unit weight, $Y_{d \text{ (sand)}} = W_2 - W_1$	95.49 lb/ft ³
	V_1	00.40 10/10

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6369.40 g
6	Mass of bottle + cone + sand (after use), W ₄	4748.00 g
7.	Weight of sand to fill the cone, $W_a = W_4 - W_3$	3.57 lb

8.	Mass of bottle + cone + sand (before use), W ₆	6115.7 g
9	Mass of bottle + cone + sand (after use). W ₈	3057.2 g
10	Volume of hole, $V_2 = W_8 - W_8 - W_c$	0.0332 ft ³
	y d (sand)	0.0002 11
11	Mass of gallon can, W ₅	505.50 g
12.	Mass of gallon can + moist soil, W ₇	2576.00 g
13.	Mass of gallon can + dry soil, W ₉	2422.20 g
14.	Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	137.58 lb/ft ³
15	Moisture content in the field, w (%) = $W_7 - W_9$ X 100	8.0%
	W ₃ - W ₅	8.076
16.	Dry unit weight in the field, d (sand) = // (1+(w (%)/100)	127.36 lb/ft ³
17.	Comparision moisture content =	6 9%
18.	Dry unit weight comparison =	122.7 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

N/A 90%/95% 2500 N. 11th Street T Enid OK 73701 580(234-8780 T Fax (580) 237-4302

Soil Information

ERDF Cells 9-10 Expansion Project: S013213A00 Project ID: 5-16-144 Date 8/30/2010 Report No Brown Black Sand Description: 27881 Troxler ID: 2235 655 Density Std: Moist Std. Density offset Moist offset.

Allowable Moisture Range. Necessary % Proctor: Proctor: SF-01

Max Dry Density (pcf): 113.6

Optimum Moisture (%): 12.4%

Proctor: SF-08

Max Dry Density (pcf): 118.0

Optimum Moisture (%): 11.3%

Proctor: SF-05

Max Dry Density (pcf) 124.2

Max Dry Density (pcf)
Optimum Moisture (%):

12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Backfill L	eachate Transmission L	ine MH-	36 to	MH-37							
LT-186	35-ft West of MH-36	SF-05	7	8:15	LH	6	128.2	8.0%	95.6%	118.7	PASS
LT-187	285-ft West of MH-36	SF-05	7	8:20	LH	12	124.4	8.2%	92.6%	115.0	PASS
LT-188	115-ft West of MH-36	SF-05	8	10:45	LH	6	129.1	8.3%	96.0%	119.2	PASS
LT-189	375-ft West of MH-36	SF-05	8	10.50	LH	6	130.4	6.4%	98.7%	122.6	PASS
LT-190	409-ft West of MH-36	SF-05	9	13.10	LH	6	132.2	9.0%	97.7%	121.3	PASS
LT-191	165-ft West of MH-36	SF-05	9	13 15	LH	6	129.0	8.3%	95.9%	119.1	PASS
LT-192	80-ft West of MH-36	SF-05	10	14:45	LH	6	130.1	8.6%	96.5%	119.8	PASS
LT-193	475-ft West of MH-36	SF-05	10	14.50	LH	6	129.3	7.3%	97.0%	120 5	PASS
LT-194	135-ft West of MH-36	SF-05	11	16:15	LH	6	126.9	6.3%	96.1%	119.4	PASS
LT-195	250-ft West of MH-36	SF-05	11	16:20	LH	6	130.1	6.2%	98.6%	122.5	PASS
Note: 6-in	tests require 95% proctor	and 12-	in test	s require	≥ 90% p	roctor					
				D							
				0.444							

Reviewed by:

111211-

8/3/110

Envirotech Engineering & Consulting Inc

BY SAND CONE (ASTM 1556)

2500 N - 11th Street - 1 Enid, OK - 73701 (580) 234-8780 - 1 Fax (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name:	Charlie S	kiba		Sample ID:	LT-186		
Project:	S013213A00 ERDF Cells 9-10				**************************************	Sample Description:	Brown Sand
Project Location:			annia Para de la Caración de la Cara	Sampling Date	8/30/2010		
Tested By:	L. Hay	1-1	8/30/2010	Sampled By:	L. Hay		
Reviewed By	J. Voss	/ / Date:	8/31/2010	Date Received:	8/30/2010		
Comments	1	1		Report No :	5-16-144		

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1	Mass of Proctor mold, W ₁	3955.00 g
2.	Mass of Proctor mold + sand, W ₂	5398.80 g
3.	Volume of mold, V ₁	0.03 ft
4	Dry unit weight, $Y_{d \text{ (sand)}} = \frac{W_2 - W_1}{V_1}$	95.49 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6369.40 g
6	Mass of bottle + cone + sand (after use), W ₄	4748.00 g
7.	Weight of sand to fill the cone, $W_c = W_4 - W_3$	3.57 lb

8. Mass of bottle + cone + sand	(before use) W ₆	5467.1 g
9. Mass of bottle + cone + sand	(after use), W ₈	2430.4 g
10. Volume of hole, $V_2 = W_B - V_C$ $\neq d$ (s		0.0327 ft ³
11. Mass of gallon can, W _s		505.50 g
12. Mass of gallon can + moist :	soil, W ₇	2553.20 g
13. Mass of gallon can + dry soi	l, W _g	2386.40 g
14. Moist unit weight of soil in fie	$eld, \gamma = W_7 - W_5 / V_2$	138.16 lb/ft ³
15 Moisture content in the field,	$W (\%) = W_7 - W_9 X 100$ $W_9 - W_5$	8.9%
16. Dry unit weight in the field, d	(sand) = 7 / (1+(w (%)/100)	126.91 lb/ft ³
17. Comparision moisture conte	nt =	8.0%
18. Dry unit weight comparison		118.7 lb/ft ³

page 1	2	_	 4	_

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street T Enid, OK 73701 (580) 234-8780 ± Fax (580) 237-4302

SF-01

113.6

12.4%

SF-08

11.3% SF-05

Soil Information

Project*	ERDF Cells	9-10 Expansion	Proctor:		
Project ID	ct ID S013213A00				
Report No	5-16-145	Date	8/31/2010	Optimum Moisture (%):	
Description:	Brown Blac	k Sand		Proctor	
Troxler ID.	27881			Max Dry Density (pcf):	
Moist Std	645	Density Std:	2217	Optimum Moisture (%).	
Moist offset:	-	Density offse	t: -	Proctor:	
Allowable Moisture Range		N/A		Max Dry Density (pcf):	

Allowable Moisture Range: N/A Max Dry Density (pcf): 124.2

Necessary % Proctor: 90%/95% Optimum Moisture (%): 12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass . Fail
Backfill L	eachate Transmission l	ine MH-	36 to	MH-37							
LT-196	85-ft West of MH-36	SF-05	12	9:05	LH	6	128.1	6.9%	96.5%	119.8	PASS
LT-197	280-ft West of MH-36	SF-05	12	9:15	LH	6	128.4	7.5%	96.2%	119.4	PASS
LT-198	160-ft West of MH-36	SF-05	13	12:55	LH	6	129.1	8.1%	96.2%	119.4	PASS
LT-199	290-ft West of MH-36	SF-05	13	13:00	LH	6	127.7	5.8%	97.2%	120.7	PASS

							.1	
Reviewed by: TW								
1/8//			_		7/	1/10		
Envirotech Engineering & Consulting	g. Inc			Date				

BY SAND CONE (ASTM 1556)

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 1 Fax (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name:	Charlie Si	kiba		Sample ID:	LT-196
Project:	S013213A00 ERDF Cells 9-10			Sample Description:	Brown Sand
Project Location:				Sampling Date.	8/31/2010
Tested By	L. Hay	***************************************	8/31/2010	Sampled By:	L. Hay
Reviewed By:	J. Voss	M Date:	9/1/2010	Date Received:	8/31/2010
Comments		110		Report No.:	5-16-145

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3955.00 g
Mass of Proctor mold + sand, W ₂	5398.80 g
Volume of mold, V ₁	0.03 ft
Dry unit weight, $Y_{d \text{ (sand)}} = \frac{W_2 - W_1}{V_1}$	95.49 lb/ft ³
V_1	

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6369.40 g
6.	Mass of bottle + cone + sand (after use), W ₄	4748.00 g
7.	Weight of sand to fill the cone, $W_c = W_4 - W_3$	3.57 lb

8.	Mass of bottle + cone + sand (before use), W ₆	5254.6 g
9.	Mass of bottle + cone + sand (after use), W ₈	2338.5 g
10.	Volume of hole, $V_2 = W_s - W_s - W_c$ / d (sand)	0.0299 ft ³
11.	Mass of gallon can, W ₅	505.60 g
12.	Mass of gallon can + moist soil, W ₇	2293.00 g
13.	Mass of gallon can + dry soil, W ₉	2150.30 g
14.	Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	131.83 lb/ft ³
15	Moisture content in the field, w (%) = $W_7 - W_9 - W_5$ X 100 $W_9 - W_5$	8.7%
16.	Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	121.31 lb/ft ³
17.	Comparision moisture content =	6.9%
18.	Dry unit weight comparison =	119.8 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 | Fax (580) 237 4302

Soil Information

Project:	ERDF Cells 9-10 Expansion			
Project ID:	S013213A0	00		
Report No	5-16-146	Date	9/1/2010	
Description	Brown Black Sand			
Troxler ID	27881			
Moist Std:	641	Density Std	2229	
Moist offset	-	Density offset		
Allowable Moisture Range:		N/A		

95% Necessary % Proctor

SF-09 Proctor Max Dry Density (pcf): 139.8 Optimum Moisture (%): 2.6% Proctor: SF-08 Max Dry Density (pcf): 118.0 Optimum Moisture (%): 11.3% Proctor: SF-05 Max Dry Density (pcf): 124.2 Optimum Moisture (%): 12.5%

Dry

% Proctor Depth Pass / Test No Location Pr. Lift Time Oper Density Content Density (in.) Fall (calc) (pcf) (%) (calc) Backfill Leachate Transmission Line MH-36 to MH-37 LT-200 60-ft West of MH-36 SF-05 9.5% 123.9 PASS 14 6:54 JS 6 135.7 99.8% SF-05 7:00 JS 6 132.9 7.4% 99.6% 123.7 PASS LT-201 120-ft West of MH-36 14 8:22 JS 6 142.2 6.4% 133.6 PASS LT-202 150-ft East of MH-37 SF-09 15 95.6% SF-09 8:27 JS 6 145.1 PASS LT-203 70-ft East of MH-37 15 5.3% 98.6% 137.8 SF-09 16 JS 6 142.0 LT-204 13:55 2.8% 98.8% 138.1 PASS 50-ft East of MH-37 SF-09 JS 6 LT-205 16 13:59 144.8 4.0% 99.6% 139.2 PASS 100-ft east of MH-37 Sand Cone Verification **SCV-14** Information Test 10:22 JS 6 128.2 4.5% 122.7

Wet

Moist

Reviewed by

Envirotech Engineering & Consulting. Inc

9/z/10 Date

2500 N +11th Street | Enid, OK | 73701 | 580) 234-8780 | Enix (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name:	Charlie Skib	а		Sample ID.	SCV-14
Project:	S013213A00)		Sample Description	Brown Sand
Project Location:	ERDF Cells	9-10		Sampling Date	9/1/2010
Tested By:	J. Schut		9/1/2010	Sampled By	J. Schut
Reviewed By.	J. Voss	Date:	9/2/2010	Date Received:	9/1/2010
Comments	11			Report No.	5-16-146

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1.	Mass of Proctor mold, W ₁	3955.00 g
2	Mass of Proctor mold + sand, W ₂	5398.80 g
3.	Volume of mold, V ₁	0.03 ft
4.	Dry unit weight, $Y_{d (sand)} = W_2 - W_1$ V_1	95.49 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6369.40 g
6.	Mass of bottle + cone + sand (after use), W ₄	4748.00 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.57 lb

-		
8	Mass of bottle + cone + sand (before use), W ₈	5783.5 g
9.	Mass of bottle + cone + sand (after use), W ₈	2849.7 g
10.	Volume of hole, $V_2 = \frac{W_6 - W_8 - W_c}{\gamma d \text{ (sand)}}$	0.0303 ft ³
11.	Mass of gallon can, W ₅	505.60 g
12.	Mass of gallon can + moist soil, W ₇	2303,50 g
13.	Mass of gallon can + dry soil, W ₉	2205.50 g
14.	Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	130.82 lb/ft ³
15	Moisture content in the field. w (%) = $W_7 - W_9 = X$ 100 $W_9 - W_5$	5.8%
16.	Dry unit weight in the field, d (sand) = -7 / (1+(w (%)/100)	123.69 lb/ft ³
17.	Comparision moisture content =	4.5%
18.	Dry unit weight comparison =	122.7 lb/ft ³

Ph 1	1:	-	ands.	4-
CI	æ	e	n	Τ.

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. 11th Steet T Enid, OK 73701

(580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:	ERDF Cells	9-10 Expansion	
Project ID:	S013213A	00	
Report No.	5-16-154	Date	9/14/2010
Description:	Brown Blac	ck Sand	
Troxler ID:	27881		
Moist Std:	645	Density Std:	2222
Moist offset:	-	Density offse	t: -

Allowable Moisture Range: N/A
Necessary % Proctor: 95%

Proctor	SF-09
Max Dry Density (pcf)	139.8
Optimum Moisture (%).	2.6%
Proctor	SF-08
Max Dry Density (pcf):	118.0
Optimum Moisture (%):	11.3%
Proctor:	SF-05
Max Dry Density (pcf)	124.2
Optimum Moisture (%):	12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Tank #4 Fo	undation Fill - Filled	placed or	ily on	SW half	of pad						
T4-01	W. Side of Pad	SF-08	Sub	7:15	JS	8	117.8	5.1%	95.0%	112.1	PASS
T4-02	SW side of Pad	SF-08	1	10:25	JS	6	128 1	10.3%	98.4%	116 1	PASS
T4-03	W. Side of Pad	SF-08	2	12.34	JS	6	129.5	11.8%	98.2%	115.8	PASS
T4-04	SW side of Pad	SF-08	3	13:25	JS	6	125.2	8.4%	97.9%	115.5	PASS
T4-05	W. Side of Pad	SF-08	4	15:00	JS	6	124.3	8.2%	97.4%	114.9	PASS
		- Commenter of the Comm									

								'			
-			-								

Reviewed by:

| 1/5/~ 5 | 9/16/10
| Envirotech Engineering & Consulting. Inc | Date

BY SAND CONE (ASTM 1556)

2500 N. 11th Street | L. Enid, OK | 73701 | (580) 234-8780 | L. Fatx (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name:	Charlie Si	riba		Sample ID:	T4-02
Project:	S013213A	400	Incompanies and the second sec	Sample Description:	Brown Sand
Project Location:	ERDF Ce	lls 9-10	***************************************	Sampling Date:	9/14/2010
Tested By:	J. Schut		9/14/2010	Sampled By:	J. Schut
Reviewed By:	J Voss /	7 /Date:	9/15/2010	Date Received:	9/14/2010
Comments	1/	10		Report No.:	5-16-154

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3955,00 g
2. Mass of Proctor mold + sand, W ₂	5398.80 g
3. Volume of mold, V ₃	0.03 ft
4. Dry unit weight, $Y_{d \text{ (sand)}} = \frac{W_2 - W_1}{V_1}$	95.49 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	6369.40 g
6	Mass of bottle + cone + sand (after use), W ₄	4748.00 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.57 lb

8. Mass of bottle + cone + sand (before use), \	N _e 5880.3 g
9. Mass of bottle + cone + sand (after use), W	3178.9 g
10. Volume of hole, $V_2 = W_6 - W_8 - W_c$ / d (sand)	0.0249 ft ³
11. Mass of gallon can, W ₅	505.40 g
12. Mass of gallon can + moist soil, W ₇	2013.00 g
13. Mass of gallon can + dry soil, W ₉	1854.10 g
14. Moist unit weight of soil in field, ** = W ₇ - V	V ₅ / V ₂ 133.30 lb/ft ³
15. Moisture content in the field, w (%) = $W_2 - V_3$ $W_9 - W_5$	V ₃ X 100 11.8%
16. Dry unit weight in the field, d (sand) = 17 / (1	+(w (%)/100) 119.25 lb/ft ³
17 Comparision moisture content =	10.3%
18. Dry unit weight comparison =	116.1 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

2500 N. Lith Street T Enid, OK 73701 (580) 234-8780 | Fax (580) 237 4302

Soil Information

Project:

ERDF Cells 9-10 Expansion

Project ID

S013213A00

Brown Black Sand

Report No

9/16/2010 5-16-156 Date

Description Troxler ID

27881

Moist Std:

638

Moist offset:

Allowable Moisture Range:

Necessary % Proctor:

Density Std: Density offset.

N/A

2231

95%

Proctor:

Max Dry Density (pcf):

Optimum Moisture (%):

Proctor

SF-08 Max Dry Density (pcf): 118.0

Optimum Moisture (%):

11.3%

Proctor.

SF-05

SF-09

139.8

2.6%

Max Dry Density (pcf):

124.2

Optimum Moisture (%):

12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass /
Tank #4 F	oundation Fill NE Half										
T4-06	NE Foundation Fill	SF-08	1	13:18	JS	12	1195	11.1%	91.2%	107.6	PASS
Tank #4 F	oundation Fill										
SCV-15	Sand Cone Verify				JS	6	114.8	4.2%	*	110.2	-
							Mary 1997				

Reviewed by

Envirotech Engineering & Consulting. Inc

9/23/10

BY SAND CONE (ASTM 1556)

2500 N. 11th Street T Enid, OK 73701 (580) 234-8780 T Fax (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name.	Charlie Sk	iba		Sample ID:	SCV-15
Project:	S013213A	00	and a second	Sample Description:	Brown Sand
Project Location:	ERDF Cel	s 9-10	obusanomono.	Sampling Date:	9/16/2010
Tested By:	J. Schut	1	9/16/2010	Sampled By:	J. Schut
Reviewed By:	J. Voss /	14 Date:	9/17/2010	Date Received.	9/16/2010
Comments	11			Report No :	5-16-156

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1	Mass of Proctor mold, W ₁	3955.20 g
2.	Mass of Proctor mold + sand, W ₂	5398.40 g
3	Volume of mold, V ₁	0.03 ft
4	Dry unit weight, $Y_{d \text{ (sand)}} = \frac{W_2 - W_1}{V_1}$	95.45 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	7231.90 g
6.	Mass of bottle + cone + sand (after use), W ₄	5615.30 g
7.	Weight of sand to fill the cone, $W_c = W_4 - W_3$	3.56 lb

8.	Mass of bottle + cone + sand (before use), W ₆	6451.8 g
9.	Mass of bottle + cone + sand (after use), W ₈	3476.7 g
10.	Volume of hole, $V_2 = W_6 - W_8 - W_c$ $V_0 = V_0 + V_0 + V_0$	0.0314 ft ³
11.	Mass of gallon can, W _s	505.50 g
12.	Mass of gallon can + moist soil, W ₇	2110.70 g
13.	Mass of gallon can + dry soil, W ₉	2022.00 g
14.	Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	112.79 lb/ft ³
15.	Moisture content in the field, w (%) = $W_7 - W_9 - X$ 100 $W_9 - W_5$	5.8%
16.	Dry unit weight in the field, d(sand) = - 2 / (1+(w (%)/100)	106.55 lb/ft ³
17.	Comparision moisture content =	4.2%
18.	Dry unit weight comparison =	110.2 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

3500 N 11th Street | Enid OK 23701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Project.	ERDF Cells	9-10 Expansion	
Project ID:	S013213A	00	
Report No.	5-16-157	Date	9/17/2010
Description	Brown Blad	ck Sand	
Troxler ID	27881		
Moist Std	643	Density Std:	2217
Moist offset:	-	Density offse	t: -
Allowable Moisture Range		N/A	

MOISE OHSEL	- Density onset.
Allowable Moisture Range	N/A
Necessary % Proctor	95%

Proctor:	SF-09
Max Dry Density (pcf):	139.8
Optimum Moisture (%):	2.6%
Proctor	SF-08
Max Dry Density (pcf)	118.0
Optimum Moisture (%):	11 3%
Proctor	SF-05
Max Dry Density (pcf):	124.2
Optimum Moisture (%):	12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
Tank #4	Foundation Fill - 4x8-in D	rain Lin	e Tre	nch				The state of the s			
T4-07	10-ft SW of MH-18	SF-08	1	7:34	JS	6	122.8	9 2%	95.3%	112.5	PASS
T4-08	25-ft SW of MH-18	SF-08	2	8:55	JS	6	126.2	12.4%	95.2%	112.3	PASS
T4-09	30-ft SW of MH-18	SF-08	3	10.34	JS	6	120.1	7.1%	95.0%	112.1	PASS
T4-10	20-ft SW of MH-18	SF-08	4	13:13	JS	6	124.1	9.1%	96.4%	113.7	PASS
Tank #4	Foundation Fill - 2-in Lea	k Detec	tion P	ipe Trer	nch						
T4-11	15-ft NW of Tank Center	SF-08	1	7:28	JS	12	128.0	10.8%	97.9%	115.5	PASS
T4-12	20-ft NW of Tank Center	SF-08	2	8:50	JS	6	122.4	9.0%	95.2%	112.3	PASS
T4-13	18-ft NW of Tank Center	SF-08	3	10:30	JS	6	124.1	10.6%	95.1%	112.2	PASS
Tank #4 i	Foundation Fill - 16x10-in	Inlet Pi	pe Tr	ench							
T4-14	12-ft NW of MH-17	SF-08	1	7:37	JS	12	116.1	7.5%	91.5%	108.0	PASS
T4-15	8-ft W. of MH-17	SF-08	2	8:58	JS	12	115.3	7.9%	90.6%	106.9	PASS
T4-16	18-ft W of MH -17	SF-08	3	10:44	JS	6	126.7	12.8%	95.2%	112.3	PASS
T4-17	10-ft W. of MH-17	SF-08	4	13:52	JS	6	124.4	9.6%	96.2%	113.5	PASS
T4-18	6-ft W. of MH-17	SF-08	5	15:00	JS	6	130.1	13.4%	97.2%	114.7	PASS
SCV-16	Sand Cone Verification	der			JS	6	119.5	7.2%		111.5	_

Reviewed by:

Envirotech Engineering & Consulting. Inc

9/23/10

Date

2500 N. 11th Street 1 Enicl OK 13701 (580) 234-8780 1 Fax (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name.	Charlie Skiba		Sample ID:	SCV-16
Project:	S013213A00		Sample Description:	Brown Sand
Project Location:	ERDF Cells 9-10)	Sampling Date:	9/17/2010
Tested By:	J. Schut	9/17/2010	Sampled By:	J. Schut
Reviewed By	J. Voss /YUD	ate: 9/20/2010	Date Received:	9/17/2010
Comments	1		Report No:	5-16-157

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1.	Mass of Proctor mold, W ₁	3955.20 g
2.	Mass of Proctor mold + sand, W ₂	5398.40 g
3.	Volume of mold, V ₁	0.03 ft
4	Dry unit weight. $Y_{d \text{ (sand)}} = \frac{W_2 - W_1}{V_1}$	95.45 lb/ft ³

Calibration Cone

5	Mass of bottle + cone + sand (before use), W ₃	7231.90 g
6.	Mass of bottle + cone + sand (after use), W ₄	5615.30 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3 56 lb

8. Mass of bottle + cone + sand (before use), W ₆	5643.0 g
9 Mass of bottle + cone + sand (after use), W ₈	2773.5 g
10. Volume of hole, $V_2 = W_6 - W_8 - W_7$ / d (sand)	0 0289 ft ³
11. Mass of gallon can, W ₅	505.50 g
12. Mass of gallon can + moist soil, W ₇	2081.10 g
13. Mass of gallon can + dry soil, W ₃	1959.30 g
14. Moist unit weight of soil in field $y_1 = W_7 - W_5 / V_2$	120.04 lb/ft ³
15. Moisture content in the field w (%) = $W_7 - W_9 - W_5$ X 100 $W_9 - W_5$	8.4%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	110.76 lb/ft ³
17. Comparision moisture content =	7.2%
18. Dry unit weight comparison =	111.5 lb/ft ³

-					_	
(Į	Ì	e	ก	Ŧ	*

Washington Closure Hanford

Submittal:

05-18B Earthwork Field Data

N/A

95%

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 | Fax -580) 237 4302

SF-09

Soil Information

Project: ERDF Cells 9-10 Expansion S013213A00 Project ID. 9/20/2010 5-16-158 Date Report No. Brown Black Sand Description Troxler ID 27881 Moist Std: 641 Density Std. Moist offset: Density offset:

Allowable Moisture Range

Necessary % Proctor

Max Dry Density (pcf):	139.8
Optimum Moisture (%):	2.6%
Proctor:	SF-08
Max Dry Density (pcf):	118.0
Optimum Moisture (%):	11.3%

Proctor:

SF-05 Proctor:

Max Dry Density (pcf): 124.2 Optimum Moisture (%): 12.5%

Dry Wet Moist Pass / % Proctor Depth Location Pr. Lift Time Oper Density Content Density Test No (in.) (calc) Fail. (pcf) (%) (calc) Tank #4 Foundation Fill - 16x10-in Inlet Pipe Trench 8-ft NW of MH-17 SF-08 7:37 JS 6 127.1 12.2% 96.0% 113.3 PASS T4-19 6 6 123.5 95.6% 112.8 PASS SF-08 14:28 JS 9.5% 9-ft W of MH-17 T4-20 Tank #4 Foundation Fill NE half of pad PASS JS 6 128.3 9.2% 99.6% 117.5 SF-08 2 14:34 NE Center of Pad T4-21 7:46 JS 112.3 6 118.5 5.5% SCV-17 Sand Cone Verification

2220

Reviewed by:

Envirotech Engineering & Consulting. Inc.

9/23/10

2500 N. 11th Street J. Enid, OK. 73701 580) 234-8780 J. Fax (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name:	Charlie Skiba		Sample ID	SCV-17
Project:	S013213A00	OF THE PERSON NAMED IN COLUMN	Sample Description:	Brown Sand
Project Location:	ERDF Cells 9-10		Sampling Date:	9/20/2010
Tested By:	J. Schut A	9/20/2010	Sampled By	J. Schut
Reviewed By:	J. Voss / Y/ Date:	9/21/2010	Date Received:	9/20/2010
Comments			Report No.	5-16-158

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3955.20 g
2. Mass of Proctor mold + sand, W ₂	5398.40 g
3 Volume of mold, V ₁	0.03 ft
4. Dry unit weight, $Y_{d \in sand} = \frac{W_2 - W_1}{V_1}$	95.45 lb/ft ³

Calibration Cone

5	Mass of bottle + cone + sand (before use), W ₃	7231.90 g
6	Mass of bottle + cone + sand (after use), W ₄	5615.30 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.56 lb

8. Mass of bottle + cone + sand (before use), W ₆	5680.1 g
9. Mass of bottle + cone + sand (after use), W ₈	2697.3 g
10. Volume of hole, $V_2 = W_6 - W_8 - W_6$ \neq d (sand)	0.0316 ft ³
11. Mass of gallon can, W₅	505.50 g
12. Mass of gallon can + moist soil, W ₇	2240.60 g
13. Mass of gallon can + dry soil, W ₉	2122.90 g
14. Moist unit weight of soil in field, $y_1 = W_7 - W_5 / V_2$	121.23 lb/ft ³
15. Moisture content in the field. w (%) = $W_7 - W_q = X$ 100 $W_g - W_5$	7.3%
16. Dry unit weight in the field, d (sand) = - / (1+(w (%)/100)	113.00 lb/ft ³
17. Comparision moisture content =	5.5%
18 Dry unit weight comparison =	112.3 lb/ft ³

-		*				
-	3	8	0	2	Ŧ	

Washington Closure Hanford

Submittal:

5-18B Earthwork Field Data

N/A

95%

2500 N. 11th Street T. Enid. OK. 73701 7801 234-8780 T. Fax: 5801 237, 4302

Soil Information

Project:	ERDF Cells	9-10 Expansion
Project ID	S013213A	00
Report No.	5-16-159	Date 9/
Description:	Brown Blad	ck Sand
Troxler ID	27881	
Moist Std:	649	Density Std:
Moist offset:	44	Density offset:

Allowable Moisture Range

Necessary % Proctor

(100(0)	0. 00
Max Dry Density (pcf):	139.8
Optimum Moisture (%):	2.6%
Proctor	SF-08
Max Dry Density (pcf)	118.0
Optimum Moisture (%)	11.3%

Proctor

Optimum Moisture (%): 11.3%
Proctor SF-05

Max Dry Density (pcf):

Optimum Moisture (%):

124.2

SE-09

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass /
Tank #4 F	Ringwall Foundation										
T4-22	Southside of Ringwall	SF-08	SG	7:00	JS	6	120.0	6.0%	95.9%	113.2	PASS
T4-23	Northside of Ringwall	SF-08	SG	7:07	JS	6	120.3	6.5%	95.7%	113.0	PASS
SCV-18	Sand Cone Verification	-	-	7:46	JS	6	122.2	6.1%		115.2	-
							 				
			- Control of the Cont		Total Control	-					

21/2010

2227

1121/2	
Envirotech Engineering & Consulting.	Inc

Reviewed by:

9/23/10

Date

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

2500 N. 13th Street T. Enid, OK. 73701 580(234-8780 T. Fux. 580(237-4302)

Sample Information

Charlie Skib	а		Sample ID:	SCV-18		
S013213A00		S013213A00			Sample Description:	Brown Sand
ERDF Cells	9-10		Sampling Date:	9/21/2010		
J. Schut		9/21/2010	Sampled By.	J. Schut		
J. Voss ///	Date.	9/22/2010	Date Received:	9/21/2010		
460			Report No.	5-16-159		
	S013213A00 ERDF Cells J. Schut	ERDF Cells 9-10 J. Schut	S013213A00 ERDF Cells 9-10 J. Schut 9/21/2010	S013213A00 Sample Description: ERDF Cells 9-10 Sampling Date: J. Schut 9/21/2010 Sampled By. J. Voss // Date. 9/22/2010 Date Received:		

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1. 1	Mass of Proctor mold, W ₁	3955 20 g
2 1	Mass of Proctor mold + sand, W ₂	5398 40 g
3. \	Volume of mold, V,	0.03 ft
4 [Dry unit weight, $Y_{d (sand)} = \frac{W_2 - W_1}{V_1}$	95.45 lb/ft ³

Calibration Cone

5	Mass of bottle + cone + sand (before use), W ₃	7231.90 g
6.	Mass of bottle + cone + sand (after use), W ₄	5615.30 g
7.	Weight of sand to fill the cone, $W_c = W_4 - W_3$	3.56 lb

8. Mass of bottle + cone + sand (before use), W ₆	5933.7 g
9 Mass of bottle + cone + sand (after use), W ₃	2985.4 g
10 Volume of hole, $V_2 = W_6 - W_8 - W_9$ / d (sand)	0 0308 ft ³
11. Mass of gallon can, W ₅	372.10 g
12. Mass of gallon can + moist soil, W ₇	2021.70 g
13. Mass of gallon can + dry soil, W ₉	1909.80 g
14. Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	118.24 lb/ft ³
15. Moisture content in the field, w (%) = $\frac{W_7 - W_9}{W_9 - W_5}$ X 100	7.3%
16. Dry unit weight in the field, d (send) = // (1+(w (%)/100)	110.22 lb/ft ³
17. Comparision moisture content =	6.1%
18. Dry unit weight comparison =	115.2 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

5-18B Earthwork Field Data

N/A

95%

2500 N. 11th Street | Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

ERDF Cells 9-10 Expansion Project: S013213A00 Project ID 5-16-169 Date 10/4/2010 Report No Description: Brown Black Sand 27881 Troxler ID: Moist Std: 647 Density Std: 2232 Moist offset: Density offset:

Allowable Moisture Range

Necessary % Proctor

Max Dry Density (pcf):	139.8
Optimum Moisture (%):	2.6%
Proctor:	SF-08
Max Dry Density (pcf):	118.0
Optimum Moisture (%):	11.3%
Proctor:	SF-05
Max Dry Density (pcf):	124.2

Proctor:

Optimum Moisture (%): 12.5%

SF-09

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Manhole #	34 Backfill										
MH34-08	East Side	SF-08	6	8:28	JS	12	123.3	8.0%	96.8%	114.2	PASS
MH34-09	North Side	SF-08	7	9:14	JS	6	121.6	7 7%	95.7%	112.9	PASS
MH34-10	South Side	SF-08	8	9:18	JS	6	121.5	7.4%	95.9%	113.1	PASS
MH34-11	South Side	SF-08	9	9 40	JS	6	122.1	8.0%	95.8%	113.1	PASS
MH34-12	West Side	SF-08	10	9:44	JS	6	120.5	6.8%	95.6%	112.8	PASS
MH34-13	North Side	SF-08	11	13:43	JS	6	122.6	7.0%	97.1%	114.6	PASS
MH34-14	South Side	SF-08	12	13:48	JS	6	122.5	6.8%	97.2%	114.7	PASS
Manhole #3	5 Backfill										
MH35-08	East Side	SF-08	6	8:13	JS	12	127.2	11.5%	96.7%	114,1	PASS
MH35-09	North Side	SF-08	7	8:54	JS	6	123.1	8.6%	96.1%	113.4	PASS
MH35-10	South Side	SF-08	8	8:51	JS	6	122.0	5.4%	98.1%	115.7	PASS
MH35-11	East Side	SF-08	9	15:40	JS	6	123.7	8.8%	96.4%	113.7	PASS
MH35-12	North Side	SF-08	10	15:45	JS	6	122.5	7.6%	96.5%	113.8	PASS
MH35-13	West Side	SF-08	11	15:48	JS	6	120.7	7.7%	95.0%	112.1	PASS
MH35-14	South Side	SF-08	12	15:51	JS	6	127.8	12.3%	96.4%	113.8	PASS
MH35-15	South East Side	SF-08	13	15:59	JS	6	123.8	8.2%	97.0%	114.4	PASS
Reviewed by	y. Tw		-	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM				1			

Envirotech Engineering & Consulting. Inc

10/7/10

Client:

Washington Closure Hanford

Submittal:

5-18Q Anchor Trench/Riser Field Testing

2500 N. 11th Street 1 Enid, OK 73701 580) 134-8780 1 Fax (580) 237-4302

Soil Information

Project: ERDF Cells 9-10 Expansion Proctor SF-01 Project ID S013213A00 Max Dry Density (pcf): 113.6 Report No 10/4/2010 Optimum Moisture (%): 5-16-169 Date 12.4% Description Brown Black Sand Proctor: SF-02 Troxler ID: 27881 Max Dry Density (pcf): 124.9 Moist Std: 647 Density Std: 2232 Optimum Moisture (%): 9.7% Moist offset: Proctor: SF-04 Density offset: Allowable Moisture Range N/A Max Dry Density (pcf): 120.5 Optimum Moisture (%): Necessary % Proctor No Compaction Specification 12.8%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Cell 9 No	rth Anchor Trench										
AT-07	Cell 9 West end of trench	SF-02	7	12:47	JS	6	127 7	7.1%	95.5%	119.2	-
AT-08	Cell 9 East end of trench	SF-02	1	12:54	JS	6	121.2	6.5%	91 1%	113.8	-
ÁT-09	Cell 9 East side	SF-02	2	13:53	JS	6	119.8	7.5%	89.2%	111.4	_
AT-10	Cell 9 East side	SF-02	3	16:15	JS	6	125.8	10.4%	91.2%	113.9	-
Cell 10 N	orth Anchor trench										-
AT-11	Cell 10 West side	SF-02	1	12:59	JS	6	123.7	5 9%	93.5%	116.8	-
AT-12	Cell 10 West side	SF-02	2	16:03	JS	6	120.8	9.9%	88.0%	109.9	-
AT-13	Cell 10 West side	SF-02	3	16:09	JS	6	121.5	10.3%	88.2%	110.2	-
Sand Co	ne Verification										-
SCV-20	-		-	9:25	JS	6	115.1	4.8%	*	109.8	-

Reviewed by: W	
1121-	10/11/10
Envirotech Engipering & Consulting. Inc	Date

BY SAND CONE (ASTM 1556)

2500 N, 11th Street | Enid, OK | 73701 | (580) 234-8780 | Eax (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name:	Charlie Skiba		Sample ID:	SCV-20
Project:	S013213A00		Sample Description:	Brown Sand
Project Location:	ERDF Cells 9-10		Sampling Date:	10/4/2010
Tested By:	J. Schut	10/4/2010	Sampled By:	J. Schut
Reviewed By	J. Voss A / Date:	10/5/2010	Date Received:	10/4/2010
Comments	13.		Report No	5-16-169

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1	Mass of Proctor mold, W ₁	3955.40 g
2.	Mass of Proctor mold + sand, W ₂	5397.80 g
3.	Volume of mold, V ₁	0.03 ft
4.	Dry unit weight, $Y_{d (sand)} = \frac{W_2 - W_1}{V_1}$	95 40 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	4722.90 g
6.	Mass of bottle + cone + sand (after use), W ₄	3107.90 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.56 lb

Mass of bottle + cone + sand (before use), W₆	5884.4 g
9. Mass of bottle + cone + sand (after use), W _s	2873.7 g
10. Volume of hole, $V_2 = W_6 - W_8 - W_c$? d (sand)	0.0323 ft ³
11. Mass of gallon can, W ₅	505.60 g
12. Mass of gallon can + moist soil, W ₇	2169.10 g
13. Mass of gallon can + dry soil, W ₉	2067.90 g
14. Moist unit weight of soil in field, $\gamma_1 = W_7 - W_5 / V_2$	113.70 lb/ft ³
15 Moisture content in the field, w (%) = $\frac{W_7 - W_9}{W_9 - W_5}$ X 100	6.5%
16. Dry unit weight in the field, d (sand) = 7 / (1+(w (%)/100)	106.79 lb/ft ³
17. Comparision moisture content =	4.8%
18. Dry unit weight comparison =	109.8 lb/ft ³

,00	17	
	110	TIT.

Washington Closure Hanford

Submittal:

5-18B Earthwork Field Data

ENVIROTECH

2500 N. 11th Street T Enid, OK 73701 580) 234-8780 | Fax 580) 237-4302

Soil Information

Project:	
Project	D:

Report No

Description

Troxler ID

Moist Std:

Moist offset:

Allowable Moisture Range

Necessary % Proctor

ERDF Cells 9-10 Expansion

S013213A00

5-16-175

10/11/2010

Date Brown Black Sand

27881

621

Density Std: 2207

Density offset:

N/A

95%

Proctor

SF-09

Max Dry Density (pcf):

139.8 2.6%

Optimum Moisture (%) Practor

Max Dry Density (pcf):

SF-08 118.0

Optimum Moisture (%):

11.3%

Proctor:

SF-05

Max Dry Density (pcf):

124.2

Optimum Moisture (%):

12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass Fail
Tank #4 i	Ringwall Backfill										
T4-24	NW side of Ringwall	SF-08	1	14:40	JS	6	125.5	11.6%	95.3%	112.5	PASS
T4-25	SE side of Ringwall	SF-08	1	14:43	JS	6	124.8	9.3%	96.8%	114.2	PASS
T4-26	N side of Ringwall	SF-08	2	14:48	JS	6	121.3	8.1%	95.1%	112.2	PASS
T4-27	S side of Ringwall	SF-08	2	14:52	JS	6	123.3	8.2%	96.6%	114.0	PASS
T4-28	NE side of Ringwall	SF-08	3	14:58	JS	6	124.2	10.4%	95.3%	112.5	PASS
T4-29	W side of Ringwall	SF-08	3	15.02	JS	6	123.7	8.9%	96.3%	113.6	PASS
T4-30	E side of Ringwall	SF-08	4	15:10	JS	6	122.8	9.3%	95.2%	112.4	PASS
T4-31	SW side of Ringwall	SF-08	4	15:14	JS	. 6	122.9	9.2%	95.4%	112.5	PASS
T4-32	SW side of Ringwall	SF-08	5	16:25	JS	6	122.0	8.3%	95.5%	112.7	PASS
T4-33	E side of Ringwall	SF-08	5	16:28	JS	6	124.2	9.7%	95.9%	113.2	PASS
SCV-22	Sand Cone Verification		*	15:18	JS	6	110.5	3.7%	-	106.6	

Reviewed by

Envirotech Engineering & Consulting. Inc.

10/18/10

Date

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Charlie Ski	iba		Sample ID.	SCV-22
S013213A	00	and the same of th	Sample Description:	Brown Sand
ERDF Cell	s 9-10		Sampling Date:	10/11/2010
J. Schut /	1 1	10/11/2010	Sampled By:	J. Schut
J. Voss /	4 Mate:	10/12/2010	Date Received:	10/11/2010
21			Report No.:	5-16-175
	S013213A ERDF Cell J. Schut /	Charlie Skiba S013213A00 ERDF Cells 9-10 J. Schut J. Voss	S013213A00 ERDF Cells 9-10 J. Schut / / 10/11/2010	S013213A00 Sample Description: ERDF Cells 9-10 Sampling Date: J. Schut / / 10/11/2010 Sampled By: J. Voss / 17 Cate: 10/12/2010 Date Received:

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

Mass of Proctor mold, W ₁	3955.40 g
2. Mass of Proctor mold + sand, W ₂	5397.80 g
3. Valume of mold, V ₁	0.03 ft
4 Dry unit weight, $Y_{d \text{ (sand)}} = \frac{W_2 - W_1}{V_1}$	95.40 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	4722.90 g
6	Mass of bottle + cone + sand (after use), W ₄	3107.90 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.56 lb

8.	Mass of bottle + cone + sand (before use). W ₆	5864.9 g
9.	Mass of bottle + cone + sand (after use), W ₈	2881.0 g
10.	Volume of hole, $V_2 = W_6 - W_3 - W_c$ / d (sand)	0.0316 ft ³
11.	Mass of gallon can, W ₅	505.90 g
12	Mass of gallon can + moist soil, W ₇	2121.10 g
13.	Mass of gallon can + dry soil, W ₉	2055.00 g
14.	Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	112.56 lb/ft ³
15	Moisture content in the field, w (%) = $W_7 - W_9 = X \cdot 100$ $W_9 - W_5$	4.3%
16.	Dry unit weight in the field, d (sand) = 1/1 (1+(w (%)/100)	107.96 lb/ft ³
17.	Comparision moisture content =	3.7%
18.	Dry unit weight comparison =	106.6 lb/ft ³

Client:

Washington Closure Hanford

Submittal:

5-18B Earthwork Field Data

2500 N. 11th Street 1 Enid, OK 73701 (580) 234-8780 | Fax (580) 237-4302

Soil Information

Necessary % Proctor:

Project: ERDF Ceils 9-10 Expansion S013213A00 Project ID 5-16-178 Date 10/14/2010 Report No Brown Black Sand Description 27881 Troxler ID: Moist Std 647 Density Std: 2241 Density offset: Moist offset: Allowable Moisture Range N/A

95%

Proctor: SF-09 Max Dry Density (pcf): 139.8 Optimum Moisture (%): 2.6% SF-08 Proctor Max Dry Density (pcf): 118.0 Optimum Moisture (%): 11.3% Proctor: SF-05 124.2 Max Dry Density (pcf): Optimum Moisture (%): 12.5%

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
Manhole 3	6 Fill						****				
MH36-07	N side of Manhole	SF-08	5	9:27	JS	6	122 3	7.5%	96.4%	113.8	PASS
MH36-08	W. side of Manhole	SF-08	6	9:29	JS	6	125.5	11.3%	95.6%	112.8	PASS
MH36-09	S. side of Manhole	SF-08	7	9:32	JS	6	124.4	7.0%	98.5%	116.3	PASS
MH36-10	E. side of Manhole	SF-08	8	9:37	JS	6	125 1	8.7%	97.5%	115.1	PASS
									**		-
						-					

Reviewed by	TW	
1	151/	

10/19/10

Envirotech Engineering & Consulting, Inc.

2500 N. 11th Street T Enid, OK 73701 (580) 234-8780 T Fax (580) 237-4302

Client:

WCH

Submittal:

5-18B Earthwork Field Testing

Sample Information

Contact Name:	Charlie Skiba			Sample ID:	MH36-08
Project:	S013213A00		-	Sample Description:	Brown Sand
Project Location:	ERDF Cells 9	- 10	-	Sampling Date:	10/14/2010
Tested By:	J. Schut		10/14/2010	Sampled By:	J. Schut
Reviewed By:	J. Voss A.A.	Date:	10/15/2010	Date Received:	10/14/2010
Comments	1100			Report No.:	5-16-178

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1. 1	Mass of Proctor mold, W ₁	3955.40 g
2. 1	Mass of Proctor mold + sand, W ₂	5397.80 g
3. \	Volume of mold, V ₁	0.03 ft
4. (Dry unit weight, $Y_{d \text{ (sand)}} = \frac{W_2 - W_1}{V_1}$	95.40 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	4722.90 g
6.	Mass of bottle + cone + sand (after use), W ₄	3107.90 g
7.	Weight of sand to fill the cone, W _c = W ₄ - W ₃	3.56 lb

8.	Mass of bottle + cone + sand (before use), W ₆	6095.9 g
9.	Mass of bottle + cone + sand (after use), W ₈	3083.7 g
10.	Volume of hole, $V_2 = W_6 - W_8 - W_c$ 7 d (sand)	0.0323 ft ³
11.	Mass of gallon can, W ₅	505.20 g
12.	Mass of gallon can + moist soil, W ₇	2438.70 g
13.	Mass of gallon can + dry soil, W ₉	2259.30 g
14.	Moist unit weight of soil in field, $\gamma = W_7 - W_5 / V_2$	132.02 lb/ft ³
15.	Moisture content in the field, w (%) = $\frac{W_7 - W_9}{V_9 - W_5}$ X 100	10.2%
16.	Dry unit weight in the field, d (sand) = - / / (1+(w (%)/100)	119.77 lb/ft ³
17.	Comparision moisture content =	11.3%
18.	Dry unit weight comparison =	112.8 lb/ft ³

C	12	~	-	٠	
6.03	12	e	£ 3	ıΣ	

Washington Closure Hanford

Submittal:

5-188 Earthwork Field Data

2500 N. 11th Street 1 Enid, OK 73701

(580) 234-8780 | Fax (580) 237-4302

Soil Information

Project:	ERDF Cells	9-10 Expansion	ì	Proctor:	SF-09	
Project ID	S013213A	00		Max Dry Density (pcf)	139.8	
Report No.	5-16-182	Date	10/19/2010	Optimum Moisture (%):	2.6%	
Description:	Brown Blad	k Sand		Proctor:	SF-08	
Troxler ID:	27881			Max Dry Density (pcf):	118.0	
Moist Std:	651	Density Std	2211	Optimum Moisture (%):	11.3%	
Moist offset:	*	Density offs	et: -	Proctor:	SF-05	
Allowable Moisture Range	N/A			Max Dry Density (pcf).	124.2	
Necessary % Proctor:		95%		Optimum Moisture (%):	12.5%	

Test No	Location	Pr.	Lift	Time	Oper	Depth (in.)	Wet Density (pcf)	Moist Content (%)	% Proctor (calc)	Dry Density (calc)	Pass / Fail
Manhole :	36 Fill										
MH36-11	SW. side of Manhole	SF-08	9	9:00	JS	6	122.5	6.4%	97.6%	115.1	PASS
MH36-12	E. side of Manhole	SF-08	10	9:05	JS	6	122.4	6.8%	97.1%	114.6	PASS
MH36-13	S. side of Manhole	SF-08	11	10:17	JS	6	124.0	5.2%	99.9%	117.9	PASS
MH36-14	SE, side of Manhole	SF-08	12	10:22	JS	6	124.6	5.7%	99.9%	117.9	PASS
MH36-15	S. side of Manhole	SF-08	13	15:22	JS	6	120.7	4.6%	97.8%	115.4	PASS
				and the same of th							

		de Station and Proposition and					
Reviewed by TW				/	0/2//1	<u>_</u>	
Envirotech Engineering & Consulting. Inc				Date			
	p	age 1	of 1				

Client:

WCH

Submittal:

5-188 Earthwork Field Testing

2500 N. 11th Street T Enid, OK 73701 580) 234-8780 T Fax (580) 237-4302

Sample Information

Contact Name: Charlie Skiba				Sample ID.	MH36-12	
Project:	ject Location			Sample Description:	Brown Sand 10/19/2010	
Project Location				Sampling Date:		
Tested By:			10/19/2010	Sampled By	J. Schut	
Reviewed By:	J. Voss	Date:	10/20/2010	Date Received.	10/19/2010	
Comments	No			Report No	5-16-182	

FIELD UNIT WEIGHT - SAND CONE METHOD

Calibration of Unit Weight of Ottawa Sand

1 Mass of Proctor mold, W ₁	3955.40 g
2. Mass of Proctor mold + sand, W ₂	5397.80 g
3. Volume of mold, V ₁	0.03 ft
4 Dry unit weight, Y _{d (sand)} = W ₂ - W ₃	95.40 lb/ft ³

Calibration Cone

5.	Mass of bottle + cone + sand (before use), W ₃	4722.90 g
6.	Mass of bottle + cone + sand (after use), W ₄	3107.90 g
7.	Weight of sand to fill the cone, $W_c = W_4 - W_3$	3.56 lb

8 Ma	ass of bottle + cone + sand (before use). W ₆	5508.9 g
9. Ma	ass of bottle + cone + sand (after use), W _a	2593.3 g
10. V	plume of hole, $V_2 = \frac{W_8 - W_8 - W_c}{2}$ d (sand)	0.0301 ft ³
11. M	ass of gallon can, W ₅	505.30 g
12. M	ass of gallon can + moist soil, W ₇	2176.70 g
13. M	ass of gallon can + dry soil, W ₉	2042.20 g
14. M	oist unit weight of soil in field, $y_1 = W_7 - W_5 / V_2$	122.60 lb/ft ³
15. M	oisture content in the field, w (%) = $\frac{W_7 - W_9}{W_9 - W_5}$ X 100	8.8%
16. Dr	ry unit weight in the field, d(sand) = 7 / (1+(w (%)/100)	112.73 lb/ft ³
17. Co	omparision moisture content =	6.8%
18. Dr	y unit weight comparison =	114.6 lb/ft ³