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Traditionally, civil engineers have tended to focus their attention on the 
saturated zone in analyzing seepage through earth structures and the subsurface. 
However, unsaturated flow plays an important role in a large number of 
engineering problems, e.g., the movement of toxic leachates beneath sanitary 
landfills take place largely under unsaturated conditions. Similar conditions 
often prevail during the percolation of clear or polluted water from surface 
bodies such as rivers, ditches , and canals toward the ground-water table. Freeze 
(-1) showed that seepage through earth dams under variable reservoir heads 
cannot be validly investigated without taking into account the unsaturated zone. 
An understanding of flow in this zone is also important for stability analyses 
because negative pore-water pressures cannot be calculated by using the classical 
free-surface approach. Unsaturated flow conditions are also encountered in 
dealing with unconfined aquifers, watershed hydrology , irrigation, and the 
drainage of agricultural lands . 

The problems of fluid flow in unsaturated porous media lead to quasilinear 
partial differential equations that are very difficult to solve by analytical methods. 
With the advent of high-speed digital computers during the last two decades , 
approximate numerical techniques have been applied to an increasing degree 
in solving such problems. Most of these methods were developed by soil scientists 
who favored the conventional finite difference approach. A comprehensive review 

Note .-Discussion open until May 1, 1974. To extend the closing date one month , 
a written request must be filed with the Editor of Technical Publications , ASCE. This 
paper is part of the copyrighted Journal of the Hydraulics Divi sion , Proceedings of the 
American Society of Civil Engineers, Vol. 99, No. HY1 2, December, 1973 . Manuscript 
v. as submitted for review for possible publication on June 8, 1973. 

' Sr. Sci ., Inst. of Soils and Water , Agr. Research Organization , The Volcani Center , 
Bet Dagan , Israel. 
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of this approach as well as a complete survey of all pertinent literature Wert 
given by the writer in a previous report (I). 

Due to the limitations of the usual finite difference approach, there has bee 
in recent years a shift of emphasis , especially in civil engineering, toward th~ 
development of more powerful numerical techniques based on the conceptt 
of variational calculus. These new techniques , commonly known as the finit ~ 

. t 
element method, have already been successfully applied to many fluid fl o11, 
problems (2,5,6,7,10,l l , 12,l4 ,15,16, 17,18, l9). 

In the present work an iterative Galerkin-type finite element method i~ u ed 
to solve the equations of transient seepage in saturated-unsaturated porous media. 
The resulting computer program is capable of handling nonuniform flow region~ 
having complex boundaries and arbitrary degrees of local anisotropy. Flow can 
take place in a vertical plane, in a horizontal plane, or in a three-dimensional 
system with radial symmetry. Boundary conditions that vary with time in a 
prescribed stepwise fashion are conveniently treated with this program. When 
one or more seepage faces are present, their locations are automatically adjusted 
at each time step. The soil is allowed to be slightly compressible and thi s is 
taken into account indirectly through the concept of effective formation com­
pressibility. Experience with the finite element algorithm indicates that conver­
gence of the iterative scheme is near quadratic in many cases . A listing of 
the computer program is available elsewhere (9). Two examples , one of infiltration 
into an earth dam with a sloping core, and the other of flow through a layered 
medium cut by a complex topography, are also included in the text. 

GovERNING PARTIAL D1FFERENTIAL EauAnoNs 

The following analysis is written in an indicial notation whereby quanuues 
with a single subscript (or index) represent components of vectors , and quantities 
with two subscripts are components of second rank matrices or tensors . When 
an index appears twice in any given term of an algebraic expression , thi s term 
must be summed over all admissible values of that particular index. 

The equation of continuity for an infinitesimal element of the porous medium 
can be written in terms of macroscopic quantities as 

a a 
- - ( p V) = - ( p q> S ..,) . . . . . . . . . . . . . . 

axi at 
. . . . .. (I) 

in which p = the density of water ; vi = the Darcy velocity or specific flux; 
<I> = the porosity; and S.., = the degree of volumetric water saturation (0 s 
S.., s !). From Darcy's law one has 

ah 
vi= -K \iK,-a 

xi 

. .. . .. (2) 

in which K, = the relative hydraulic conductivity (0 s K, s I); and h .. 
the hydraulic head. Eq. 2 assumes that the hydraulic conductivity can be expressed 
as the multiple of a symmetric positive-definite tensor, K ti, representing . the 
conductivity at saturation, and a scalar function of the degree of saturauon. 
K ,( S ..,) . This representation need not be strictly correct but it may be present~)' 
justified in view of our limited knowledge about the functional relationship 
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t,c tween Kii and S,.. Substituting Eq. 2 into Eq . I leads to 

. ( ah) a ~ pK ~j K,- = - (p <I> SJ . ... . .. .... . . . ~x, axi at 
. .. . ... (3) 

The term on the right-hand side of Eq . 3 can be expanded by adopting an · 
argument similar to that of Cooley (3) . Let c I be the formation compressibility 
defined as 

1 a<1> a<1> c? :;a";= pg<!> ah - • • - • • - - • . - . - - - .... - ... . ..... (4) 

in which p = the pore-water pressure ; and <I> = the volume of voids per unit volume of porous material . The idea of expressing the compressibility in terms of fluid pressure instead of effective stress is derived from ground-water hydrology and petroleum engineering practice . This can be justified provided that the total stress is fixed at each point and the deformation is elastic and vertical . In shallow soils where the total stress is strongly affected by surface loads and by overlying changes in the state of saturation, c I must be viewed merely as an effective formation compressibility and its application is limited to a narrow 
range of variations in the state of stress . Under unsaturated conditions where the relationship between total stress, effective stress , and fluid pressure is a function of S w, c1 may change considerably from its saturated value . However, the effect of soil compressibility on the storage of water under unsaturated conditions is usually quite small relative to the effect of changes in S w, and therefore c1 can be safely neglected. 

By expanding the right-hand side in Eq. 3 and assuming that spatial variations in p are negligibly small owing to the slight compressibility of water, the flow equation becomes 

~(K fj K,!..!:._)= <1> as,. + s,. s, !.!:... . .. . .. . .. . ..... .. . . (5) axi axi at at 

in which the specific storage , S s, is defined as 

.... . ... ..... . . . (6) 

and c., = the compressibility of water. 
For practical purposes, it is often convenient to express Eq. 6 in terms of the pressure head , lj, , and the volumetric moisture content, 8, rather than in terms of h and S.., . If one defines the specific moisture capacity, C, as 

ae 
C==­

olj, 

then Eq. 5 can be rewritten in the form 

. . .. .. ... . . . ...... .. (7) 

;-(K ,Kf(~!_ + K ,K/3 ) = (c + ~ S ,) ~ .. . . . . . . . . .. .. . (8) "x; axi <I> at 

Since hysteresis is not considered in the present analysis, lj, is a single-valued function of 8 and therefore, the initial conditions that are required for any 
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give n problem are simply 

lj,( x ;, 0) = 41 0 (x) . . ... . . . . . . . . . . . . . . . . . . . . . . . 
. . . . (I, 

In add ition to this , one will usuall y encounter two types of boundary conlfitio 
prescribed pressure head and prescribed flu x normal to the boundary. Let ~

1 

boundary of the flow region , r , consist of two types of segment~. r·, .,,n,~ 
r ,, such that r = r I U r ,. Then the prescribed pressure head boundarv coll'',·t ·-

- . - · u IUfl 
can be written as 

.. . ..... .•. . ( 101 

and the prescribed flu x boundary condition becomes 

K,(K ;i;:i + K t3 )n ;=-V(x ;, t) on f 2 ••. . • . •• . •... •. (Ii i 

in which 'II and Vare prescribed functions of X ; and t ; and n; are the component, 
of the unit outer normal on r . 

APPLICATION OF GALERKIN METHOD 

Eqs. 8, 9, 10, and 11 are solved by the Galerkin method in conjunction with 
a finite element discretization scheme. According to the Galerkin method. an 
approximate solution to this problem at any given instant of time , t , is obtained 
in the form of a finite sequence: 

lj,N(X; , t}=lj,"(t)~" (x); n=! ,2, ... , N ... .. ...... , .... (12) 

in which {~"(x)}~_ 1 is a set of N linearly independent coordinate functions : 
and 41 n< t) are time-dependent coefficients yet to be determined. In choosing 
the coordinate functions , lj,(x; , t) is assumed to be a square-integrable function 
(in the Lebesque sense) belonging to a Hilbert space, H . The approxi mate 
solution , lj,N(x;, t), must belong to an N-dimensional subspace of H . H". 
whose elements satisfy all continuity criteria as well as boundary conditions 
of the problem. Eq. 12 implies that each element of H N can be expressed 
uniquely as a linear combination of all the ~" - s. Thus, the functions, { ~ J ~- 1• 

must be chosen so as to constitute a complete set spanning the subspace, Hi-. 
thereby forming a basis for HN (see Ref. 13). 

If R denotes the interior of the flow region over which lj,(x;, t ) is defined, 
then the norm of lj, , II IV II, is obtained from 

II IV 11 2 
= IR lj,2 

dR ......... . (13) 

It is said that lj, N converges in the norm to lj, whenever 

lim II IV - lj,N II = 0 ... . ... .. . .......... ().: ) 

The aim of the variational approach is to determine the coefficients, IV"• of 
41 N in such a manner as to ensure convergence in the norm to the true solution. 
In the finite difference approach one usually requires that his solution conver~c 
uniformly over the closure of the entire flow region, R, where R = R U I · 
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.\!though uniform convergence always implies convergence in the norm while 
;he converse is not necessarily true , convergence in the norm is often faster 
(8) and this is a distinct advantage of the variational method . 

£q . 8 can be rewritten in the form 

a ( al), ) ( e ) al), L(u,) = - K K s - + K K s - C + - S - = 0 ax. r 1/ ax. r 13 ,I,. s at 
I J '!' 

... . . (15) 

in which L is a quasilinear differential operator defined on R. The Galerkin 
method stipulates that in order to determine the coefficients of lj, N so as to 
minimize 11 11/ - lj, N II, L( lj, N) must be orthogonal to each of the N coordinate 
functions , £n : 

ll! 1 1 D/lj,N) = JRL(l), NHndR=O; n= 1,2, .. . ,N . ... . . . . ... .. (16) 

with 
J . .a,.... 
..t ined 

( I~ 

,on : 
usinr 

:ction 
,maP'"' 
H' . 

. 11iom 

( I 

.. " 
tioA-
. effC 

r 

In other words, the functional, nn(lj,N) , must vanish for each value of n . 

FINITE ELEMENT DISCRETIZATION 

In using the finite element discretization scheme, the flow region, R, is 
subdivided into a network of elements. It is convenient to adopt a network 
composed of triangular elements for plane flow and a network composed of 
concentric rings of constant triangular cross section for axisymmetric problems . 
Let the corners of these elements be designated as nodal points and let x~ 
be the space coordinates of the nth node. Each node, n, is associated with 
a unique subregion of R, Rn, containing all elements in the immediate vicinity 
of n (see shaded area in Fig. 1). In addition , each node is associated with 
a global coordinate function, £ / x) , which is linear in x; inside each element 
and piecewise linear over R, such that 

Ux~ ) =onm ' forall x~ in R . 
~.(x;) =O, forall X; notin Rn 

(17 a) 

(17 b) 

in which 6 nm = Kronecker delta (i .e., 6 nm = if n = m and 6 nm = 0 if 
11 #- m) and Rn = the interior of Rn. 

Owing to their unique shape , £n are sometimes referred to as pyramidal, 
roof, or chapeau functions. By introducing them into Eq. 12, the latter equation 
becomes a piecewise linear two-dimensional Lagrange interpolation formula for 
• Nin R. In other words, the value of lj, N at any node in R is equal to the 
coefficient, lj, n, corresponding to that node. 

In order to express £n explicitly in terms of the space variables, X;, it is 
convenient to consider a single element , R', as shown in Fig. 2. Let { £~ (x;)} 
be a set of local coordinate functions that are linear in X; and satisfy the requirements 

t:cx1'." ) =6 forall x'." in R' nm' 1 

l:<x;) = 0, for all X; not in R' 
This together with Eq. 17 implies that the global 
the union of the local coordinate functions , £ ~ 

(18 a) 

(18 b) 

coordinate functions , £ n , are 
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. ( 19, 

in which the union sign is taken over a ll elements , e. The relationship between 

s~ and xi is given in Appendix I. 

FIG. 1.-Network of Triangular Elements 

3,q 

1 , n 

2,p 

FIG. 2.-Single Triangular Element 

By virtue of Eq . I 9 it is now possible to rewrite the global functional from 
Eq. 16, n ,,( lj, N), in terms of equivalent local functionals over individual triangle · 

n ~ ( $ N) , so that 

fln(ljJ N) = f1,,($msm) = n n [ljlm(~ s'm)] = L!l'n(ljlms:) =0 · · · · · (10I 
• 

in which the summation is taken over all elements and 
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Since the Galerkin method applies only at a given instant of time , the time 
derivative , al), / at, appearing in L( I),) must be determined independently of the 
orthogonalization process . Experience indicates that for the numerical method 

10 converge in the case of unsaturated flow , at), / at must not be replaced by 
~w"' / at. A much more stable solution is obtained by defining the nodal values 1 
of the time derivatives, at), )at, as weighted averages of at), / at over the entire 

, flow region , R : 

The physical meaning of this definition will be explained later. In addition to 
this , it is assumed that K ~;, q>, and S s are constant in each element, while 
K,, C , and 0 vary linearly according to 

K,=Kr1~ ~ 

C= C , ~7 
8=0,~~-

in which I stands for the corners of the triangle . 

(23 a) 

(23 b) 

(23 c) 

By combining Eqs. 20, 21, 22 , and 23, and using Green 's first identity, one 
obtains a set of quasilinear first-order differential equations 

- , 

(~I I 

n,m=l , 2, .. . , N .. . . . . . . . . . (24) 

in which, for a vertical cross section 

J a~ • a~• i A.m= ~K ,,K~; . ~ ~ -" _ m_dR 
e R axi axj 

A•m = ~ 
4
0:~ K, [K~ 1 bnbm + K ~/ bncm + bmcn) + K ;3 cncm] 

. . (25 a) 

. F •• =~J R,( c,~~+ :, e,~~) ~~dR 

F •m = 0, if n =I- m . . . . . . . . . . . . 

.. . ... (25 b) 

(25 c) 

(25 d) 

...... (25 e) 
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The subscript s, n , p, and q , refer to the three corners of each triangle 

shown in Fig. 2; /1 = the area of the triangle ; a = I for plane fl m~ anu 
0 

"". 2 r. i 1 f~r axisymmetric flow ; i 1 is the av~rage horizontal (or r~dial) cuordin;Jl :­

g1ven by x
1 

= [(x 1)n + (x 1)P + (x 1)q]/3; K ,= the average relative conduct 1111 1 

given by K, = ( K , n + K ,p + K ,q) / 3; and b and c are geometric coefficicni, 

defined in Appendix I. The term , ( L V) n, represents the flow rate aero,, an, 

side of the triangle , of length L , which includes nodal point n . The \' valu~­

is assumed to be uniform along L . 
In the case of horizontal plane flow , B n must be set equal to zero for al: 

values of n . Note that the matrix , A nm , is sparse and symmetric while Q 

is zero at all internal nodal points that do not act as sinks or sources . · 

Also note that F nm is a diagonal matrix and thi s is a direct con equi:n e 

of the av~raging pr~cess implie_d by Eq. 22 . The physical meanin_g of this averaging 

process 1s now evident : F nn 1s the amount of water stored m the entire flo" 

system when the value of 41 at node n changes by one unit in unit time. Thus . 

F nn is a global coefficient of storage corresponding to nodal point n . According 

to Eq. 25 b, the contribution of each triangle to F nn is calculated by giving 

two times more weight to the values of C and 6 at node n than to their values 

at all other nodes. In the particular case in which C and 6 are uniform inside 

an element, the storage capability of the element is equally divided between 

its three corner nodes so that F nn represents one third the storage capability 

of this element. 

EXTENSION TO QUADRILATERAL ELEMENTS 

The diagonal shape of F nm enables one to employ quadrilateral elements in 

addition to triangular elements. Consider a typical quadrilateral element as shown 

in Fig. 3 and let its corner nodes be numbered locally from I to 4. By designating 

a fifth nodal point at the center of the quadrilateral , the latter can be subdivided 

into four triangles . Obviously, each of the five nodes is associated with one 

equation of the type given in Eq. 24. However, the equation corresponding 

to the center can be eliminated as will be shown. 

If one wants to treat the quadrilateral as a single element with four nodes. 

its contribution to F nn can be derived by analogy to the triangle. This contribution 

must be such that the weight given to C and 6 at node n is twice as large 

as that given to them at the remaining three nodes. In addition, when C and 

6 are uniform over the entire quadrilateral , the storage capability of the element 

must be divided equally between the four corner nodes , so that each node 

is associated with one fourth of the total value. Thus, the contribution of a 

quadrilateral to F nn is 

a V [< 2 C n + C P + C q + C ,) + ~ ( 26 n + 6 P + 6 q + 6 ,) ] 
20 ~ 

... • . . . (~6) 

in which n, p , q , and r represent the corner nodes; V = the area of the 

quadrilateral; and a is the same as before except that now i 1 = [ ( x 1)" + 

( x 1) r + ( x 1) q + ( x 1) ,] / 4. Consequently , F nn for the center point become 

zero . 
If the center point is neither a source nor a sink, Q

5 
= O; otherwise. it 
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Je a, ,, possible to divide the value of Q 5 equall y between the four corner nodes 
.nd u and then set Q 5 = 0. The net result is that Eq. 24 for the center node becomes 

inate ,si nce F ss = 0) 

.4 11 w, + A s2 W2 + A s3W3 + A s4W4 + A ss Ws = -Bs · · · · · · · · · · · · (27) 

This can be solved explicitly for I), 5 and the result inserted into the equations 

tivit) 

1enh 
an, 

1 al ue , corresponding to the four corner nodes. In this manner, the size of the matrix , 
.\ m , is greatly reduced without impairing its symmetric nature . 
· Obviously , each triangle can also be divided into three smaller elements and 
the equation for the midpoint can be eliminated in a similar fashion . While 

ir all 
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FIG. 3.-Single Quadrilateral Element 

the size of the matrix, A nm , remains unchanged , the accuracy of the results 
improves significantly. 

INTEGRATION OVER TIME 

To integrate Eq. 24 , the time domain is discretized into a sequence of finite 
intervals, At , and the time derivatives of I)," are replaced by finite differences. 
If the entire flow system remains unsaturated at all times , good results can 
be obtained by employing the time-centered scheme 

) [A k+( ! / 2 ) + - 2
_ p k+(l / 2) ] ., ..... . = 2Qk+(l / 2) - 2Bk+( l / 2) - [A k+ ( l / 2) 

" '" A nm '+' m n n nm 
/.l. t k 

(26) 

f the 
) n -r 

ome 

, e. it 

- il~k F ~:<112> ]1),km; n, m= 1, 2, ... , N .. .... ......... . . (28) 

in which k represents the time; t = t k ; and A t k = t ..._ 1 - t k. In order to 
evaluate the coefficients in Eq. 28 , one must know the values of l),~ +< 112> at 
1t~ <1; 2, = t . + At./ 2. At the beginning of each time step , these are predicted 
by linear extrapolation from previously calculated values according to 
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!::,. t 
t),~ - 11n 1 =1),~+ k (t),~-t),~ - 1) ... .. . 

2!::,. tk - 1 
. . . . . . ( ~~ 

The resulting set of simultaneous linear algebraic equations is then solved 

a highly efficient Gauss elimination algorithm for the values of I), ~ - 1 at a!. 

nodes . 
Due to the nonlinear nature of Eq. 28, these results must be improved bi 

an iterative process . At each iteration, the most recent values of I),~- 1 are u~e, 

to obtain an improved estimate of I),~+ < 112> from c 

•••• ••• • • ( I 

After hav ing reevaluated the coefficients, the equations are again solved bi 

Gaussian elimination for improved values of I),~+ 1. The iterative procedur~ 

continues as long as it is necessary to achieve a satisfactory degree of convergence 

Note that by employing Gaussian elimination simultaneously over the entire 

finite element network, the iterative process is fully implicit and is therefore 

very fast. This form of iteration is sometimes referred to as the method of 

simultaneous displacements. Since experience indicates that near-quadratic con. 

vergence can be achieved in many cases , this approach offsets all the well-known 

deficiencies of the Gaussian elimination scheme. Moreover , this approach appean 

to be superior to the Newton-Raphson method which relies on a complex 

nonsymmetric matrix and is highly sensitive to the initial estimate of l), ~- (I , : , 

during each time step. 
The time-centered scheme can also be used in systems that do not remain 

completely unsaturated , provided that S , in the saturated region is not zero. 

If S s is zero and part of the system is saturated, the values of F "" in the 
saturated zone vanish , and the governing equations there become elliptic. This 

means that sudden changes in boundary conditions around the saturated zone 

have an instantaneous effect on the values of I), everywhere in this zone. so 

that I), is no longer a continuous function of time . For example, by imposing 

a certain boundary condition at time t = t k, all values of I), in the saturated 

zone change instantaneously and the values of I),~ at the start of the time step. 

t::. tk , become unknown. Thus, the right-hand side of Eq. 28 is unknown, and 

the equations cannot be solved. 
To overcome this problem, one must adopt a fully implicit backward difference 

scheme in terms of I),: 

[
A k+ ( 1/ 2) + _ 1

_ pk+( 1/ 2) ] t),k + I = Qk+(l / 2) - B k+( 1/ 2) 
nm .6, tk nm m n n 

I + __ p k+ ( l / 2) t),k 

!::,. (k nm m 

.. . . (31) 

Here the coefficients are still evaluated at half the time step, k + ( I / 2) . and 

this is done in order to dampen the tendency of I), to oscillate around its limit. 

Such oscillations are frequently encountered in highly nonlinear systems such 

as the one dealt with herein and a well-known method of overcoming this problem 

is to employ under-relaxation techniques . The effect of evaluating the coefficient 
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1 
half the time step is to under-relax the system . 3 
When S s is zero, the global storage coefficient. F "" , vanishes in the saturated one and one can obtain a solution without knowing the values of lj, ~ at the !iart of the time step in this zone. The only exception to this rule occurs at 

nodes that pass from a state of saturation to a state of incomplete saturation 
Juri ng a time step. The value of F~~<in, corresponding to such nodes may 

' di ffer from zero and Eq. 31 can no longer be solved without knowing the 
\al ues of lj,~. However , since S s = 0, F ~; <11 21 now represents only storage due to change in the moisture content , e. Such changes occur only within 
the negative range of lj, values but when lj, is positive , C = ae / alj, is zero . Thus. whenever a value of lj, ~ in the saturated zone becomes unknown due 
10 a sudden change in the boundary conditions , one is justified in replacing 

, this value by zero in Eq. 31. 

TREATMENT OF SEEPAGE FACES 

A seepage face is an external boundary of the saturated zone where water 
leaves the system and lj, is uniformly zero. Under transient conditions, the .tic con- length of the seepage face varies with time in a manner that cannot be predicted 1-knov. n a priori . If one treats the seepage face as a prescribed pressure head boundary 

ap 11,ith lj, = 0, the length of this face remains fixed , and this is contrary to the : omp!e1 physics of transient flow . On the other hand, the seepage face cannot be treated ~1 ~-u.;. as a prescribed flux boundary because the values of Q" there are generally 

rerrmm 
.:i t zero. 
., in"'!llr 
tic. This 
ed zg; 

unknown. How, then, should a seepage face be treated? 
To answer this question , reference is made to all nodes which , at any stage 

of the calculation , can belong to a given seepage face by having zero values 
of ljl" and negative values of Q" (recall that Q" is negative when the flow 
at node n is directed out of the system) . Suppose that , knowing the position 
of the seepage face at time t k, it is desired to predict its position at time :one. so t1• 1• During the first iteration , lj, is set equal to zero along the initial length mposui of the seepage face and the latter is treated as a prescribed lj, boundary . At the same time, Q is set equal to zero at all nodes with lj, < 0 and this segment is treated as a prescribed flux boundary. The solution is expected to yield ,rn. , DCgative values of Q at nodes where lj, is prescribed to be zero, and negative 
,-aJues of lj, at nodes where Q is prescribed to be· zero. If, instead , a positive 
nlue of Q is encountered at a node where lj, = 0, the value of Q there is 
tct equal to zero and, in the next iteration, this node is treated as a prescribed Oux boundary. On the other hand, if a positive value of lj, is encountered at 1 node where Q = 0, the value of lj, there is set equal to zero and , in the next iteration, this node is treated as a prescribed pressure head boundary. 
Experience has shown that in order for the solution to converge , this modification . (311 o( the boundary conditions should always precede sequentially from node to llOdc:, starting at the saturated end of the seepage face. In addition, after having 

2 
). ari ltt Q equal to zero at any node during a given iteration, Q at all the subsequent lodes must also be set equal to zero . The iterative process continues in the llannc:r described earlier until a sufficient degree of convergence is achieved 

., Ii_, 
15 s¢ 
. rcit-icl' 
:'1~ 

• tach node in the network . 
Note that due to the ease with which prescribed flux boundary conditions 

Ire treated in the finite element method , the handling of seepage faces is 
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considerably simpler than with the finite difference approach. 

E XAM PLES AND CONCLUSIONS 

All the features described in the foregoing have been incorporated into 

computer program that is able to handle both plane and axisymmetric fl01, : 
The functional relationships between ij,, 0 , and K , are obtained by lineo: 

interpolation between discrete values . Details of the computer program arc 

available elsewhere (9) . The following examples have been carefully cho ~n 

to illustrate the power of the finite element approach and to demonstrate the 

,o 
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FIG. 4.-Earth Dam with Finite Element Network 
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FIG. 6.-Ad11ance of Zero Pressure Surface in Earth Dam 
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unportance of unsaturated flow. The results are expressed in terms of arbitrary 
tirne units. 

The first example is that of transient seepage through an earth dam with 

3 
sloping core and a horizontal drain . A cross section of the dam, together 

with the superimposed finite element net work . are shown in Fig. 4. The saturated 

hvdraulic conductivity of the sandy shell material is 0.5 cm per unit time in 
' the horizontal direction and 0. 1 cm per unit time in the vertical direction. The 

saturated conductivity of the clay core is 0.0001 cm per unit time in the horizontal 
direction and 0.001 cm per unit time in the vertical direction . Fig. 5 shows 
the variation of 41 and K, with moisture content for both materials. The value 
of s, is zero and the effect of surface loads on the pore pressure is neglected . 

In engineering practice, earth dam fills are usually compacted at near-saturated 
moisture contents. In the present example , the initial value of 0 is 0.255 in 

: 

n n 
.,, 

DIST.INC[ , MCT[" S 
,0 "' 

FIG . 7.--Contours of Equal Hydraulic Head in Earth Dam at I = 4,400 
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FIG. 8.-Hill-Slope with Finite Element Network 

the shell and 0.598 in the core. The boundary of the porous material along 
the drain is treated as a potential seepage face . At time t = 0, the water level 
~ the reservoir is suddenly raised to an elevation of 4 m and this situation 
. maintained for a period of 182 time units . This is followed by a gradual 

nsc in the water level at a rate of I m per 24 time units until the reservoir 
~hes an elevation of 12 m at t = 374 . After this time, the water level in 
:!:e~eservoir remains at a constant elevation of 12 m above the impervious 

• Fig. 6 shows the advance of the zero pressure (i.e. , 41 = 0) surface which, 
Cl( the present case, separates between the saturated and the unsaturated portions 
~dam. In the classical approach this is considered to be a moving material 
fie. ry and is usually referred to as free surface (12). As one can see in 

6, the zero pressure surface may have an inverted shape and this situation 
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cannot be handled with the classical approach. In addition , the rate of advanc 

of this surface is strongly affected by antecedent moisture conditions in th' 

unsaturated zone ( 4) and therefore thi s rate cannot always be correctly predictc: 

with the free surface approach. c 

Fig. 6 presents some interesting features of saturated-unsaturated fl ow regirn .. 

in an earth dam. Since the initial moisture content is uniform in each segrncn'. 

of the dam, the pressure head is also uniform, indicating that a vertical hydrau1i · ' 

gradient must exist in the unsaturated zone. This gradient results in the accumul .. ~ 

tion of water on the upstream face of the clay core and in the formation of 

a saturated mound at the bottom of the downstream shell. As time goes on 

the rate of moisture content redistribution in the unsaturated zone dimi ni she~ · 

and the mound as well as all excess water above the clay core slowly dissipate . 

At time t = 4,400, the zero pressure surface attains a quasisteady configura tion. 

and flow in the saturated zone reaches a state of near-equilibrium. However 

nonequilibrium conditions still prevail in the unsaturated zone, and this is show~ 

in Fig. 7. 
Fig. 7 shows contours of equal hydraulic head in the dam at t = 4.400. 

These contours demonstrate the existence of a hydraulic gradient causin~ 

downward flow in the unsaturated zone. Although the example has not been 

carried beyond 4,400 time units , there is sufficient evidence to indicate that 

the contours will continue to recede upward and will rotate in a counterclockwise 

fashion until the final steady state is reached. At this stage , the upper and 

downstream boundaries of the dam will become flow lines and some water 

from the reservoir will continue to flow through the unsaturated zone. 

It is interesting to note that the interface between the porous material and 

the horizontal drainage blanket acts like an impermeable boundary at t = 0. 

but later two seepage faces develop , one along the vertical wall on the left 

and one near the toe of the dam on the right. At t = 150, the two seepage 

faces become one, and this situation remains permanent . Thus , much of the 

water that seeps into the drain is derived from the overlying unsaturated zone. 

This is consistent with the laws of physics because the interface itself is saturated 

and maintains a pressure of zero , thereby constituting a constant hydraulic 

head boundary as is indicated in Fig. 7. 
Freeze (Ref. 4, p . 937) claims that ". . . classical saturated anal yses for 

full drainage blankets , which treat the horizontal interface between dam and 

filter as a seepage face, must .. . be in error" and suggests the replacement 

of the drain by a highly permeable porous material. The present analysis does 

not support Freeze 's viewpoint. f 
The second example is that of seepage through a layered hill-slope cut M · 

a ditch . A cross section of the slope, together with the superimposed finite 

element network, are shown in Fig. 8. The principal values of the saturated 

hydraulic conductivities in each of the three layers, in centimeters per urut 

time , are given in Fig. 9. The variation of ij, and K, with moisture conterJ 

for the bottom clay layer and the two overlying sandy layers are the same 

as in Fig. 5, S s is 10 - 4 inverse meters in the bottom layer and zero in ~ 
overlying layers. 

Prior to the time, t = 0, the ditch is empty and the system is under a quasi-stead) 

state. Flow takes place from right to left and water leaves the system throut • 

two seepage faces , one along the ditch and the other along the slope. At ur!l( 
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t = 0, the ditch suddenly fills with water to a level of 
is maintained indefinitely . 

HY· ; 

10.7 and thi s si tu., 11 01 

Fig. 9 shows the advance of the zero pressure surface up to the tim, . 
= 12.1. It is seen that at early time, the lj, = 0 surface is again in ven~,/ 
and therefore the free surface approach is unsuitable for this problem . 

From the present study it can be concluded that the finite element m.:th\X'. 
is well suited for the analysis of transient saturated-unsaturated flow thruug1, 
porous media. The classical approach in which the water table is trea ted a, 
a moving material interface is limited in its application and it may often 1.:au 
to erroneous results. Additional research is needed to develop field method, 
for determining the functional relationships between pressure head. relati\ c 
conductivity, and moisture content under unsaturated conditions. 
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APPENDIX 1.-LoCAL COORDINATE FuNCTioNs 

Referring to Fig. 2, the relationship between local coordinate functions and 
global Cartesian coordinates in a vertical cross section is obtained directly from 
Eq. 18: 

[

~ 1]=[~\ xf ~3
]~~]- • • • •• • ••• • •• ••• •• • ••• •••• (31) 

x 3 x~ x; X
3 L;; 

The inverse of Eq. 32 is 

:IJ .... ......... .. ... .... . (]]) 
in which the area of the triangle, t::., is given by 

x1 
I 

x1 
3 

t::. = xi 
I 

x2 
) = b1c2- c1b2 .. . . ... . ... . . . . ..... . . (~) 

XJ 
I 

X J 
3 

and a 1=x~xj-x;x;; b1=x;-xj; c1=x;-x~J 

a2=x~x~-x:xi; b2=x~-x;; c2=x:-x~ 

a 3 = x1
1 Xi - x~ x;; b3 = x~ - x;; c3 = x~ - x1

1 

.. . ...... (35! 
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a~·" 
Jn addition ax 1 

. (36) 
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APPENDIX 111 .-NOTATlON 

The following symbols are used in this paper: 

c = ae / a41 
c1 = (l / 4>)(a4> / ap) 
c,., = (1 / p)(ap/ ap) 

g 

h = X 3 + 41 
K fj = ki(y/V 

K, 
kii 
N 
ni 
p 
R 

R = R u r 
S , = pg<f>(c ,., + c1) 

s,., 
t 

V 
vi 
xi 
X3 

r=r 1 ur 2 

r, 
r 2 

'( 

t:. 
6 nm 

e = S,.,<I> 
V 

~" = u, ~; 

p 

<I> 
q, 

41 = p/( pg) or h - x3 
"iJ 

specific moisture capacity L - 1
; 

effective formation compressibility , L 2 F - 1; 

water compressibility , L 2 F - 1
; 

acceleration due to gravity, L T - 2
; 

hydraulic head, L ; 
saturated hydraulic conductivity tensor, Ly- 1; 

relative hydraulic conductivity, dimensionless ; 
intrinsic permeability , L 2 ; 

number of nodes in finite element network ; 
unit outer normal on r , dimensionless ; 
pore-water pressure , FL - 2

; 

interior of flow region ; 
closure of flow region; 
specific storage, L - 1

; 

relative water saturation, dimensionless ; 
time, T ; 
prescribed flux on r 2, Ly- 1

; 

specific flux , Ly- 1
; 

Cartesian coordinate, L; 
vertical coordinate , L ; 
boundary of flow region ; 
prescribed pressure head boundary ; 
prescribed flux boundary; 
unit weight of water, FL - 3

; 

area of triangle , L 2 ; 

Kronecker delta ; 
volumetric moisture content , dimensionless ; 
viscosity of water , FTL - 2

; 

global coordinate function associated with nth node. 
dimensionless ; 
local coordinate functions associated with nth node, 
defined in Appendix I , dimensionless; I 
mass density of water, FT2 L - 1

; 

porosity , dimensionless ; 
prescribed pressure head on r 2, L ; 
pressure head , L ; and 
area of quadrilateral, L 2• 




