CALCULATION OF UPPER CONFIDENCE LIMITS FOR RCRA MONITORING AT THE 183-H SOLAR EVAPORATION BASINS TO SUPPORT THE JULY - DECEMBER 2018 RCRA SEMIANNUAL REPORT

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy under Contract DE-AC06-08RL14788

CH2MHILL Plateau Remediation Company

P.O. Box 1600 Richland, Washington 99352

CALCULATION OF UPPER CONFIDENCE LIMITS FOR RCRA MONITORING AT THE 183-H SOLAR EVAPORATION BASINS TO SUPPORT THE JULY - DECEMBER 2018 RCRA SEMIANNUAL REPORT

Date Published February 2019

Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management

Contractor for the U.S. Department of Energy under Contract DE-AC06-08RL14788

CH2MHILL Plateau Remediation Company P.O. Box 1600 Richland, Washington 99352

> APPROVED By Janis D. Aardal at 3:16 pm, Feb 12, 2019

Release Approval

Date

TRADEMARK DISCLAIMER

Reference herein to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.

Printed in the United States of America

ENVIRONMENTAL CALCULATION COVER PAGE

SECTION 1 - Completed by	the Responsible Manager		
Project: RELEASE / ISSU			
Soil and Groundwater Remediation Project			
Date: 01/22/2019			
Calculation Title and Description: Calculation of Upper Confidence Limits for RCRA Monitoring at the 183-H Solar Evaporation Basins to Support the July - December 2018 RCRA Semi-Annual Reports			
Qualifications Summary			
Preparer(s):			
Name: Erica DiFilippo			
Degree, Major, Institution, Ye	ear: BA, Geology, Smith College, 2000 MS, Geological Sciences, University of Sou PhD, Hydrology and Water Resources, Univer N/A	athern California, 2004 csity of Arizona, 2008	
Professional Licenses.			
transport of organic and inorganic chemicals in the environment. She has conducted numerous studies of groundwater transport, statistical geochemical analysis, groundwater age-dating, dense non-aqueous phase liquid (DNAPL) dissolution, enhanced DNAPL remediation technologies, and the use of innovative technologies for measuring in-situ concentrations of organic contaminants in sediment pore-water. At Hanford, Dr. DiFilippo has provided remediation support in the form of water-level mapping, evaluation of monitored natural attenuation (MNA) and enhanced attenuation (EA), development of methodology to asses the impact of surface water-groundwater interactions on contaminant concentrations and trends, and assessment of statistical methodologies for evaluation RCRA compliance at both interim and final status sites.			
Checker(s):			
Name: Matthew O'Connel	1		
Degree, Major, Institution, Ye	BA, Environmental Sciences, University of BA, Environmental Sciences, University of	Virginia, 2016 Virginia, 2006	
Professional Licenses:	N/A		
Brief Narrative of Experience	: Mr. O'Connell's experience is in organic geo oceanography, as well as hydrology and geolo in coordination and analysis of large sets of simulation of hydrologic transport of materia networks, and characterization of biogeochem through stable isotopes. He has assisted we isotopic characterization of carbonaceous se International Ocean Drilling Program and cor organic and inorganic nitrogen using Isotope Spectrometry. He has experience in historic production to determine potential contaminat	bochemistry and bogy. He has experience of geochemical data, ials through stream nical relationships ith chemical and ediments for the nducted analysis of a Ratio Mass cal research and map tion sources.	

ENVIRONMENTAL CALCULATION COVER PAGE (Continued)

Senior Reviewer(s):				
Name: Alexandros Spiliotopoulos				
Degree, Majo	r , Institution, Year: BS, Civil Engineering, University of Patras, 1994 PhD, Civil and Environmental Engineering, University of Vermont, 1999			
Professional Licenses: N/A				
Brief Narrative of Experience: Dr. Spiliotopoulos' expertise is analysis to support water resources management. He has developed and applied analytical and numerical models for groundwater flow and contaminant transport, focusing on pump-and-treat system operations, reactive-transport modeling, and optimization applications for least-cost remediation designs. He has extensive experience in assessing water-resources management in support of inter- and intra-state water-resource allocation and conflict resolution, assessment of water quantity and quality data, development and application of statistical tools and numerical interpolation techniques for mapping water-level and water-quality data, and the application of advanced parameter estimation techniques for model calibration. At Hanford, he has designed RPO and RI/FS remedial alternatives, including large- scale pump-and-treat networks and/or MNA and other in-situ treatment technologies for the River Corridor OUs, conducted sitewide multi-constituent plume delineation, and co-authored Remedial Design and Remedial Action Work Plans. He has provided technical support on system performance evaluations and modifications, characterization of plume migration patterns, aquifer test data interpretations as well as practical and theoretical aspects of aquifer hydraulics and their applications. He developed and contributed to numerous presentations to stakeholders, illustrating elements of the proposed remedies, and their impacts on containment and recovery performance.				
SECTION 2 -	Completed by F	reparer		
Calculation Number: ECF-HANFORD-18-0083 Revision Number: 0				
Revision History				
Revision No.		Description	Date	Affected Pages
0	Initial Issu	e		All ·
SECTION 3 - Completed by the Responsible Manager				
Document C	ontrol:			
Is the docume	ent intended to be	controlled within the Document Manag	ement Control Sys	stem (DMCS)? Yes No
Does document contain scientific and technical information intended for public use?				
Does document contain controlled-use information?				
SECTION 4 - Document Review and Approval				
Preparer(s):	Preparer(s):			
Erica DiFi Print First	Erica DiFilippo Print First and Last NameS Project Geochemist PositionCnica Difilippo Signature1/2/2019Date			
Checker(s):			Midl	1/
Matthew 0 Print First	Connell and Last Name	<u>S Staff Hydrolgeologist</u>	Signatu	re 1/11/2019 Date

.....

ENVIE	RONMENTAL CALCULATION	COVER PAGE (Continued)	
Senior Reviewer(s):		15 1	1
Alex Spiliotopoulos Print First and Last Name	Associate, S. Hydrolo. Position	A pitulopou ut Signature	1/15/2019 Date
Responsible Manager(s):		111	
William Faught Print First and Last Name	Manager, Project Delivery Position	Signafure	1/21/19 Date
SECTION 5 - Applicable if C	alculation is a Risk Assessment or	Uses an Environmental Model	
Prior to Initiating Modeling:			
Required training for modelers Integration Lead:	s completed:		
N/A	Name	Signature	Date
Safety Software Approved	vanie	Signature	Date
Integration Lead:			
Print First and Last	Name	Sianature	Date
Calculation Approved:			
Risk/Modeling Integration Mar N/A	nager:		
Print First and Last	Name	Signature	Date

This page intentionally left blank.

9

Contents

1	Purp	oose	1
2	Back	kground	1
3	Meth	hodology	2
	3.1	Data Acquisition and Processing Prior to 95% UCL Calculation	2
		3.1.1 Chemistry Data Acquisition	2
		3.1.2 Daily Averaging	2
		3.1.3 Data Qualifiers	3
		3.1.4 Wells and Constituents	3
		3.1.5 Time Period of Analysis	4
		3.1.6 Outliers	4
	3.2	Calculated 95% UCLs on the Mean	4
4	Assu	mptions	5
5	Softv	ware Applications	6
6	Calculation		6
7	Results		6
8	References		6

Appendices

Appendix A	Upper Confidence Limit (UCL) Datasets and ProUCL Output Results	.A-i
Appendix B	Timeseries Plots	.B-i

Figure

Figure 1. 183-II Solar Evaporation Dashis and Associated Monitoring Wells	Figure 1.
---	-----------

Tables

Table 1.	HEIS Database Fields for Chemistry Data	2
Table 2.	Duplicate Daily Measurements and Calculated Daily Averages	3
Table 3.	Wells and Constituents	3
Table 4.	Sampling Data	4
Table 5.	Dataset Summary and Criteria to Calculate 95% UCL	5
Table 6.	Calculated 95% UCLs	6

Terms

CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act of 1980
CHPRC	CH2M HILL Plateau Remediation Company
ECF	environmental calculation file
HEIS	Hanford Environmental Information System
mg/L	milligrams per liter
μg/L	micrograms per liter
OU	operable unit
RCRA	Resource Conservation and Recovery Act of 1976
UCL	upper confidence limit

1 Purpose

This environmental calculation file (ECF) presents calculations of 95% upper confidence limits (UCLs) on the mean for filtered total chromium and nitrate at the 183-H Solar Evaporation Basin *Resource Conservation and Recovery Act of 1976* (RCRA) site. The 95% UCLs are compared to the applicable concentration limits in the *Hanford Facility Resource Conservation and Recovery Act (RCRA) Permit, Dangerous Waste Portion for the Treatment, Storage, and Disposal of Dangerous Waste* (hereafter referred to as the Hanford Facility RCRA Permit). Calculations presented in this ECF were based on available results for groundwater samples collected through the end of 2018.

2 Background

The 183-H Solar Evaporation Basins are located within the 100-H Area, overlying the 100-HR-3 Groundwater Operable Unit (OU) (Figure 1) and were used to evaporate various liquid waste streams from 300 Area fuel fabrication facilities. The final status groundwater monitoring plan was incorporated into the Hanford Facility RCRA Permit, Revision 8c, on May 24, 2017. The new plan supersedes PNNL-11573 *Groundwater Monitoring Plan for the 183-H Solar Evaporation Basins*. The new corrective action monitoring plan requires calculation of the 95% UCLs on the mean for filtered total chromium and nitrate based on the last eight (8) to ten (10) independent samples, and comparison of the 95% UCLs, or non-detect data, to the concentration limits established in the Hanford Facility RCRA Permit.

Figure 1. 183-H Solar Evaporation Basins and Associated Monitoring Wells

When all data are non-detects, all data are less than the exceedance level, or there are less than the required number of samples, calculation of the 95% UCL on the mean is not required and the data are evaluated visually to ensure compliance.

3 Methodology

This section discusses the data and methods used to complete the calculations presented in this document.

3.1 Data Acquisition and Processing Prior to 95% UCL Calculation

This section discusses the acquisition and processing of data prior to 95% UCL calculation.

3.1.1 Chemistry Data Acquisition

Groundwater chemistry data were downloaded from the Hanford Environmental Information System (HEIS) database, which is maintained by CH2M HILL Plateau Remediation Company (CHPRC), and exported into a Microsoft Access[®] database (named HEIS_CHEM_12192018.accdb). The data for this analysis were downloaded from the HEIS database on December 19, 2018. The HEIS database contains one table (HEIS_ADM_PNLGW_STD_RESULT_MV), which contains information on groundwater samples, including laboratory and review data qualifiers, sample medium, sample collection purpose, analytical method, and reporting limits. The fields extracted from the HEIS database for use in calculations described in this document are presented in Table 1.

Field Extracted ^a	Definition
WELL_NAME	Location Identification
SAMP_DATE_TIME	Sampling Date
STD_CON_LONG_NAME	Analyte Name
STD_VALUE_RPTD	Reported Concentration
STD_ANAL_UNITS_RPTD	Units for Concentration Measurement
LAB_QUALIFIER	Laboratory Data Qualifier
REVIEW_QUALIFIER	Review Data Qualifier
COLLECTION_PURPOSE	Primary Reason for Sample Collection
VALIDATION_QUALIFIER	Validation Qualifier

Table 1. HEIS Database Fields for Chemistry Data

^a Field codes are defined in HNF-38155, HEIS Sample, Result, and Sampling Site Data Dictionary.

3.1.2 Daily Averaging

A daily average was calculated for chemistry data with multiple measurements on the same day. When all measurements on the same day were non-detect, the highest detection limit was used for the daily value. For daily duplicates where only one of the samples was non-detect, the detected value was used for the

[®] Microsoft and Access are registered trademarks of Microsoft Corporation, Redmond, Washington.

daily value. Duplicate daily measurements and the calculated daily average within the last 10 samples dataset are presented in Table 2.

Well Name	Constituent	Sample Date	Measured Conc.	Calculated Daily Average
199-H4-84	Nitrate	1/10/2018	79.7 mg/L 75.3 mg/L	77.5 mg/L
199-H4-85	Filtered Total Chromium	8/14/2015	18.4 μg/L 18.3 μg/L	18.35 µg/L
199-H4-89	199-H4-89Filtered Total Chromium		2.22 μg/L 2U μg/L	2.22* µg/L
199-H4-89) Nitrate		12.4 mg/L 12.4 mg/L	12.4 mg/L

Table 2. Duplicate Daily Measurements and Calculated Daily Averages

U: Constituent not detected at the detection limit shown.

 $\mu g/L$: micrograms per liter

mg/L: milligrams per liter

* Highest detection limit used for daily value.

3.1.3 Data Qualifiers

Non-detects in the chemistry data set were identified using the laboratory qualifier $(LAB_QUALIFIER = U \text{ or any other qualifier that includes "U"})$. The method detection limit was substituted for concentration measurements when identified as a non-detect based on the laboratory qualifier. All estimated data $(LAB_QUALIFIER = B \text{ or } J)$ were treated as detected values. Rejected ("R"-flagged) data in the HEIS database were not included for statistical evaluation.

3.1.4 Wells and Constituents

The list of wells and constituents for this analysis was based on the groundwater monitoring plan incorporated on May 24, 2017 into the Hanford Facility RCRA Permit (WA7890008967), as listed in Table 3.

Well Name	Constituent	
199-H4-8	Filtered Total Chromium, Nitrate	
199-H4-84	Filtered Total Chromium, Nitrate	
199-H4-85	Filtered Total Chromium, Nitrate	

Table 3. Wells and Constituents

Well Name	Constituent
199-H4-88	Filtered Total Chromium, Nitrate
199-H4-89	Filtered Total Chromium, Nitrate

Table 3. Wells and Constituents

3.1.5 Time Period of Analysis

Datasets were selected based on the number of available samples and the sampling dates (Table 4). Data were included regardless of the purpose of the sample collection or sampling program (i.e., the datasets contain samples collected under the RCRA sampling program and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sampling program). The last ten samples scheduled to be collected through the end of 2018 were included in the datasets if available.

Well Name	Analyte	Sampling Date Range	Number of Samples
199-H4-8	Filtered Total Chromium	11/01/2012 - 11/13/2018	10
199-H4-84	Filtered Total Chromium	11/10/2017 - 11/13/2018	10^*
199-H4-85	Filtered Total Chromium	10/31/2014 - 11/13/2018	10*
199-H4-88	Filtered Total Chromium	1/10/2018 - 11/13/2018	10*
199-H4-89	Filtered Total Chromium	3/30/2016 - 11/13/2018	9*
199-H4-8	Nitrate	11/01/2012 - 11/13/2018	10
199-H4-84	Nitrate	1/10/2018 - 11/13/2018	10*
199-H4-85	Nitrate	11/19/2015 - 11/13/2018	10*
199-H4-88	Nitrate	1/10/2018 - 11/13/2018	10*
199-H4-89	Nitrate	3/30/2016 - 11/13/2018	10*
*Dataset contains both RC	RA and CERCLA samples		

Table 4. Sampling Data

3.1.6 Outliers

The data sets were evaluated for outliers through visual inspection of timeseries plots. No outliers were identified in the datasets used in this analysis.

3.2 Calculated 95% UCLs on the Mean

A statistical software package, ProUCL version 5.1, was used to calculate the 95% UCL on the mean, in accordance with the new corrective action groundwater monitoring plan. ProUCL is available through the

U.S. Environmental Protection Agency and provides statistical methods and graphical tools that are commonly used in environmental assessments. ProUCL is capable of working with datasets where non-detects are present. There are several methods available in ProUCL for calculating 95% UCLs on the mean. These methods account for the underlying distribution of the data and the presence of non-detects. For datasets with non-detects, ProUCL uses the Kaplan-Meier method, a non-parametric method for calculating the mean and standard deviation. ProUCL highlights a recommended UCL calculation method in its output file; however, it is important to assess all the methods available and independently verify the most appropriate method through visual inspection of the data, evaluation of the number of available data points, and the data distribution.

The 95% UCL calculations were performed on datasets with a minimum of eight samples available and with at least one sample above the concentration limit. When available, the maximum sample size listed in the permit (ten) was used for the calculations. As shown in Table 5 below, only four datasets met these criteria. Calculation of 95% UCLs for the other datasets was not required.

Analyte	Conc. Limit	Well Name	Number of Samples	Percent Non-Detect	Number of Samples Exceeding Conc. Limit	95% UCL Calculation Required
Filtered total	48 µg/L	199-H4-8	10	0%	0	No
chromium		199-H4-84	10	0%	1	Yes
		199-H4-85	10	0%	0	No
		199-H4-88	10	0%	0	No
		199-H4-89	9	11%	0	No
Nitrate	45 mg/L	199-H4-8	10	0%	0	No
		199-H4-84	10	0%	9	Yes
		199-H4-85	10	0%	0	No
		199-H4-88	10	0%	9	Yes
		199-H4-89	10	0%	2	Yes

Table 5. Dataset Summary and Criteria to Calculate 95% UCL

4 Assumptions

Given the number of samples required by the permit, UCL calculations assume that:

- Concentrations observed at a well are not significantly affected by active remediation activities at the site for the period over which calculations are made; and,
- There are no concentration trends with time for the datasets used to calculate 95% UCLs. ProUCL does not explicitly test for concentration trends when calculating 95% UCLs. In the presence of a concentration trend, ProUCL will calculate a wider confidence interval on the mean.

In addition, all of the data for a well/analyte pair are from the same statistical distribution. ProUCL tests the data distribution prior to calculating 95% UCLs and ProUCL highlights a recommended 95% UCL method based on the data distribution.

5 Software Applications

95% UCL calculations were performed using ProUCL version 5.1.

6 Calculation

The following input files were used in the implementation of this analysis:

- *qryChemHeis1.txt* and *qryChemHeis2.txt*: Concentration data from the HEIS database
- *ProUCL_Datasets_12192018.xlsx*: datasets for use in ProUCL

Datasets were imported into the ProUCL software and 95% UCLs were calculated using all available methods and accounting for the presence of non-detects. The reported 95% UCL was selected based on the ProUCL results, including evaluation of the data distribution and sample size.

7 Results

The datasets evaluated for 95% UCL calculation and the output files from ProUCL are presented in Appendix A, and the 95% UCL results are presented in Table 6. Results for nitrate were converted to milligrams per liter (mg/L) prior to processing with ProUCL. Timeseries plots for all wells and constituents are presented in Appendix B.

Well Name	Analyte	Conc. Limit	95% UCL	95% UCL Result Evaluation
199-H4-84	Chromium ^a	48 µg/L	41.37 ^b µg/L	Below Concentration Limit
199-H4-84	Nitrate	45 mg/L	110.8 ^b mg/L	Above Concentration Limit
199-H4-88	Nitrate	45 mg/L	80.11 ^b mg/L	Above Concentration Limit
199-H4-89	Nitrate	45 mg/L	37.54° mg/L	Below Concentration Limit

Table 6. Calculated 95% UCLs

^a Filtered total chromium

^bProUCL method: 95% Student's-t UCL

°ProUCL method: 95% Adjusted Gamma UCL

8 References

- Comprehensive Environmental Response, Compensation, and Liability Act of 1980, 42 USC 9601, et seq., Pub. L. 107-377, December 31, 2002. Available at: https://www.csu.edu/cerc/researchreports/documents/CERCLASummary1980.pdf.
- HNF-38155, 2011, *HEIS Sample, Result, and Sampling Site Data Dictionary*, Rev. 1, CH2M HILL Plateau Remediation Company, Richland, Washington.
- PNNL-11573, 1997, Groundwater Monitoring Plan for the 183-H Solar Evaporation Basins, Pacific Northwest National Laboratory, Richland, Washington. Available at: <u>http://pdw.hanford.gov/arpir/index.cfm/viewDoc?accession=D1659822</u>.

WA7890008967, Hanford Facility Resource Conservation and Recovery Act (RCRA) Permit, Dangerous Waste Portion for the Treatment, Storage, and Disposal of Dangerous Waste, Revision 8c, as amended, Washington State Department of Ecology. Available at: https://fortress.wa.gov/ecy/nwp/permitting/hdwp/rev/8c/.

Appendix A

Upper Confidence Limit (UCL) Datasets and ProUCL Output Results

Table A-1

Dataset for 183-H Solar Evaporation Basins

Woll	Samplo		Poportod			ProUCL
Name	Date	Analyte	Value	Units	Qualifier	Non-detect
Hume	Dutt		Vulue			Identification ^a
199-H4-8	11/1/2012	Chromium	16.4	ug/L	В	1
199-H4-8	3/10/2014	Chromium	3.1	ug/L	D	1
199-H4-8	11/5/2014	Chromium	2.8	ug/L	В	1
199-H4-8	12/1/2015	Chromium	4	ug/L	В	1
199-H4-8	11/15/2016	Chromium	7.4	ug/L	В	1
199-H4-8	5/3/2017	Chromium	3.3	ug/L		1
199-H4-8	11/10/2017	Chromium	3	ug/L	BC	1
199-H4-8	2/12/2018	Chromium	2.8	ug/L		1
199-H4-8	5/17/2018	Chromium	4.2	ug/L	BC	1
199-H4-8	11/13/2018	Chromium	3.6	ug/L		1
199-H4-84	11/10/2017	Chromium	2.9	ug/L	BC	1
199-H4-84	2/12/2018	Chromium	83.9	ug/L	D	1
199-H4-84	3/20/2018	Chromium	26	ug/L		1
199-H4-84	4/26/2018	Chromium	22	ug/L		1
199-H4-84	5/17/2018	Chromium	8	ug/L	BC	1
199-H4-84	6/20/2018	Chromium	46	ug/L		1
199-H4-84	7/26/2018	Chromium	33.1	ug/L	D	1
199-H4-84	8/16/2018	Chromium	23	ug/L		1
199-H4-84	9/12/2018	Chromium	14.9	ug/L	D	1
199-H4-84	11/13/2018	Chromium	20	ug/L		1
199-H4-85	10/31/2014	Chromium	23.3	ug/L		1
199-H4-85	2/26/2015	Chromium	19.6	ug/L		1
199-H4-85	5/19/2015	Chromium	17.1	ug/L		1
199-H4-85	8/14/2015	Chromium	18.35	ug/L		1
199-H4-85	11/19/2015	Chromium	18	ug/L		1
199-H4-85	2/10/2016	Chromium	16.1	ug/L		1
199-H4-85	5/22/2016	Chromium	6.76	ug/L	В	1
199-H4-85	2/12/2018	Chromium	4.4	ug/L	В	1
199-H4-85	5/17/2018	Chromium	5.8	ug/L	BC	1
199-H4-85	11/13/2018	Chromium	6.58	ug/L	В	1
199-H4-88	1/10/2018	Chromium	8.9	ug/L	BD	1
199-H4-88	2/12/2018	Chromium	26	ug/L		1
199-H4-88	3/20/2018	Chromium	5.9	ug/L	В	1
199-H4-88	4/26/2018	Chromium	18.8	ug/L		1
199-H4-88	5/17/2018	Chromium	32	ug/L		1
199-H4-88	6/20/2018	Chromium	13.7	ug/L		1
199-H4-88	7/23/2018	Chromium	22	ug/L	С	1

Table A-1

Dataset for 183-H Solar Evaporation Basins

Well	Sample		Reported			ProUCL
Name	Date	Analyte	Value	Units	Qualifier	Non-detect
	2410					Identification ^a
199-H4-88	8/16/2018	Chromium	17	ug/L		1
199-H4-88	9/12/2018	Chromium	15	ug/L	С	1
199-H4-88	11/13/2018	Chromium	12.1	ug/L		1
199-H4-89	3/30/2016	Chromium	2.22	ug/L	CB	1
199-H4-89	11/22/2016	Chromium	2.9	ug/L	В	1
199-H4-89	6/14/2017	Chromium	3	ug/L	U	0
199-H4-89	8/29/2017	Chromium	3.4	ug/L		1
199-H4-89	11/10/2017	Chromium	1.2	ug/L	В	1
199-H4-89	2/12/2018	Chromium	3.6	ug/L	В	1
199-H4-89	5/17/2018	Chromium	3.9	ug/L	BC	1
199-H4-89	8/16/2018	Chromium	3.77	ug/L	В	1
199-H4-89	11/13/2018	Chromium	7.1	ug/L	BD	1
199-H4-8	11/1/2012	Nitrate	18.8	mg/L	D	1
199-H4-8	3/10/2014	Nitrate	15.3	mg/L		1
199-H4-8	11/5/2014	Nitrate	13.7	mg/L	D	1
199-H4-8	12/1/2015	Nitrate	17.7	mg/L	D	1
199-H4-8	11/15/2016	Nitrate	9.3	mg/L	D	1
199-H4-8	5/3/2017	Nitrate	12.4	mg/L		1
199-H4-8	11/10/2017	Nitrate	11.1	mg/L	D	1
199-H4-8	2/12/2018	Nitrate	12.2	mg/L		1
199-H4-8	5/17/2018	Nitrate	11.1	mg/L	D	1
199-H4-8	11/13/2018	Nitrate	13.3	mg/L	D	1
199-H4-84	1/10/2018	Nitrate	77.5	mg/L	D	1
199-H4-84	2/12/2018	Nitrate	100	mg/L	D	1
199-H4-84	3/20/2018	Nitrate	133	mg/L	D	1
199-H4-84	4/26/2018	Nitrate	66.4	mg/L	D	1
199-H4-84	5/17/2018	Nitrate	25.2	mg/L	D	1
199-H4-84	6/20/2018	Nitrate	137	mg/L	D	1
199-H4-84	7/26/2018	Nitrate	133	mg/L	D	1
199-H4-84	8/16/2018	Nitrate	93	mg/L	D	1
199-H4-84	9/12/2018	Nitrate	57.5	mg/L	D	1
199-H4-84	11/13/2018	Nitrate	70.8	mg/L	D	1
199-H4-85	11/19/2015	Nitrate	26.6	mg/L	D	1
199-H4-85	2/10/2016	Nitrate	20.8	mg/L	D	1
199-H4-85	5/22/2016	Nitrate	6.2	mg/L	D	1
199-H4-85	10/7/2016	Nitrate	16.8	mg/L	D	1
199-H4-85	11/20/2016	Nitrate	4.43	mg/L	D	1

Table A-1

Dataset for 183-H Solar Evaporation Basins

Woll	Samplo		Papartad			ProUCL
Namo	Dato	Analyte	Valuo	Units	Qualifier	Non-detect
Name	Date		Value			Identification ^a
199-H4-85	2/14/2017	Nitrate	2.17	mg/L	D	1
199-H4-85	5/25/2017	Nitrate	6.86	mg/L		1
199-H4-85	2/12/2018	Nitrate	9.87	mg/L		1
199-H4-85	5/17/2018	Nitrate	10.2	mg/L	D	1
199-H4-85	11/13/2018	Nitrate	28.8	mg/L	D	1
199-H4-88	1/10/2018	Nitrate	44.3	mg/L	D	1
199-H4-88	2/12/2018	Nitrate	73	mg/L	D	1
199-H4-88	3/20/2018	Nitrate	57.5	mg/L	D	1
199-H4-88	4/26/2018	Nitrate	66.4	mg/L	D	1
199-H4-88	5/17/2018	Nitrate	93	mg/L	D	1
199-H4-88	6/20/2018	Nitrate	88.5	mg/L	D	1
199-H4-88	7/23/2018	Nitrate	79.7	mg/L	D	1
199-H4-88	8/16/2018	Nitrate	79.7	mg/L	D	1
199-H4-88	9/12/2018	Nitrate	75.3	mg/L	D	1
199-H4-88	11/13/2018	Nitrate	53.1	mg/L	D	1
199-H4-89	3/30/2016	Nitrate	12.4	mg/L	D	1
199-H4-89	11/22/2016	Nitrate	10.6	mg/L	D	1
199-H4-89	5/25/2017	Nitrate	13.8	mg/L		1
199-H4-89	6/14/2017	Nitrate	10.4	mg/L		1
199-H4-89	8/29/2017	Nitrate	19.3	mg/L		1
199-H4-89	11/10/2017	Nitrate	48.7	mg/L	D	1
199-H4-89	2/12/2018	Nitrate	22.5	mg/L	DX	1
199-H4-89	5/17/2018	Nitrate	19.9	mg/L	D	1
199-H4-89	8/16/2018	Nitrate	22.1	mg/L	D	1
199-H4-89	11/13/2018	Nitrate	57.5	mg/L	D	1

^aValue used in ProUCL to identify non-detects (0) and detected values (1).

µg/L: micrograms per liter

mg/L: milligrams per liter

Qualifier Definitions:

B = The analyte was detected at a value less than the contract required detection limit (RDL), but greater than or equal to the Instrument Detection Limit/Method Detection Limit (IDL/MDL) (as appropriate).

C = The analye was detected in both the same and the associated QC blank, and the sample concentration was \geq 5X the blank.

D = Analyte was reported at a secondary dilution factor, typically DF>1.

U = Analyzed for but not detected above limiting criteria.

X = The result-specific translation of this qualifier code is provided in the hardcopy data report and/or case narrative.

183-H Solar Evaporation Basin

ProUCL Chromium Results

	А	В	С	D	E	F	G	Н		J	К	L					
1					UCL Statist	tics for Data	Sets with No	n-Detects									
2				1													
3		User Sele	ected Options	6													
4	Da	ate/Time of C	omputation	ProUCL 5.112	2/21/2018 7	2:10:29 PM											
5			From File	ProUCL_Data	asets_1219	2018_a.xls											
6		Fu	Ill Precision	OFF													
7		Confidence	Coefficient	95%													
8	Number	of Bootstrap	Operations	2000													
9																	
10																	
11	VAL (199-ł	n4-84)															
12																	
13						General	Statistics										
14			Total	Number of Ob	servations	10			Numbe	r of Distinct (Observations	10					
15									Number	of Missing (Observations	0					
16					Minimum	2.9					Mean	27.98					
17					Maximum	83.9					Median	22.5					
18					SD	23.11				Std. E	Error of Mean	7.307					
19				Coefficient o	of Variation	0.826					Skewness	1.734					
20																	
21						Normal (GOF Test										
22			S	Shapiro Wilk Te	st Statistic	0.843	.843 Shapiro Wilk GOF Test										
23			5% S	hapiro Wilk Cri	tical Value	0.842		Data appe	ear Normal a	t 5% Signific	cance Level						
24				Lilliefors Te	st Statistic	0.234			Lilliefors	GOF Test							
25			5	5% Lilliefors Cri	tical Value	0.262		Data appe	ear Normal a	t 5% Signific	cance Level						
26					Data appea	ar Normal at	5% Significa	ince Level									
27																	
28					As	suming Nori	nal Distributio	on									
29			95% No	ormal UCL				95%	UCLs (Adju	sted for Ske	wness)						
30				95% Stude	ent's-t UCL	41.37			95% Adjuste	ed-CLT UCL	(Chen-1995)	44.28					
31									95% Modifie	ed-t UCL (Jo	ohnson-1978)	42.04					
32						_											
33						Gamma	GOF ⊺est		<u> </u>								
34				A-D Te	st Statistic	0.232	Datasta	Ander	son-Darling	Gamma GO							
35				5% A-D Cri	tical value	0.738	Detected	a data appea	ar Gamma D	Istributed at	5% Significar	ICE LEVEI					
36				K-S Te	K-S Test Statistic 0.141 Kolmogorov-Smirnov Gamma GOF Test												
37				5% K-S Cri	tical Value	0.271	Detected	d data appea	ar Gamma D	istributed at	5% Significar	ice Level					
38				Detected d	ata appear	Gamma Dis	Suiduted at 5%	70 SIGNITICAN	Ce Level								
39						0	Otatiotic -										
40				· · ·	hot (M E		ວເສເເຣເໄCS			tor (hist	we atc at MI E	1 050					
41				K ۳۵-۰۰	hat (MLE)	1.695			K :	star (blas co		1.253					
42				ineta	hat (MLE)	10.01			i neta s			22.33					
43						აა. ა						25.00					
44			М	∟∟ iviean (bias	corrected)	27.98			Appr	WILE SO (DI	as corrected)	24.99					
45									Approximate	Chi Square	e value (0.05)	14.66					

	A	В	С	D	E	F	G	Н	I	J	K	L			
46			Adjus	ted Level of	Significance	0.0267			Ad	ljusted Chi So	quare Value	13.29			
47															
48					As	suming Gam	ma Distributi	on							
49	9	95% Approxir	nate Gamma	UCL (use w	hen n>=50))	47.84		95% Ac	ljusted Gamr	na UCL (use	when n<50)	52.75			
50															
51						Lognormal	GOF Test	~							
52			S	hapiro Wilk I	est Statistic	0.948		Sha	piro Wilk Log	normal GOF	lest				
53			5% 51	hapiro vviik C	ritical value	0.842		Data appea	ar Lognormai	at 5% Signifi	cance Level				
54					est Statistic	0.195		LII Data anna		ot E% Signifi					
55			5	% Lillieiors C		C CONTRACTOR CONTRACTO									
56					Data appear	Lognormal a	at 5% Signing	ance Level							
57						Lognorma	Statistics								
58				Minimum of I	orged Data	1 065	Oldlistics			Mean of I	orged Data	3 008			
59				Aaximum of L	ogged Data	4 43				SD of I	ogged Data	0.928			
60					loggou D'alu						oggou zula	0.020			
61					Assi	umina Loano	rmal Distribu	tion							
62					95% H-UCL	77.82			90%	Chebyshev (I	VUE) UCL	56.59			
64			95%	Chebyshev (I	MVUE) UCL	68.87			97.5%	Chebyshev (I	, NVUE) UCL	85.92			
65			99%	Chebyshev (I	MVUE) UCL	119.4									
66															
67					Nonparame	tric Distributi	ion Free UCI	_ Statistics							
68				Data appear	to follow a l	Discernible D	istribution at	5% Signific	ance Level						
69															
70					Nonpa	rametric Dist	ribution Free	UCLs							
71				95	% CLT UCL	40				95% Jao	ckknife UCL	41.37			
72			95%	Standard Bo	otstrap UCL	39.33				95% Boot	strap-t UCL	51.1			
73			9	5% Hall's Bo	otstrap UCL	107.3			95% I	Percentile Bo	otstrap UCL	40.66			
74			(95% BCA Bo	otstrap UCL	44.28									
75			90% Ch	ebyshev(Me	an, Sd) UCL	49.9			95% Cł	ebyshev(Mea	an, Sd) UCL	59.83			
76			97.5% Ch	ebyshev(Me	an, Sd) UCL	/3.61			99% Ch	ebyshev(Mea	an, Sd) UCL	100.7			
77						Oursested									
78				05% 0+1	dent's t UCI	Suggested	UCL to Use								
79				90% Stu	uent s-t UCL	41.37									
80		Note: Sugge	stions regard	ing the selec	tion of a 95%	LICL are pr	ovided to be	In the user t	o select the r	nost annropri	ate 95% [.ICI				
81		. toto. Ougge	R	Recommenda	tions are ha	sed upon dat	a size data	distribution	and skewner	ss					
82		These recor	mmendations	s are based u	pon the resu	lts of the sim	ulation studi	es summari	zed in Sinah	. Maichle, and	Lee (2006).				
83	H	owever, simu	lations result	s will not cov	er all Real W	/orld data set	ts; for additio	nal insight t	he user may	want to consi	ult a statisticia	an.			
ŏ4		,						0	- 1						

183-H Solar Evaporation Basin

ProUCL Nitrate Results

	А	В	С	D	E	F	G	Н	I	J	K	L
1				ι	JCL Statist	tics for Data	Sets with No	n-Detects				
2				1								
3		User Sele	ected Options	6								
4	Da	ate/Time of C	omputation	ProUCL 5.112	/21/2018 7	7:10:49 PM						
5			From File	ProUCL_Data	sets_1219	2018_b.xls						
6		Fu	III Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number	of Bootstrap	Operations	2000								
9												
10												
11	VAL (199-ł	n4-84)										
12							-					
13						General	Statistics					
14			Total	Number of Obs	servations	10			Numbe	r of Distinct (Observations	9
15									Number	of Missing (Observations	0
16					Minimum	25.2					Mean	89.34
17					Maximum	137					Median	85.25
18					SD	37.04				Std. E	rror of Mean	11.71
19				Coefficient of	Variation	0.415					Skewness	-0.11
20												
21						Normal (GOF Test					
22			S	Shapiro Wilk Tes	st Statistic	0.935			Shapiro Wi	k GOF Test		
23			5% S	hapiro Wilk Crit	ical Value	0.842		Data appe	ear Normal a	t 5% Signific	ance Level	
24				Lilliefors Tes	st Statistic	0.181			Lilliefors	GOF Test		
25			5	% Lilliefors Crit	ical Value	0.262		Data appe	ear Normal a	t 5% Signific	ance Level	
26				[Data appea	ar Normal at	5% Significa	nce Level				
27												
28			050/ 11		As	suming Nori	nal Distributio	on			•	
29			95% No	ormal UCL				95%	UCLs (Adju	sted for Ske	wness)	(00.0
30				95% Stude	nt's-t UCL	110.8			95% Adjuste	d-CLI UCL	(Chen-1995)	108.2
31									95% Modifie	ea-t UCL (Jo	nnson-1978)	110.7
32						0						
33						Gamma		Andar	non Dorling	0	- - - +	
34				A-D Tes	st Statistic	0.349	Detector			Gamma GO	F lest	
35				5% A-D Crit		0.729	Detected	I data appea	ar Gamma D	stributed at	5% Significar	
36				K-5 Tes	st Statistic	0.100	Detector		orov-Smirno	v Gamma G		
37				Detected de	ta apport	U.207	Detected	A Significant		isti ibuted at	5 % Significar	ICE LEVEI
38				Delected da	ita appear	Gamma Dis	Surbuted at 5%	n Significan	Ce Levei			
39						Gemme	Statistics					
40				1.1	hat (MIE)	5 152	SIGUISUCS			star (bias ca		3 671
41				Thota		17 24			K : Thoto	star (bias co		2/ 22
42					hat (MLE)	103.1			meta			72 /7
43			N A	IIU		103.1 80.24						10.47
44			IVI	LE Mean (DIaS (Junected)	09.34			Approximeta			40.01
45									Approximate	Square	value (0.05)	54.74

	А	В	С	D	E	F	G	Н		J	K	L	
46			Adjus	sted Level of	Significance	0.0267				Adjusted Chi S	Square Value	51.93	
47													
48					As	suming Gam	ma Distributi	ion					
49	C,	95% Approxi	mate Gamma	a UCL (use w	hen n>=50))	119.9		95% Ac	ljusted Gar	mma UCL (use	when n<50)	126.4	
50													
51						Lognormal	GOF Test						
52			S	Shapiro Wilk T	est Statistic	0.882		Shap	oiro Wilk Lo	ognormal GOF	Test		
53			5% S	hapiro Wilk C	ritical Value	0.842		Data appea	ar Lognorm	al at 5% Signi	ficance Level		
54				Lilliefors T	est Statistic	0.154		Lil	liefors Log	normal GOF T	est		
55			5	5% Lilliefors C	ritical Value	0.262		Data appea	ar Lognorm	al at 5% Signif	ficance Level		
56					Data appear	Lognormal a	at 5% Signific	cance Level					
57													
58						Lognorma	Statistics						
59				Minimum of L	ogged Data	3.227				Mean of	logged Data	4.392	
60			ľ	Maximum of L	ogged Data	4.92				SD of	logged Data	0.513	
61					A								
62							rmai Distridu	ltion	0.00) Ohehushau		100	
63			05%	Oh a huah au (135.3			90%	Chebysnev (130	
64			95%	Chebyshev (240.4			97.57	% Chebyshev (104.0	
65			99%	Chebyshev (WIVUE) UCL	240.4							
66					Nonnarame	tric Dietributi	ion Free LIC	Statistics					
67				Data annea	to follow a [Discernible D	istribution at	5% Signific	ance I evel				
68								o /o olgrillio					
69					Nonpa	rametric Dist	ribution Free	UCLs					
70				95	% CLT UCL	108.6				95% Ja	ckknife UCL	110.8	
71			95%	Standard Bo	otstrap UCL	108				95% Boo	otstrap-t UCL	111.3	
72			ç	95% Hall's Bo	otstrap UCL	108.2			95%	6 Percentile Bo	ootstrap UCL	108.2	
73				95% BCA Bo	otstrap UCL	108.1							
75			90% Cł	nebyshev(Me	an, Sd) UCL	124.5			95% (Chebyshev(Me	an, Sd) UCL	140.4	
76			97.5% Cł	nebyshev(Me	an, Sd) UCL	162.5			99% (Chebyshev(Me	an, Sd) UCL	205.9	
77													
78						Suggested	UCL to Use						
79				95% Stu	dent's-t UCL	110.8							
80													
81		Note: Sugge	stions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to he	Ip the user to	o select the	e most appropr	iate 95% UCI		
82			F	Recommenda	tions are bas	sed upon dat	a size, data	distribution,	and skewn	iess.			
83		These reco	mmendation	s are based u	pon the resu	ilts of the sim	ulation studi	ies summari	zed in Sing	jh, Maichle, an	d Lee (2006).		
84	Ho	owever, simu	lations result	ts will not cov	er all Real W	/orld data set	ts; for additic	onal insight t	he user ma	ay want to cons	sult a statistici	an.	
85													
86	Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be												
87			reliable.	Chen's and Jo	ohnson's me	thods provide	e adjustment	ts for positve	ely skewed	data sets.			
88													
89	VAL /100 ·	4.00											
90	VAL (199-h	14-88)											

	А	В	С	D	E	F	G	Н		J	K	L			
91						<u> </u>	o								
92			-			General	Statistics								
93			Iotai	Number of C	observations	10			Numi	ber of Distinct (Observations	9			
94						44.0			NUM	ber of Missing C	Observations	0			
95					Maximum	44.3					Median	71.05			
96					Maximum	93				Ctd [iviedian	/4.15			
97				Coofficient	of Variation	0.22				Slu. E	Skownooo	4.945			
98				Coefficient	or variation	0.22					Skewness	-0.372			
99						Normal (
100			S	haniro Wilk T	est Statistic										
101			5% St	napiro Wilk C	citical Value	0.304		Data anne	ar Norma	at 5% Signific	ance Level				
102			070 01	Lilliefors T	est Statistic	0.042			Lilliefo	rs GOF Test					
103			5	% Lilliefors C	critical Value	0.262		Data anne	ar Norma	at 5% Signific	ance Level				
104			Ū		Data appe	ar Normal at 5% Significance Level									
105															
105		Assuming Normal Distribution													
107			95% No	rmal UCL		•		95%	UCLs (Ad	ljusted for Skev	wness)				
100				95% Stu	dent's-t UCL	80.11			95% Adju	sted-CLT UCL	, (Chen-1995)	78.56			
109									95% Moc	dified-t UCL (Jo	hnson-1978)	80.02			
111															
112						Gamma	GOF Test								
112				A-D T	est Statistic	0.288		Ander	son-Darlir	ng Gamma GO	F Test				
114				5% A-D C	ritical Value	0.725	Detected data appear Gamma Distributed at 5% Significance Level								
115				K-S T	est Statistic	0.178		Kolmog	orov-Smin	nov Gamma G	OF Test				
116				5% K-S C	ritical Value	0.266	Detecte	d data appea	ır Gamma	Distributed at	5% Significan	ce Level			
117				Detected	data appear	Gamma Dis	tributed at 5	% Significan	ce Level						
118															
119						Gamma	Statistics								
120					k hat (MLE)	21.08				k star (bias cor	rrected MLE)	14.82			
121				The	ta hat (MLE)	3.371			The	ta star (bias coi	rrected MLE)	4.794			
122				r	u hat (MLE)	421.5				nu star (bia	as corrected)	296.4			
123			ML	E Mean (bia	s corrected)	71.05				MLE Sd (bia	as corrected)	18.46			
124									Approxima	ate Chi Square	Value (0.05)	257.5			
125			Adjus	ted Level of	Significance	0.0267				Adjusted Chi S	Square Value	251.2			
126															
127					As	suming Gam	ma Distribut	ion							
128	ç	5% Approxin	nate Gamma	UCL (use w	hen n>=50))	81.78		95% Ad	justed Ga	ımma UCL (use	when n<50)	83.83			
129															
130						Lognormal	GOF Test								
131			S	hapiro Wilk T	est Statistic	0.939		Shap	oiro Wilk L	ognormal GOF	Test				
132			5% Sł	napiro Wilk C	critical Value	0.842		Data appea	r Lognorm	nal at 5% Signi	licance Level				
133				Lilliefors T	est Statistic	0.185		Lill	iefors Log	normal GOF T	est				
134			59	% Lilliefors C	ritical Value	0.262		Data appea	r Lognorm	nal at 5% Signi	ficance Level				
135					Data appear	Lognormal a	at 5% Signifi	cance Level							

	А	В	С	C)	E	F	G	Н	I	J	K	L	
136														
137							Lognorma	Statistics						
138				Minimu	m of I	Logged Data	3.791				Mean c	of logged Data	4.239	
139				Maximu	m of I	Logged Data	4.533				SD c	of logged Data	0.236	
140														
141						Ass	uming Logno	rmal Distribu	ution					
142						95% H-UCL	82.95			90%	Chebyshev	(MVUE) UCL	87.15	
143			95%	% Chebys	shev ((MVUE) UCL	94.41			97.5%	Chebyshev	(MVUE) UCL	104.5	
144			99%	% Chebys	shev ((MVUE) UCL	124.3							
145														
146		Nonparametric Distribution Free UCL Statistics												
147				Data a	appea	r to follow a l	Discernible D	istribution a	t 5% Signific	ance Level				
148														
149						Nonpa	rametric Dist	ribution Free	UCLs					
150					95	5% CLT UCL	79.18				95% J	lackknife UCL	80.11	
151			95	% Standa	ard Bo	ootstrap UCL	/8.63	95% Bootstrap-t UCL						
152				95% Ha	II's Bo	ootstrap UCL	78.43			95%	Percentile E	Sootstrap UCL	/8./9	
153			000/	95% B(CABO	otstrap UCL	/8.14			050/ 01				
154			90% (Chebyshe	ev(Me	an, Sd) UCL	85.89			95% Ci	nebyshev(M	ean, Sd) UCL	92.6	
155	97.5% Chebysnev(Mean, Sd) UCL 101.9 99% Chebysnev(Mean, Sd) UCL									120.3				
156							Suggested							
157				050	0/ C+	dont's tUCI								
158				95	% Siu	ident S-t UCL	80.11							
159		Note: Sugge	stions roga	urding the	مام	ction of a 95º	LICL are pr	ovided to be	In the user t	a select the l	most appror	vriate 95% LICI	1	
160		Note. Sugge	suons rega	Recomn	nonda	tions are ba		ovided to the	distribution	and skowno			L-	
161		These reco	mmendatio	ns are ha		inon the resi	Its of the sim	ulation stud	ies summari		Maichle a	nd Lee (2006)		
162	Н		lations resi	ults will n		ver all Real W	Into of the sin	ts: for addition	nal insight t	he user may	want to cor	nu Lee (2000)	ian	
163		owever, sinu						13, 101 200100	ina maight t	ne user may	Want to cor		ian.	
164		Note: For	hiahly neaz	ativelv-sk	ewed	data. confid	ence limits (e	.a., Chen, J	ohnson. Loa	normal, and	Gamma) m	av not be		
165			reliable.	Chen's	and J	ohnson's me	thods provid	e adiustmen	ts for positve	elv skewed d	ata sets.	_,		
166							/			·········				
167														
160	VAL (199-I	n4-89)												
170														
170							General	Statistics						
172			Tot	al Numbe	er of C	Observations	10			Numbe	r of Distinct	Observations	10	
172	73									Numbe	r of Missing	Observations	0	
174						Minimum	10.4					Mean	23.72	
175						Maximum	57.5					Median	19.6	
176						SD	16.26				Std.	Error of Mean	5.142	
177				Coef	ficien	t of Variation	0.685					Skewness	1.516	
178							1	ı						
179							Normal C	OF Test						
180				Shapiro	Wilk 1	Test Statistic	0.769			Shapiro Wi	lk GOF Tes	t		

	A	В		C 5% S	D Shapiro Wi	lk Criti	E cal Value	F 0.842	G		H Data No	l t Normal at	J 5% Significa	K nce Level	L	
181			Lilliefo	rs Tes	t Statistic	0.33	Lilliefors GOF Test									
182				Ę	5% Lilliefor	rs Criti	cal Value	0.262	Data Not Normal at 5% Significance Level							
183		Data Not Normal at 5% Significance Level														
184																
100		Assuming Normal Distribution														
100			ę)5% N	ormal UCL	-			95% UCLs (Adjusted for Skewness)							
107					95% \$	Studer	it's-t UCL	33.15	95% Adjusted-CLT UCL (Chen-1995)					34.81		
100											95% Modifi	ied-t UCL (Jo	hnson-1978)	33.56		
109																
190	Gamma GOF Test															
192	A-D Test Statistic 0.659										Ander	son-Darling	Gamma GO	F Test		
193		D Criti	cal Value	0.732	Detected data appear Gamma Distributed at 5% Significanc						ice Level					
194		K-	-S Tes	t Statistic	0.26	Kolmogorov-Smirnov Gamma GOF Test										
195			5% K-	S Criti	cal Value	0.268	Detected data appear Gamma Distributed at 5% Significance Level									
196	Detected data appear Gamma Distributed at 5% Significance Level															
197																
198	Gamma Statistics															
199				k٢	nat (MLE)	3.062		k star (bias corrected MLF				rrected MLE)	2.21			
200			Т	Theta h	nat (MLE)	7.746		Theta star (bias corrected MLE			10.73					
201						nu ł	nat (MLE)	61.24		nu star (bias corrected)			as corrected)	44.2		
202			ILE Mean	(bias c	orrected)	23.72		MLE Sd (bias corrected)			as corrected)	15.96				
203								Approximate Chi Square Value (0.05)				29.96				
204				Adju	sted Level	l of Sig	Inificance	0.0267				A	djusted Chi S	Square Value	27.93	
205																
206					As	suming Gan	uming Gamma Distribution									
207	95% Approximate Gamma UCL (use when n>=50)							35			95% Ac	justed Gam	ma UCL (use	e when n<50)	37.54	
208																
209		Lognormal GOF Test														
210	Shapiro Wilk Test Statistic							0.891			Shap	piro Wilk Log	normal GOF	Test		
211	5% Shapiro Wilk Critical Value							0.842			Data appea	ir Lognorma	I at 5% Signi	ficance Level		
212			Lilliefo	rs Tes	t Statistic	0.22	Lillierors Lognormal GOF Test									
213				5	5% Lilliefor	rs Criti	cal Value	0.262			Data appea	ir Lognorma	l at 5% Signi	ficance Level		
214						Da	ta appear	· Lognormal	at 5% Sigi	nific	ance Level					
215																
216	Lognormal Statistics										0.001					
217	Minimum of Logged Data							2.342					logged Data	2.994		
218					Maximum	of Log	ged Data	4.052					SD of	logged Data	0.59	
219							A				lan					
220													26.05			
221		95% Chebyebey (MVUE) UCL							90% Chebyshev (MVUE) UCL					51.00		
222									57.5% Chebysnev (MVOE) UCL 5					δU.IC		
223				33%	Chebyshe	⇒v (IVIV		07.50								
224	 					<u>.</u>			No		Otestic tile -					
225	l					N	onparame	unc Distribu	uon Free l	JUL	STATISTICS					

	A	В	С	D	E	F	G	Н	I	J	K	L	
226	Data appear to follow a Discernible Distribution at 5% Significance Level												
227													
228	Nonparametric Distribution Free UCLs												
229	95% CLT UCL 32.18 95% Jackknife UCL											33.15	
230			95%	Standard Bo	otstrap UCL	31.77	95% Bootstrap-t UCL						
231			9	5% Hall's Bo	otstrap UCL	90.18	95% Percentile Bootstrap UCL						
232			9	95% BCA Bo	otstrap UCL	34.15							
233			90% Ch	ebyshev(Me	an, Sd) UCL	39.15	95% Chebyshev(Mean, Sd) UCL					46.13	
234			97.5% Ch	ebyshev(Me	an, Sd) UCL	55.83	99% Chebyshev(Mean, Sd) UCL 74						
235													
236	Suggested UCL to Use												
237	95% Adjusted Gamma UCL 37.54												
238													
239	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.												
240	Recommendations are based upon data size, data distribution, and skewness.												
241	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).												
242	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.												
243													

Appendix B

Timeseries Plots

Filtered Total Chromium

• RCRA Sample - Below Concentration Limit

2013

2014

2015

2016

2018

2017

2019

2012

- RCRA Sample Above Concentration Limit •
- CERCLA Sample Below Concentration Limit - Concentration Limit
 - CERCLA Sample Above Concentration Limit
- △ CERCLA Sample - Non-Detect

Nitrate

- RCRA Sample Non-Detect CERCLA Sample Non-Detect $\triangleright \triangleleft$
 - Concentration Limit I
- RCRA Sample Below Concentration Limit ∇ RCRA Sample Above Concentration Limit Δ CERCLA Sample Below Concentration Limit CERCLA Sample Above Concentration Limit

