APR 19 1993 ENGINEERING DATA TRANSMITTAL

Page 1 of 1 1. EDT 142075

2. To: (Receiving Organization) Distribution					. From: (0	4. Related EDT No.: NA									
				. Cog. Engi		7. Purchase Order No.: NA									
	-	Remarks: O file							9. Equip./Component No.: NA						
									10. System	NA					
11. R	eceiver	Remarks:							12. Major	Assm. Dwg NA			~,		
									13. Permit	/Permit /		ion No	.:		
									14. Requir	ed Respon		:			
15.				DATA	TRANSMITTE	D			(F)	(G)	(H)	(1)		
(A) Item No.	(B)	Document/	DrawingNo.	(C) Sheet No.	(D) Rev. No.	(E)		escriptionof Data nsmitted	Impact Level	Reason for Trans- mittale	Origi- nator Dispo- sition	e	r spo- ion		
1	WHC-	SD-EN-1	TI-147		0 Hydrologic Testing the Single-Shell Tanks, 1989			-Shell	4	1/2	1				
16.		1(T)		D	T	KEY			D''0'	- and a					
	Impact Le 3, or 4 (se 43)		Approval Release Informati	4. Revie 5. Post-			red)	Approved Approvedw/co Disapprovedw/	mment	on(H)& (I) Reviewed Reviewed Receipta	w/comm	ent			
(G)	(H)	17.			SIG	NATURE/	DISTRIE	BUTION				-	(H)		
Rea- son	Disp.				Date (M)M		(J) Na	me (K)Signat	ure (L)Date	(M)MSI	•	ca-	Disp.		
1/								H6-07 3							
1/	1		R.L. Gacks	on 4	115/13	H6-06									
		Safety									-	-			
		Env.				-					_	+	-		
3		EDMC	(2)			HL-08					-	-	_		
3			L Fices	125		8-04					-	-	_		
18.	aggiano ure of EI	iano 4/1	19.	rizedRepreser		20 R.L.	Jackson	4/15/13	21. DOE AF	io. ed ed w/comm	ents	red)			
Originator for Receiving Organization						Cognizant/Project Date [] Disapproved w/comments Engineer'sManager									

			(USE BLACK INK OR 1 TPE)
BLOCK	TITLE		
(1)*	EDT	•	Enter the assigned EDT number.
(2)	To: (Receiving Organization)	•	Enter the individual's name, title of the organization, or entity (e.g., Distribution) that the EDT is being transmitted to.
(3)	From: (Orginating Organization)	•	Enter the title of the organization originating and transmitting the EDT.
(4)	Related EDT		Enter EDT numbers which relate to the data being transmitted.
(5) *	Project/Program/Dept./Div.	•	Enter the Project/Program/Department/Division title or Project/Program acronym or Project Number, Work Order Number or Organization Code.
(6)	Cognizant/Project Engineer	•	Enter the name of the individual identified as being responsible for coordinating disposition of the EDT.
(7)	Purchase Order No.	•	Enter related Purchase Order (P.O.) Number, if available.
(8)*	Originator Remarks		Enter special or additional comments concerning transmittal, or "Key" retrieval words may be entered.
(9)	Equipment/Component No.	•	Enter equipment/component number of affected itam, if appropriate.
(10)	System/Bldg./Facility	•	Enter appropriate system, building or facility number, if appropriate.
(11)	Receiver Remarks	•	Enter special or additional comments concerning transmittal.
(12)	Major Assm. Dwg. No.	•	Enter applicable drawing number of major assembly, if appropriate.
(13)	Permit/Permit Application No.	•	Enter applicable permit or permit application number, if appropriate.
(14)	Required Response Date	•	Enter the date a response is required from individuals identified in Block 17 (Signature/Distribution).
(15)*	Date Transmitted		
	(A)* Item Number	•	Enter sequential number, beginning with 1, of the information listed on EDT.
-	(B)* Document/Drawing No.	•	Enter the unique identification number assigned to the document or drawing being transmitted.
	(C)* Sheet No.	•	Enter the sheet number of the information being transmitted. If no sheet number, leave blank.
ST.	(D)* Rev. No.	•	Enter the revision number of the information being transmitted. If no revision number, leave blank.
The state of the s	(E) Title or Description of Data Transmitted	•	Enter the title of the document or drawing or a brief description of the subject if no title is identified.
en la company de	(F) Impact Level	•	Enter the appropriate Impact Level (Block 15). Use NA for non-engineering documents.
	(G) Reason for Submittal	•	Enter the appropriate code to identify the purpose of the data transmittal (see Block 16).
3	(H) Originator Disposition	•	Enter the appropriate disposition code (see Block 16).
7	(I) Receiver Disposition	•	Enter the appropriate disposition code (see Block 16).
(16)	Кеу	•	Number codes used in completion of Blocks 15 (G), (H), and (I), and 17 (G), (H) (Signature/Distribution).
(17)	Signature/Distribution		
	(G) Reason	•	Enter the code of the reason for transmittal (Block 16).
1-	(H) Disposition	•	Enter the code for the disposition (Block 16).
	(J) Name	•	Enter the signature of the individual completing the Disposition 17 (H) and the Transmittal.
	(L) Date	•	Enter date signature is obtained.
	(M) MSIN	•	Enter MSIN. Note: If Distribution Sheet is used, show entire distribution (including that indicated on Page 1 of the EDT) on the Distribution Sheet.
(18)	Signature of EDT Originator	•	Enter the signature and date of the individual originating the EDT (entered prior to transmittal to Receiving Organization). If the EDT originator is the Cognizant/Project Engineer, sign both Blocks 17 and 18.
(19)	Authorized Representative for Receiving Organization	•	Enter the signature and date of the individual identified by the Receiving Organization as authorized to approve disposition of the EDT and acceptance of the data transmitted, as applicable.
(20)*	Cognizant/Project Manager	•	Enter the signature and date of the Cognizant/Project Engineer's manager. (This signature is authorization for release.)
(21)	DOE Approval	•	Enter DOE approval (if required) by letter number and indicate DOE action.

^{*}Asterisk denote the required minimum items checked by Configuration Documentation prior to release; these are the minimum release requirements.

SUPPORTING DOCUMENT		1. Total Pages 260
2. Title Hydrologic Testing at the Single-Shell Tanks, 1989	3. Number WHC-SD-EN-TI-	4. Rev No. 147 0
SST APPROVED FOR hydrology groundwater PUBLIC RELEASE	Signature	ggiano Jordano e code 81235/R4GD1
 Abstract WHC, 1993, Hydrologic Testing of the Single-Shell T Northwest Laboratory, Richland, Washington, for Richland, Washington. 		
8. PURPOSE AND USE OF DOCUMENT - This document was prepared for use within the U. Department of Phergy and its contractors. It is to be used only to perfore direct, or integrate work under U.S. Department of Energy contracts. This document is not approved for public release until reviewed. PATENT STATUS - This document copy, since it is transmitted in advance of patent clearance, it made available in considere solely for under contracts with the U.S. Department of Energy. This document is not use be published not its contents otherwise disseminated or used of purposes other that specified above before patent approval or such release or use has been secured, been request, from the Patent Counsel, U.S. Department of Energy Field Office, Richland, WA. DISCLAIMER - This report was prepared as an account of world sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the contractors or effect those of the united states or reflect those of the contractors or subcontractors. The views and opinions of authors and private the united states or reflect those of the contractors or subcontractors.	OFFICIAL BY DATE A	L RELEASE WHC PR 19 1993

THIS PAGE INTENTIONALLY LEFT BLANK

468 15 1833

4

SUMMARY

The Pacific Northwest Laboratory (PNL) conducted slug tests in 10 wells adjacent to single-shell tanks in the 200 Areas for Westinghouse Hanford Company. Data from the tests were analyzed to determine best estimates for equivalent hydraulic conductivities and corresponding transmissivities. All of the wells tested were open to the uppermost part of the unconfined aquifer. Dut well 299-E33-33 was open to the Hanford formation; wells 299-E24-19, 299-E25-40, 299-E25-41, 299-E27-13, 299-E27-14, and 299-E27-15 were open to the undifferentiated Hanford/Ringold Formation; and wells 299-W10-15 and 299-W10-16 were open to the Ringold Formation. Data from well 299-E27-12 could not be analyzed.

The best estimate of equivalent hydraulic conductivity of the test interval at well 299-E33-33 is 320 ft/d. The corresponding transmissivity of the test interval at this well is 5400 ft 2 /d. The best estimates of equivalent hydraulic conductivity of the test interval at wells 299-E24-19, 299-E25-40, 299-E25-41, 299-E27-13, 299-E27-14, and 299-E27-15 range from 24 to 390 ft/d. Corresponding transmissivities of the test interval at these six wells range from 330 to 5600 ft 2 /d. The best estimate of equivalent hydraulic conductivity of the test interval at wells 299-W10-15 and 299-W10-16 is 33 ft/d. Corresponding transmissivities of the test interval at these two wells range from 530 to 540 ft 2 /d. Estimates of equivalent hydraulic conductivity and transmissivity could not be determined for well 299-E27-12. A summary of the best estimates for transmissivity and equivalent hydraulic conductivity is presented in Table S.1.

Some of the assumptions required by the methods used to analyze the slug test data were not fully met. The rapid water-level response observed in most of the 200-East Area tests, where the aquifer is highly permeable, may have introduced turbulent flow conditions. The analytical results determined from these tests must, therefore, be used with some caution because the assumption inherent in the analytical method requires laminar (Darcian) flow conditions. Other assumptions violated that may have influenced the

TABLE S.1. Summary of Best Estimates of Transmissivity and Equivalent Hydraulic Conductivity for Wells Near the Single-Shell Tanks in the 200 Areas

Well Name	Area	Analysis Method	Transmissivity,(a) ft ² /d	Hydraulic Conductivity, ft/d
299-E24-19	200-East	Bouwer and Rice (1976)	1700	110
299-E25-40	200-East	Bouwer and Rice (1976)	1100	70
299-E25-41	200-East	Bouwer and Rice (1976)	330	24
299-E27-12	200-East	Data Not Analyzable		
299-E27-13	200-East	Bouwer and Rice (1976)	2500	180
299-E27-14	200-East	Bouwer and Rice (1976)	2600	160
299-E27-15	200-East	Bouwer and Rice (1976)	5600	390
299-E33-33	200-East	Bouwer and Rice (1976)	5400	320
299-W10-15	200-West	Bouwer and Rice (1976)	530	33
299-W10-16	200-West	Bouwer and Rice (1976)	540	33

⁽a) Transmissivity was calculated by multiplying equivalent hydraulic conductivity by the thickness of the test interval, which varied slightly from well to well.

analytical results from all tests conducted include the assumptions that require a fully developed well and an instantaneous initial water-level change.

CONTENTS

SUMM	ARY	iii
1.0	INTRODUCTION	1.1
2.0	FIELD EQUIPMENT USED	2.1
	SLUGGING ROD	2.1
	FIELD INSTRUMENTATION	2.1
	LIMITATIONS OF EQUIPMENT	2.2
3.0	METHODS OF ANALYSIS	3.1
	BOUWER AND RICE METHOD	3.1
	COOPER ET AL. METHOD	3.3
	MAJOR LIMITATIONS	3.3
4.0	HYDROLOGIC TEST AND PARAMETER EVALUATION	4.1
	GENERAL WELL CONSTRUCTION	4.1
	GENERAL TEST PERFORMANCE	4.1
	GENERAL DATA ANALYSIS	4.2
	WELL 299-E24-19	4.3
	Stratigraphy	4.3
	Test Performance and Data Analysis	4.3
	Summary of Test Results	4.5
	WELL 299-E25-40	4.6
	Stratigraphy	4.6
	Test Performance and Data Analysis	4.6
	Summary of Test Results	4.8
	WELL 299-E25-41	4.9
	Stratigraphy	4.9

	Test Performance and Data Analysis	•	•			•	•	•	•	•		4.9
	· Summary of Test Results											4.12
WELL	299-E27-12											4.14
	Stratigraphy											4.14
	Test Performance and Data Analysis											4.14
WELL	. 299-E27-13											4.15
	Stratigraphy											4.15
	Test Performance and Data Analysis						•					4.16
	Summary of Test Results											4.17
WELL	. 299-E27-14											4.17
	Stratigraphy											4.18
	Test Performance and Data Analysis											4.18
	Summary of Test Results											4.20
WELL	299-E27-15											4.21
	Stratigraphy											4.22
	Test Performance and Data Analysis											4.22
	Summary of Test Results											4.23
WELL	299-Е33-33											4.24
	Stratigraphy											4.24
	Test Performance and Data Analysis											4.24
	Summary of Test Results											4.26
WELL	299-W10-15											4.27
	Stratigraphy			-								4.27
	Test Performance and Data Analysis											4.27
	Summary of Test Results											4.29

WHC-SD-EN-TI-147, Rev. 0

F	
C	
C	3
1	7
	П
	7
_	-,
5	1
	3
-	-
	nia;
C	nia

WELL 2	99-W10-	16				•	•	•	•	•	•	•	4.3
S	tratign	aphy											4.30
T	est Per	formance	and Data	Analysis									4.30
S	ummary	of Test	Results .										4.3
5.0 REFERE	NCES .												5.1
APPENDIX A	- TEST	DATA AND	ANALYSIS	FOR WELL	299-E24-19								A.1
APPENDIX B	- TEST	DATA AND	ANALYSIS	FOR WELL	299-E25-40								B.1
APPENDIX C	- TEST	DATA AND	ANALYSIS	FOR WELL	299-E25-41					•		•	C.1
APPENDIX D	- TEST	DATA AND	ANALYSIS	FOR WELL	299-E27-12								D.1
APPENDIX E	- TEST	DATA AND	ANALYSIS	FOR WELL	299-E27-13								E.1
APPENDIX F	- TEST	DATA AND	ANALYSIS	FOR WELL	299-E27-14								F.1
APPENDIX G	- TEST	DATA AND	ANALYSIS	FOR WELL	299-E27-15								G.1
APPENDIX H	- TEST	DATA AND	ANALYSIS	FOR WELL	299-E33-33								H.1
APPENDIX I	- TEST	DATA AND	ANALYSIS	FOR WELL	299-W10-15								1.1
APPENDIX J	- TEST	DATA AND	ANALYSIS	FOR WELL	299-W10-16								J.1

FIGURES

1.1	Locations of Wells Near Waste Management Area A-AX in the 200-East Area	1.2
1.2	Locations of Wells Near Waste Management Area B-BX-BY in the 200-East Area	1.3
1.3	Locations of Wells Near Waste Management Area C in the 200-East Area	1.4
1.4	Locations of Wells Near Waste Management Area T in the 200-West Area	1.5

TABLES

S.1	Summary of Best Estimates of Transmissivity and Equivalent Hydraulic Conductivity for Wells Near the Single-Shell Tanks in the 200 Areas .					 iv
1.1	Wells in Which Slug Tests Were Conducted					1.1
2.1	Slugging Rods Dimensions, Volumes, and Theoretic Displacement					2.1
2.2	Schedule of the Time-Interval Sequence for Data Collection					2.2
4.1	Summary of Hydraulic Property Values Determined Tests Performed in Well 299-E24-19	for				4.5
4.2	Summary of Hydraulic Property Values Determined Tests Performed in Well 299-E25-40					4.8
4.3	Summary of Hydraulic Property Values Determined Tests Performed in Well 299-E25-41	for				4.13
4.4	Summary of Hydraulic Property Values Determined Tests Performed in Well 299-E27-13					4.18
4.5	Summary of Hydraulic Property Values Determined Tests Performed in Well 299-E27-14	for				4.21
4.6	Summary of Hydraulic Property Values Determined Tests Performed in Well 299-E27-15					4.24
4.7	Summary of Hydraulic Property Values Determined Tests Performed in Well 299-E33-33					4.26
4.8	Summary of Hydraulic Property Values Determined Tests Performed in Well 299-W10-15					4.29
4.9	Summary of Hydraulic Property Values Determined Tests Performed in Well 299-W10-16	for				4.34

THIS PAGE INTENTIONALLY LEFT BLANK

1.0 INTRODUCTION

Hydrologic tests were conducted in 10 of the 12 newly drilled wells near single-shell tank farms in the 200 Areas between September and November 1989. The wells were designed to monitor ground water beneath these tank farms as required by the Resource Conservation and Recovery Act (RCRA). The Pacific Northwest Laboratory^(a) conducted the tests as part of a larger RCRA drilling effort funded by Westinghouse Hanford Company. The tests are considered "opportunistic" in that the wells were not designed specifically for aquifer testing for the given aquifer conditions. However, the hydraulic property estimates derived from the tests can be used, provided the assumptions required in the analytical solution are not significantly violated.

The purpose of the hydrologic tests was to provide estimates of transmissivity and hydraulic conductivity of the uppermost part of the unconfined aquifer. Estimates of transmissivity and hydraulic conductivity were determined from 9 of the 10 wells tested. (The 10 wells tested are listed in Table 1.1.) Estimates could not be determined from slug tests performed in 1 of the 10 wells, well 299-E27-12 in the 200-East Area. In addition, slug testing was not performed in wells 299-E33-31 and 299-E33-32, also in the 200-East Area. These 2 wells, with the 10 that were tested, compose the 12 newly drilled wells. The locations of the wells tested are shown in Figures 1.1 through 1.4.

TABLE 1.1. Wells in Which Slug Tests Were Conducted

200-East Area	200-West Area
299-E24-19	299-W10-15
299-E25-40	299-W10-16
299-E25-41	
299-E27-12	
299-E27-14	
299-E27-15	The second second
299-E33-33	

⁽a) The Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-ACO6-76RLO 1830.

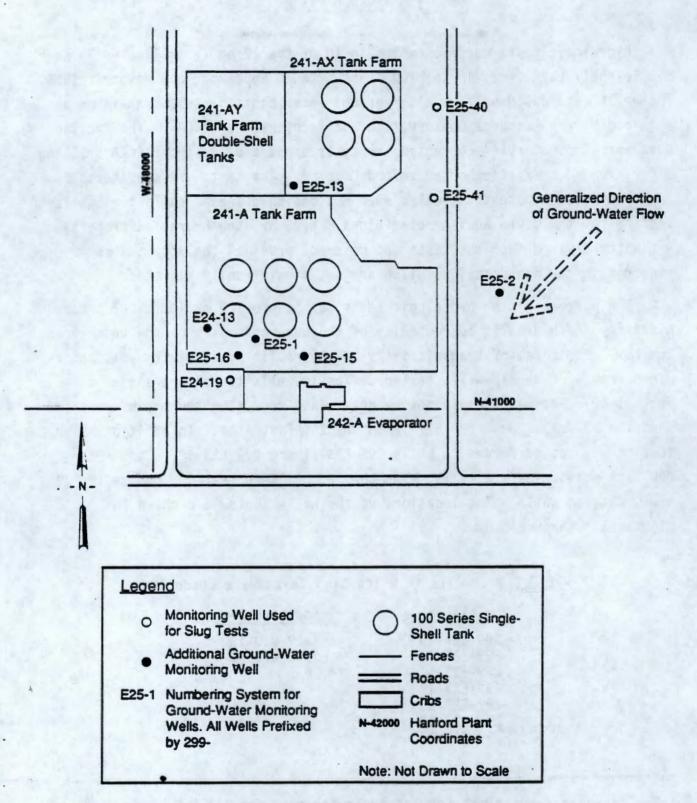


FIGURE 1.1. Locations of Wells Near Waste Management Area A-AX in the 200-East Area

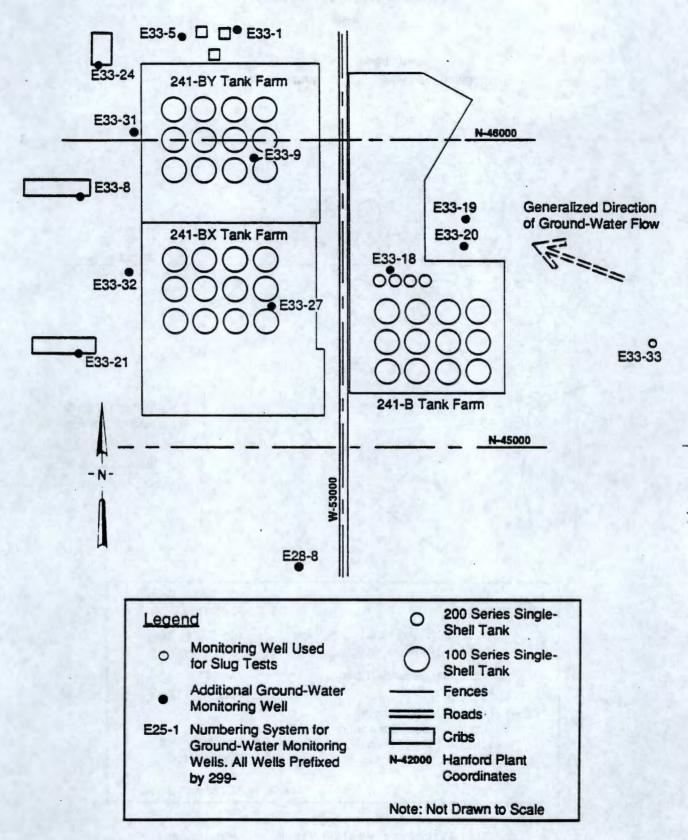


FIGURE 1.2. Locations of Wells Near Waste Management Area B-BX-BY in the 200-East Area

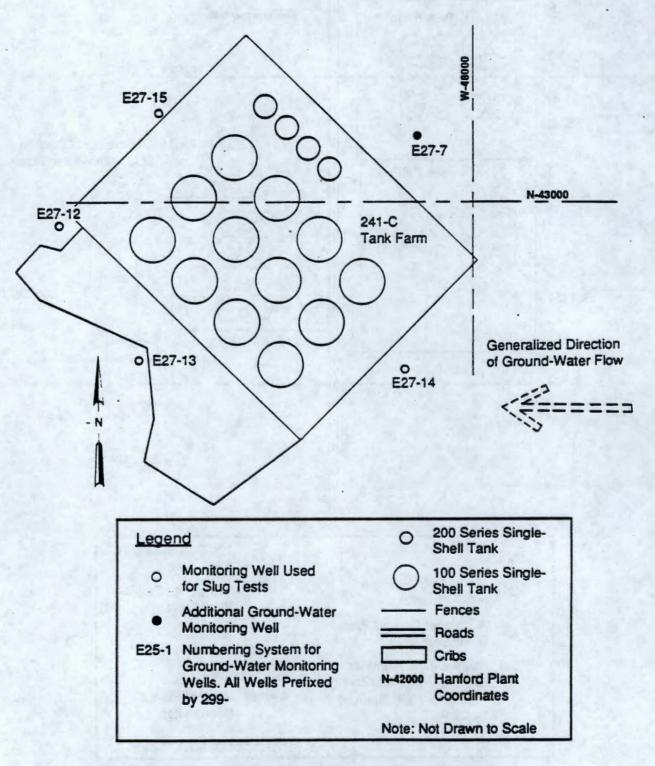
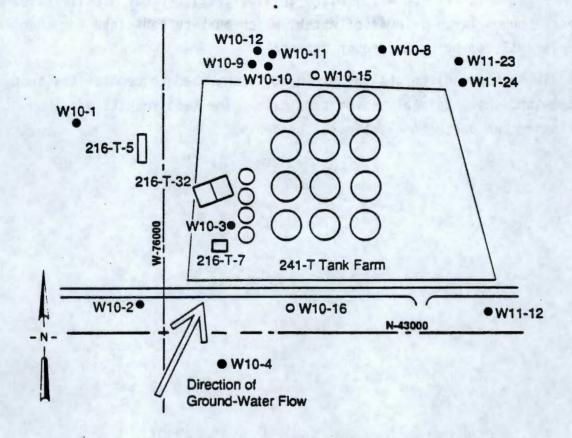



FIGURE 1.3. Locations of Wells Near Waste Management Area C in the 200-East Area

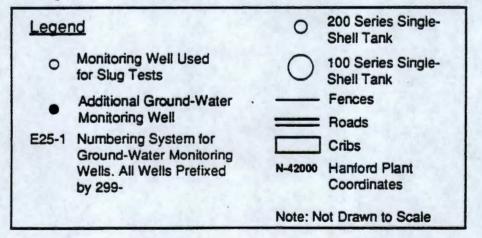


FIGURE 1.4. Locations of Wells Near Waste Management Area T in the 200-West Area

Hydrologic testing was limited to slug tests because it eliminates the need to purge large volumes of water, which must be contained for chemical sample analyses prior to proper disposal.

This report discusses the field equipment used to conduct the tests and the methods used to analyze the test data. The test results are then evaluated and calculated estimates presented.

2.0 FIELD EQUIPMENT USED

Slug tests were conducted by quickly raising or lowering a slugging rod in the well to displace the water column and recording the water-level response with a pressure transducer data-logger system. The procedure (AT-6) that describes this technique is discussed in detail in PNL (1989). The description of the field equipment is provided below.

SLUGGING ROD

Two sizes of slugging rods were used in conducting the slug tests, one 6 ft in length and one 8 ft in length. The diameter of the 6-ft rod was 0.19 ft (2-1/4 in.), and the diameter of the 8-ft rod was 0.24 ft (2-7/8 in.). Dimensions of each rod are presented in Table 2.1, with the theoretical maximum change in water level the rods will cause in a 4-in.-inside-diameter well. Each slugging rod consisted of a carbon steel pipe, which was partially filled with sand and sealed at both ends. A rebar hook was welded to the top to allow attachment of a wire-line cable. A Kaiser Engineers Hanford's (KEH) pump-setting rig was used to raise and lower the slugging rod for each slug test.

FIELD INSTRUMENTATION

The water-level changes during the slug tests were measured and recorded with a 10-psi pressure transducer data-logger system. The transducer was lowered to the bottom of the well and connected with a cable to a data logger at the surface. The data logger recorded the water-level changes at the manufacturer's preset time intervals, which approximated a logarithmic scale.

TABLE 2.1. Slugging Rods Dimensions, Volumes, and Theoretical Displacement

Rod Size	Length,	Diameter,	Volume,	Theoretical Water-Level Displacement in 4-india Well, ft
6-ft rod	6.00	0.19	0.17	1.90
8-ft rod	8.05	0.24	0.36	4.17

The schedule of the preset time intervals for all the tests conducted are shown in Table 2.2. The reference water level for each test was the equilibrated water level measured in the well before the test. A sequential test number displayed by the data logger to be in the range 0 to 9 was assigned to each test to identify it from other tests conducted at the same well. The test number was incremented by one to the next higher number before conducting the next test. The first test for each well does not necessarily begin with 0. The test number for each test is shown in the data output in the Appendixes.

LIMITATIONS OF EQUIPMENT

The existing well design and test equipment presented a number of limitations to the performance of the slug tests and analysis of the data. These limitations included

- a maximum possible water-level change of 4.17 ft with the 8-ft slug and 1.90 ft with the 6-ft slug
- possible erroneous water-level measurements because of transducer movement during introduction or removal of the slugging rod
- data acquisition limitations associated with the pressure transducer data-logger systems (e.g., determining the initial water-level change and the time of test initiation accurately).

TABLE 2.2. Schedule of the Time-Interval Sequence for Data Collection

Cycle	Elapsed Time	Time	Interval
1	0-2 sec	0	.2 sec
2	2-20 sec	1	sec
3	20-120 sec	5	sec
4	2-10 min	30	sec
5	10-100 min	2	min

3.0 METHODS OF ANALYSIS

The Bouwer and Rice (1976) and Cooper et al. (1967) methods were used to analyze aquifer slug test data. An update to the Bouwer and Rice method was published by Bouwer (1989). These methods are discussed below.

BOUWER AND RICE METHOD

The Bouwer and Rice method (Bouwer and Rice 1976) was designed to estimate the hydraulic conductivity of an unconfined aquifer in the close vicinity of the borehole. This method can be applied to slug tests conducted in the screened or open portion of wells that partially or fully penetrate the aquifer. This method can also be used to estimate hydraulic conductivity of confined, semiconfined, or stratified aquifers (Bouwer 1989).

The following are important assumptions in applying the Bouwer and Rice method:

- The aquifer is homogeneous and isotropic.
- · Drawdown of the water table near the well is negligible.
- · Head losses as water enters the well (well losses) are negligible.
- · The well is fully developed.
- The initial change in water level is instantaneous.
- Flow in the capillary fringe is ignored.

One of the well geometry parameters used in the Bouwer and Rice calculations is the casing radius, $r_{\rm C}$. If the water-level fall or rise occurs within the casing, the actual radius of the casing is used for this value. If the water-level rise or fall occurs in the screened interval of the well, the casing radius must be corrected for the thickness and porosity of the filter pack. The water-level changes for all the tested wells discussed in this report occurred within the screened interval. The equation to correct for the radius, $r_{\rm C}$, as presented in Bouwer (1989) is

$$r_c = [r_s^2 + p(r_f^2 - r_s^2)]^{1/2}$$
 (1)

where r_s is the radius of the well screen in feet, p is the estimated porosity of the filter pack, and r_f is the radius of the well screen and filter pack in feet.

The Bouwer and Rice analytical equation used to calculate the hydraulic conductivity, K, between the limits Y_0 , the intercept, at t=0 and Y_t at t on a semilogarithmic plot of the water-level change (Y_t) versus time (t) is

$$K = \frac{r_c^2 \ln (R_e/r_w)}{2 L_e} \frac{1}{t} \ln \frac{Y_o}{Y_t}$$
 (2)

where r_c = corrected radius of the screened interval, ft

Re = effective radius equivalent to the radial distance over which the head loss is dissipated in the flow system, ft

rw = radial distance between the well center and the undisturbed aquifer, ft

Le = length of the tested (screened) interval, ft.

The term R_e , expressed as $\ln(R_e/r_w)$, is a function of the well and aquifer geometry and is evaluated from results of an analog analysis performed by Bouwer and Rice (1976). The form of the equation to calculate this term, including the determination of dimensionless parameters used in this equation, is presented in Bouwer (1989).

During slug withdrawal tests, anomalies are sometimes observed in the early portion of the rate of water-level recovery. These anomalies, referred to as the "double straight line effect," are due to drainage of a filter pack or developed zone around the well screen after the water level is lowered (Bouwer 1989). The early data can be ignored and the second straight line, which is more representative of the undisturbed aquifer, can be used for calculating the hydraulic conductivity.

COOPER ET AL. METHOD

The Cooper et al. method (1967) was designed to estimate the transmissivity of a confined aquifer in the close vicinity of a borehole. The method involves fitting a semilogarithmic plot of change in head (H) divided by the initial change in head (H_0) versus time to one of a set of type curves established for an instantaneous water-level change in a well of finite diameter. Additional type curves for the analysis of test data were generated by Papadopolus et al. (1973).

Important assumptions in applying the Cooper et al. method, in addition to those assumptions stated previously for the Bouwer and Rice method, are 1) the well is screened (or open) throughout the full thickness of the aguifer, and 2) confined aguifer conditions exist.

The Cooper et al. method may be used to analyze tests conducted in wells that partially penetrate an aquifer, provided that flow is essentially two-dimensional (i.e., essentially no vertical flow) within the stressed zone of the aquifer during the test. The determined value of transmissivity from tests conducted in wells that partially penetrate the aquifer represents the stressed (saturated screen) interval (Cooper et al. 1967). This method may also be applied to tests exhibiting unconfined aquifer conditions provided that the saturated thickness is uniform (Walter and Thompson 1982).

MAJOR LIMITATIONS

One limitation to analyzing the test data is that turbulence may have been present during the earliest portion of the test. Data from most of the 200-East Area slug tests indicate that the water-level response as a result of injecting or withdrawing the slugging rod was extremely rapid. The length of time for the water level to return to its pretest level was on the order of 10 sec or less. This rapid response may introduce turbulent flow inside the well, particularly during the early part of the test. Turbulence may cause errors in data collection by the pressure-measuring instrument.

Methods commonly used to analyze slug test data assume Darcian (laminar) flow.

Turbulence within a pipe occurs at a Reynolds number of 2000 or greater (Roberson and Crowe 1985). The equation that relates Reynolds number to velocity is

$$Re = VD/\mu \tag{3}$$

where Re = Reynolds number

V = velocity, ft/sec

D = pipe diameter, ft

 μ = kinematic viscosity of water, ft²/sec.

To determine when turbulent flow conditions exist, estimates for the parameters were used to solve for Equation (3). The value reported for kinematic viscosity of water at $50^{\circ}F$ is 1.41E-5 ft²/sec (Roberson and Crowe 1985). The inside well-screen diameter for all wells tested is 4 in. Substituting these values into Equation (3) and rearranging yields a velocity of 8.46E-2 ft/sec.

Velocity of flow exceeded 8.46E-2 ft/sec during the earliest part of all the tests (e.g., 0 to 2 sec). This velocity indicates that turbulent flow conditions may have existed during the earliest part of the tests before giving way to laminar flow conditions during the latter part of the tests. This change may be particularly true for most of those tests conducted in the 200-East Area, where the stress-induced water level responded rapidly because of high permeability in aquifer conditions. The analytical results determined from tests conducted under these conditions must, therefore, be used with some caution.

The entrance velocity must also be calculated to determine the presence of head losses associated with turbulent flow through the screen during the early part of the test. Head losses generally occur if the entrance velocity through the screen exceeds 0.1 ft/sec. The entrance velocity can be determined by dividing the total open area of the test interval into the volume of water entering the well per unit time.

The data from slug withdrawal test #2 at well 299-E33-33 was used to calculate the entrance velocity. The open area of 28.5 in.2/ft (the open area of the inner and outer screen according to Johnson Filtration Systems, Inc.) multiplied by the length of the test interval ("saturated" screen interval) of 17.0 ft equals a total open area of 3.36 ft2. The volume of water that entered the well between 0.0133 min (0.8 sec) and 0.0333 min (2 sec) after the data logger was initiated, during which the water level rose 0.78 ft, was calculated to be 0.068 ft³. This volume divided by the increment of time associated with the change in water level equals the flow rate, or 0.057 ft³/sec. This value divided by the total open area of 3.36 ft² equals 0.017 ft/sec, the entrance velocity of water through the screen during the early part of the test. This value of entrance velocity does not exceed the value of 0.1 ft/sec. Therefore, head losses associated with flow through the screen immediately following the imposed stress were negligible. Head losses were, therefore, negligible in the other wells in which tests were conducted because the water-level response during test #2 in well 299-E33-33 equilibrated more quickly than did the water-level responses observed during the tests conducted in the other wells.

Another limitation in analyzing the test data is erroneous water-level changes observed at the beginning of some of the tests. Water-level fluctuations were observed at the beginning of some of the tests in which some of the recorded values exceeded the theoretical water-level displacement expected, calculated using the dimensions of the slugging rods. This excessive displacement indicates that these fluctuations may be a result of erroneous water-level measurements caused by a fluid column of air and water created when the slugging rod was removed from the water. Also, these fluctuations may possibly be caused by induced inertial effects.

Another important limitation in analyzing the test data is that all the wells were not developed before conducting the slug tests. Because the wells were not developed, the calculated values of transmissivity and hydraulic conductivity may be biased. In an undeveloped well, aquifer materials adjacent to the borehole may be disturbed as a result of the drilling technique

used. The hard-tool drilling technique may introduce fines into the aquifer adjacent to the borehole thereby causing a zone of reduced or "altered" formation hydraulic conductivity.

For slug injection tests, the equilibrium water level was below the top of the screen. A sudden rise in the water level will induce flow not only into the aquifer, but also through the vadose zone above the water table. Flow through the vadose zone increases the rate of water-level decline and, hence, leads to an overestimation of transmissivity and hydraulic conductivity for the slug injection tests (Bouwer 1989). Therefore, for this well configuration, slug injection tests are less reliable than slug withdrawal tests for estimating these hydraulic parameters.

An inherent limitation of slug testing is the small area of investigation of the aquifer due to a small stress applied to the aquifer system. Application of slug testing is restricted to aquifers of low to moderate transmissivity.

4.0 HYDROLOGIC TEST AND PARAMETER EVALUATION

The data collected for each slug test were analyzed to determine the hydrologic parameters (transmissivity and hydraulic conductivity). This section presents a summary of the types of tests conducted for each well, method of analysis, and the calculated values of transmissivity and hydraulic conductivity. Field records, data-logger output, graphs of the data, and asbuilt diagrams for the completed well are provided in Appendixes A through J. The details of the tests for each well are discussed below.

GENERAL WELL CONSTRUCTION

All tested wells were completed with 10-slot Channel Pack*(a) screens (4-in. inside diameter) surrounded by a 2-in.-thick 16-30 or 20-40 filter pack. The open area of the Channel Pack screens was 28.5 in.2/ft. The screened interval extended from approximately 5 ft above to approximately 15 ft below the top of the aquifer. The porosity of the filter pack is estimated to be 30%. As-built diagrams for each of the wells are presented in the Appendixes.

GENERAL TEST PERFORMANCE

Slug tests were conducted in eight wells in the 200-East Area and two wells in the 200-West Area. All slug tests were performed after the wells were completed, but before they were developed. Multiple slug tests were conducted in most of the wells to increase the likelihood of obtaining a quality data set. It was crucial to coordinate the start of data collection with the initial change in head because the water level was expected to recover exceptionally quickly. The slug withdrawal tests generally provided better quality data to analyze than did the slug injection tests. The water levels were checked for stability between each test.

⁽a) Channel Pack is a registered trademark of Johnson Filtration Systems, Inc., St. Paul, Minnesota.

GENERAL DATA ANALYSIS

Values of transmissivity and hydraulic conductivity were determined from most of the slug withdrawal test data and a few of the slug injection test data using the Bouwer and Rice analytical method. The Cooper et al. method can be used in some cases, but provides less reliable results because either 1) the portion of the data "representative" of the aquifer materials is non-unique and can be analyzed using several type curves, or 2) the observed value of H_0 , which is important for the analysis, could not be determined accurately. In several tests conducted in highly permeable zones, the observed value of H_0 was not known because the data logger was activated slightly later than initiation of the slugging rod (i.e., t_0 is not known). For other tests where t_0 is known, the observed value of H_0 was not known and could not be determined accurately because of water-level oscillations exhibited at the beginning of the tests.

The observed initial water-level change, Y_0 , used in the Bouwer and Rice equation for analyzing the data is less important than H_0 for the Cooper et al. method. The importance in using the Bouwer and Rice method lies in fitting a linear straight line through the data most "representative" of the aquifer formation adjacent to the borehole and taking the y-intercept as Y_0 . Small errors in this value have no significant affect in calculating hydraulic conductivity because Y_0 enters Equation (2) as a logarithmic value. However, for the Cooper et al. method, the shape of the data curve, and therefore the result, is heavily dependent on the value of H_0 . The Bouwer and Rice method was, therefore, more appropriate for analyzing the test data than the Cooper et al. method:

The theoretical initial water-level change for most of the 200-East Area tests was much larger than the observed value. For these tests, the water level began responding to the imposed stress before the slugging rod was fully withdrawn from or injected into the water column. In applying the Bouwer and Rice method where t_0 is known, or where it was evident that the filter-pack material influenced the early part of the test, the linear best-fit straight line of the data was projected to the intercept to determine Y_0 . A correction was, therefore, applied to the elapsed times, t_e , recorded by

the data logger to account for the difference between the initiation of the data logger and the determined time, t_0 . In those tests where t_0 was not known, t_0 was assumed to be the time when the observed initial water-level change occurred just before the water level returned exponentially to its pretest level. For these tests, the projected values of Y_0 were approximately the same as the observed values.

The equivalent hydraulic conductivity is an average value for hydraulic conductivity over the entire effective test interval (i.e., "saturated" screen interval). Individual stratigraphic zones within the test interval may possess higher or lower hydraulic conductivities than that calculated for the effective test interval.

WELL 299-E24-19

This well is located on the southwestern edge of the A Tank Farms in the 200-East Area (see Figure 1.1). Refer to Appendix A for the as-built diagram, field records, data-logger output, and graphs of the data.

Stratigraphy

The screened interval is presumed to lie within the undifferentiated sediments of the Hanford/Ringold Formation. The lithology of this interval is a sandy gravel, sand, and muddy sandy gravel. The full saturated thickness of the sediments above the basalt at this location is inferred to be 95 ft, based on available geologic information in Jensen et al. (1989). The bottom of the aquifer is presumed to be the top of the Elephant Mountain Basalt.

Test Performance and Data Analysis

Two slug injection and two slug withdrawal tests were performed on October 2, 1989. The depth of the screened interval was reported to be approximately 280 to 301 ft below land surface. Before conducting the tests, the depth to the "static" water level was determined to be approximately 285 ft below land surface. Therefore, the tests were conducted within the screened interval.

During the slug injection tests (#0 and #8), there was difficulty with the slugging rod "hanging up" in the well, resulting in a water-level change that was not instantaneous. This change caused the water levels to respond before the slugging rod was fully submerged. Data collected from the slug injection tests were not usable for analysis.

For both of the withdrawal tests (tests #1 and #9), withdrawal of the slugging rod yielded an observed initial water-level change of approximately 1.6 ft. The water level fully returned to its pretest level within 17 sec for test #1 and 13 sec for test #9.

The observed initial water-level change for each test was much less than the theoretical value of 4.17 ft, calculated using the dimensions of the 8-ft slugging rod. This difference indicates that formation water was entering the well during withdrawal of the slugging rod. Although this condition violates the assumption requiring an instantaneous water-level change, it does not necessarily invalidate the results. However, the analytical results may be less reliable because of the error in determining the parameters (i.e., Y_0 , Y_t , t, H_0) used in the analytical equations.

The data indicate that initiation of the data logger occurred slightly later than withdrawal of the slugging rod because the equilibrium (reference) water level was "missed." The actual initial water-level change may be slightly higher. However, this difference does not significantly influence the analytical results using the Bouwer and Rice equation. The value of t_0 is, therefore, assumed to be elapsed time, $t_0 = 0$.

The slug withdrawal data could not be analyzed with the Cooper et al. method because the values for H_0 for the tests could not be determined accurately. However, the slug withdrawal data for tests #1 and #9 were analyzed with the Bouwer and Rice method. Semilogarithmic plots of the water-level change versus elapsed time are shown in Appendix A. The data on the graph were approximated with a linear best-fit straight line. The data for t < 9 sec (0.15 min) was used to approximate the straight line for test #1, and t < 3 sec (0.05 min) was used to approximate the straight line for test #9. The approximated best-fit lines were projected to the Y_t intercept at time t_0 = 0. These projected values were used for Y_0 in the Bouwer and Rice

equation. The projected values of Y_0 were determined to be 1.63 ft for test #1 and 1.58 ft for test #9, close to the observed values of 1.61 and 1.60 ft, respectively.

A summary of the parameters substituted into the Bouwer and Rice equation is presented in Appendix A.

Summary of Test Results

Values of transmissivity and equivalent hydraulic conductivity from the analytical method applied for each of the slug tests are summarized in Table 4.1. The hydraulic properties are determined solely for the entire test interval. The best estimates of these hydraulic properties are determined to be most representative of the test interval.

Analyses of the slug withdrawal data for tests #1 and #9 using the Bouwer and Rice method yielded hydraulic conductivity values of approximately 120 and 100 ft/d, respectively. The best estimate of the equivalent hydraulic conductivity, an average of these values, was determined to be 110 ft/d. The values of hydraulic conductivity multiplied by the thickness of the test interval of 15.6 ft yielded values of transmissivity of approximately

TABLE 4.1. Summary of Hydraulic Property Values Determined for Tests Performed in Well 299-E24-19

Test Method	Analysis Method	Transmissivity,(a) ft ² /d	Equivalent Hydraulic Conductivity, ft/d
Slug Withdrawal (Test #1)	Bouwer and Rice (1976)	1800	120
Slug Withdrawal (Test #9)	Bouwer and Rice (1976)	1600	100
Slug Injection (Tests #0 and #8)	Data Not Analyzable	10.16	1
Best Estimate		1700	110

⁽a) Transmissivity was calculated by multiplying equivalent hydraulic conductivity by the thickness of the test interval (i.e., 15.6 ft).

1800 and 1600 ft^2/d , respectively, for the upper part of the aquifer. The best estimate of transmissivity, an average of these values, was determined to be 1700 ft^2/d .

WELL 299-E25-40

This well is located on the east side of the A Tank Farm in the 200-East Area (see Figure 1.1). Refer to Appendix B for the as-built diagram, field records, data-logger output, and graphs of the data.

Stratigraphy

The screened interval is presumed to lie within undifferentiated sediments of the Hanford/Ringold Formation. The lithology of this interval is a sandy gravel and slightly gravelly sand. The full saturated thickness of the sediments above the basalt at this location is inferred to be 95 ft, based on available geologic information in Jensen et al. (1989). The bottom of the aquifer is presumed to be the top of the Elephant Mountain Basalt.

Test Performance and Data Analysis

Two slug injection and two slug withdrawal tests were conducted on September 29, 1989. The depth of the screened interval was reported to be approximately 252 to 273 ft below land surface. Before conducting the tests, the depth to the "static" water level was determined to be approximately 257 ft below land surface. Therefore, the tests were conducted within the screened interval.

Data from the slug injection tests (tests #0 and #2) are not usable for analysis because the slugging rod was not lowered into the water quickly enough. The assumption that requires an instantaneous water-level change at the beginning of the test was grossly violated.

For both of the two withdrawal tests (tests #1 and #3), withdrawal of the slugging rod produced similar results. Test #1 produced an observed initial water-level change of 1.31 ft. The water level for this test fully recovered to its pretest level within 35 sec. Withdrawal of the slugging

rod for test #3 produced an observed initial water-level change of 1.18 ft. The water level for this test fully recovered to its pretest level within 35 sec.

The observed initial water-level change for each test was much less than the theoretical water-level displacement of 4.17 ft expected, calculated using the dimensions of the 8-ft slugging rod. This difference indicates that formation water was entering the well during withdrawal of the slugging rod. Although this condition violates the assumption requiring an instantaneous water-level change, it does not necessarily invalidate the results. However, the analytical results may be less reliable because of the error in determining the parameters (i.e., Y_O, Y_t, t, H_O) used in the analytical equations.

The data indicate that initiation of the data logger occurred slightly later than withdrawal of the slugging rod because the equilibrium (reference) water level was "missed." The actual initial water-level change may be slightly higher. However, this difference does not significantly influence the analytical results using the Bouwer and Rice equation. The value of t_0 is, therefore, assumed to be elapsed time, $t_e=0$.

The data could not be analyzed with the Cooper et al. method because the values of H_0 for the tests could not be determined. However, the slug withdrawal data for tests #1 and #3 were analyzed with the Bouwer and Rice method. Semilogarithmic plots of the water-level change versus time since the slugging rod was withdrawn are shown in Appendix B. The early portion of the data for t < 3 sec (0.05 min) for each of the tests shows a steeper slope than the data for t > 3 sec. These steeper slopes during the early portion of the tests are influenced by the filter-pack material adjacent to the well screen. The later-time straight line is considered to be "representative" of the aquifer sediments adjacent to the borehole.

The data on the graphs were approximated with linear best-fit straight lines. For test #1, a straight-line approximation of the data for 2 < t < 10 sec was projected to the Y_t intercept at time $t_0 = 0$. This projected value, 1.02 ft, was used for Y_0 in the Bouwer and Rice equation. For test #3, a straight-line approximation of the data for 3 < t < 9 sec was

projected to the Y_t intercept at time $t_0 = 0$. This projected value for test #3, 0.83 ft, was used for Y_0 in the Bouwer and Rice equation.

A summary of the parameters substituted in the Bouwer and Rice equation is presented in Appendix B.

Summary of Test Results

Values of transmissivity and equivalent hydraulic conductivity from the analytical method applied for each of the slug tests are summarized in Table 4.2. The hydraulic properties are determined solely for the entire test interval. The best estimates of these hydraulic properties are determined to be most representative of the test interval.

Hydraulic conductivity values of approximately 64 and 75 ft/d for slug withdrawal tests #1 and #3, respectively, were calculated using the Bouwer and Rice method. These values of hydraulic conductivity multiplied by the thickness of the test interval of 16.1 ft provide values of transmissivity for the upper part of the aquifer. The best estimate of equivalent hydraulic conductivity, an average of these calculated values, was determined to be 71 ft/d. Transmissivity values were calculated to be approximately 1000 and

TABLE 4.2. Summary of Hydraulic Property Values Determined for Tests Performed in Well 299-E25-40

Test Method	Analysis Method	Transmissivity,(a) ft ² /d	Equivalent Hydraulic Conductivity, ft/d
Slug Withdrawal (Test #1)	Bouwer and Rice (1976)	1000	64
Slug Withdrawal (Test #3)	Bouwer and Rice (1976)	1200	75
Slug Injection (Tests #0 and #2)	Data Not Analyzable		
Best Estimate	3	1100	<u>70</u>

⁽a) Transmissivity was calculated by multiplying equivalent hydraulic conductivity by the thickness of the test interval (i.e., 16.1 ft).

1200 ft^2/d for tests #1 and #3, respectively. The best estimate of transmissivity, an average of these calculated values, was determined to be 1100 ft^2/d .

WELL 299-E25-41

This well is located on the east side of the A Tank Farm in the 200-East Area (see Figure 1.1). Refer to Appendix C for the as-built diagram, field records, data-logger output, and graphs of the data.

Stratigraphy

The screened interval is presumed to lie within the undifferentiated sediments of the Hanford/Ringold Formation. The lithology of this interval is a sandy gravel, muddy sandy gravel, and sandy mud. The full saturated thickness of the sediments above the basalt at this location is inferred to be 95 ft, based on available geologic information in Jensen et al. (1989). The bottom of the aquifer is presumed to be the top of the Elephant Mountain Basalt.

Test Performance and Data Analysis

Two slug injection and two slug withdrawal tests were conducted on September 29, 1989. The depth of the screened interval was reported to be approximately 255 to 276 ft below land surface. Before conducting the tests, the depth to the "static" water level was determined to be approximately 262 ft below land surface. Therefore, the tests were conducted within the screened interval.

Slug Injection Tests (#4 and #6)

Injection of the slugging rod yielded an observed initial water-level change of 0.94 ft for test #4. The observed initial water-level change for test #6 was 0.81 ft, but then rose to 1.42 ft after 4 sec (0.0666 min) before falling exponentially. This rise in water level between 0 and 4 sec indicates that initiation of the data logger occurred before the slugging rod was fully submersed. The water level returned to its pretest level within 0.3 min for test #4 and 5.5 min for test #6.

The observed initial water-level change for each test was less than the theoretical water-level displacement of 4.17 ft expected, calculated using the dimensions of the 8-ft slugging rod. This difference indicates that water in the borehole flowed through the screen into the formation during injection of the slugging rod. Although this condition violates the assumption requiring an instantaneous water-level change, it does not necessarily invalidate the results. However, the analytical results may be less reliable because of the error in determining the parameters (i.e., Y_0 , Y_t

The data indicate that initiation of the data logger occurred slightly later than injection of the slugging rod for test #4 because the equilibrium (reference) water level was "missed." The actual initial water-level change may be slightly higher. However, this difference does not significantly influence the analytical results using the Bouwer and Rice equation. The value of t_0 is, therefore, assumed to be elapsed time, t_0 = 0.

A correction was applied to the elapsed times for injection test #6 because of the water-level rise caused by the injection of the slugging rod at the beginning of the test. An elapsed time of 0.0666 min (4 sec) was subtracted from all the elapsed times so that $t_0 = 0$ at $t_e = 4$ sec. The data indicate that initiation of the data logger occurred slightly later than the start of injection of the slugging rod because the equilibrium (reference) water level was "missed" at the beginning of the test. Because t_0 is not exactly known, t_0 is assumed to be the elapsed time, $t_e = 4$ sec, when the maximum observed water-level change occurred just before the water level recovered exponentially.

The slug injection data for tests #4 and #6 were analyzed with the Bouwer and Rice method. Semilogarithmic plots of the water-level change versus time (corrected time for test #6) since the slugging rod was injected are shown in Appendix C. The data on the graphs were approximated with linear best-fit straight lines. The early portion of the data for $t < 0.0333 \, \text{min} \, (2 \, \text{sec})$ was used to approximate a best-fit line for test #4, and data for $0.1 \, \text{min} < t < 0.2166 \, \text{min}$ was used to approximate a best-fit line

for test #6. The latter part of the data indicate a curvi-linear relationship in which a number of "apparent" straight lines could be fit. Therefore, these portions of the graphs were not used to approximate the straight lines. The linear best-fit straight lines were projected to the Y_t intercepts at t = 0. These intercepts were used for Y_0 in the Bouwer and Rice equation and were determined to be 0.89 ft for test #4 and 1.02 ft for test #6.

A summary of the parameters substituted in the Bouwer and Rice equation is presented in Appendix C.

Slug Withdrawal Tests (#5 and #7)

Data from the withdrawal tests produced similar results. However, removal of the slugging rod during the first withdrawal test (test #5) pinched the transducer cable, causing the transducer to move upward. This upward movement caused the recording of the water-level change to appear greater than the actual water-level change. An arithmetic plot of the data indicates that the transducer moved approximately 1.9 ft. Between 5.5 and 6 min after the slug was withdrawn, the transducer returned to its original position.

For analysis of the data from test #5, all the values corresponding to elapsed times less than 6 min were corrected 1.9 ft to account for movement of the transducer. Application of this correction yielded an observed initial water-level change of approximately 2.55 ft. The water level for this test fully returned to its pretest level within 6.5 min.

Withdrawal of the slugging rod for the second withdrawal test (#7) yielded an observed initial water-level change of 3.27 ft. The water level fully returned to its pretest level within 3.5 min.

The observed initial water-level change for each test was less than the theoretical water-level displacement of 4.17 ft expected, calculated using the dimensions of the 8-ft slugging rod. This difference indicates that formation water was entering the well during withdrawal of the slugging rod. Although this condition violates the assumption requiring an instantaneous water-level change, it does not necessarily invalidate the results.

However, the analytical results may be less reliable because of the error in determining the parameters (i.e., Y_0 , Y_t , t, H_0) used in the analytical equations.

The data indicate that initiation of the data logger occurred slightly later than withdrawal of the slugging rod because the equilibrium (reference) water level was "missed." The actual initial water-level change may be slightly higher. However, this difference does not significantly influence the analytical results using the Bouwer and Rice equation. The value of t_0 is, therefore, assumed to be elapsed time, $t_0 = 0$.

The data could not be analyzed with the Cooper et al. method because the values of Ho for the tests could not be determined accurately. However, the slug withdrawal data for tests #5 and #7 were analyzed with the Bouwer and Rice method. Semilogarithmic plots of the water-level change versus time since the slugging rod was withdrawn are shown in Appendix C. The data on the graphs were approximated with linear best-fit straight lines. For withdrawal test #5, the early portion of the data for 0.08 < t < 0.15 min was used to approximate a best-fit line. For withdrawal test #7, the early portion of the data for t < 0.3 min was used to approximate a best-fit line. The latter part of the data (i.e., t > 0.3 min for test #7 and t > 0.15 min for test #5) indicate a curvi-linear relationship in which a number of "apparent" straight lines could be fit. Therefore, these portions of the graphs were not used to approximate the straight lines. The linear best-fit straight lines were projected to the Yt intercepts at to = 0. These intercepts were used for Yo in the Bouwer and Rice equation and were determined to be 1.86 ft for test #5 and 3.18 ft for test #7.

A summary of the parameters substituted in the Bouwer and Rice equation is presented in Appendix C.

Summary of Test Results

Values of transmissivity and equivalent hydraulic conductivity from the analytical method applied for each of the slug tests are summarized in Table 4.3. The hydraulic properties are determined solely for the entire test interval. The best estimates of these hydraulic properties are determined to be most representative of the test interval.

TABLE 4.3. Summary of Hydraulic Property Values Determined for Tests Performed in Well 299-E25-41

* Test Method	Analysis Method	Transmissivity,(a) ft²/d	Equivalent Hydraulic Conductivity,
Slug Withdrawal (Test #5)	Bouwer and Rice (1976)	290	21
Slug Withdrawal (Test #7)	Bouwer and Rice (1976)	330	24
Slug Injection (Test #4)	Bouwer and Rice (1976)	2500(b)	180
Slug Injection (Test #6)	Bouwer and Rice (1976)	1100(b)	82
Best Estimate		330	24

Transmissivity was calculated by multiplying equivalent hydraulic (a)

conductivity by the thickness of the test interval (i.e., 16.1 ft). Analytical results from the slug injection tests are considered to be overestimates of the test interval.

Analysis of the slug injection data using the Bouwer and Rice method yielded values of hydraulic conductivity of 180 and 82 ft/d for tests #4 and #6, respectively. These values of hydraulic conductivity multiplied by the thickness of the interval tested of 13.8 ft yielded values of transmissivity of approximately 2500 and 1100 ft²/d, respectively, for the upper part of the aquifer.

Analysis of the slug withdrawal data using the Bouwer and Rice method yielded hydraulic conductivity values of approximately 21 and 24 ft/d for test #5 and #7, respectively. These values of hydraulic conductivity multiplied by the thickness of the test interval of 13.8 ft yielded values of transmissivity of approximately 290 and 330 ft²/d, respectively, for the upper part of the aquifer.

The best estimates for transmissivity and equivalent hydraulic conductivity were determined to be those from slug withdrawal 'test #7 because the value of Y_0 for this test was closest to the theoretical displacement calculated using the dimensions of the 8-ft slugging rod. Also, the analytical results from the slug injection tests are considered to be overestimates of the test interval because the fall of the water level occurred through the vadose zone above the water table. The rate of fall of the water level in the well caused by inflow into the vadose zone is greater than the fall of the water level in the water level in the well caused by inflow into the saturated zone. The best estimate for transmissivity was determined to be 330 ft 2 /d, and the best estimate for equivalent hydraulic conductivity was determined to be 24 ft/d.

WELL 299-E27-12

This well is located on the western corner of the C Tank Farm in the 200-East Area (see Figure 1.3). Refer to Appendix D for the as-built diagram, field records, data-logger output, and graphs of the data.

Stratigraphy

The screened interval is presumed to lie within the undifferentiated sediments of the Hanford/Ringold Formation. The lithology of this interval is a sandy gravel and a muddy sandy gravel. The full saturated thickness of the sediments above the basalt at this location is inferred to be roughly 50 ft, based on available geologic information in Jensen et al. (1989). The bottom of the aquifer is presumed to be the top of the Elephant Mountain Basalt.

Test Performance and Data Analysis

Two slug injection tests and two slug withdrawal tests were conducted on October 19, 1989. An additional slug withdrawal test was conducted on October 20, 1989. The depth of the screened interval was reported to be approximately 251 to 271 ft below land surface. Before conducting the tests, the depth to the "static" water level was determined to be approximately 253 ft below land surface. Therefore, the tests were conducted within the screened interval.

Arithmetic plots of the data for the slug injection tests (tests #4 and #6) are shown in Appendix D. The water level appears to have oscillated

about the equilibrium water level before attenuating to its pretest level. An exponential fall in the water level was not observed. The oscillations attenuated within 3 sec for test #4 and within 4 sec for test #6.

Data from the slug injection tests are not usable for analysis because the slugging rod was not lowered into the water quickly enough to allow for an exponential fall in the water level during the early part of the test. The assumption that requires an instantaneous water-level change was grossly violated.

The water-level responsed extremely quickly in other slug tests conducted at this well and in tests conducted at other wells in the 200-East Area. The exponential fall in the water level during the slug injection tests, as "seen" by the aquifer, possibly dissipated before the water-level fluctuations, an artifact of injecting the slugging rod, attenuated.

Arithmetic plots of the data for the slug withdrawal tests (tests #0, #5, and #7) are shown in Appendix D. The response of the water level in each of these tests was similar. The data indicate that the observed initial water-level change is much less than the theoretical value of 1.90 ft, calculated using the dimensions of the 6-ft slugging rod. The assumption that requires an instantaneous water-level change is, therefore, grossly violated. The data for these tests cannot be analyzed.

WELL 299-E27-13

This well is located on the southwestern side of the C Tank Farm in the 200-East Area (see Figure 1.3). Refer to Appendix E for the as-built diagram, field records, data-logger output, and graphs of the data.

Stratigraphy

The screened interval is presumed to lie within the undifferentiated sediments of the Hanford/Ringold Formation. The lithology of this interval is a gravel and a sandy gravel. The full saturated thickness of the sediments above the basalt at this location is inferred to be roughly 50 ft, based on available geologic information in Jensen et al. (1989). The bottom of the aquifer is presumed to be the top of the Elephant Mountain Basalt.

Test Performance and Data Analysis

Two slug withdrawal tests were performed with the 6-ft slugging rod on October 20, 1989. The depth of the screened interval was reported to be approximately 254 to 275 ft below land surface. Before conducting the tests, the depth to the "static" water level was determined to be approximately 261 ft below land surface. Therefore, the tests were conducted within the screened interval.

Withdrawal of the slugging rod yielded observed initial water-level changes of 0.53 ft for test #1 and 1.07 ft for test #2, both occurring at an elapsed time of 0.4 sec (0.0066 min) after initiation of the data logger. The water level returned to the pretest level within 5 and 11 sec, respectively.

The data indicate that the initial water-level change is much less than the theoretical water-level displacement of 1.90 ft expected, calculated using the dimensions of the 6-ft slugging rod. This difference indicates that formation water was entering the well during withdrawal of the slugging rod. Although this condition violates the assumption requiring an instantaneous water-level change, it does not necessarily invalidate the results. However, the analytical results may be less reliable because of the error in determining the parameters (i.e., Y_0 , Y_t ,

The slug withdrawal data could not be analyzed with the Cooper et al. method because the values of $\rm H_0$ for the tests could not be determined accurately. However, the slug withdrawal data for tests #1 and #2 were analyzed with the Bouwer and Rice method. Semilogarithmic plots of the water-level change versus time since the slugging rod was withdrawn are shown in Appendix E. For the analysis, a correction was applied to the elapsed times to eliminate effects of the slugging rod as it was being withdrawn. Four tenths of a second was subtracted from all the elapsed times for each of the tests so that t_0 = 0 at t_e = 0.4 sec. Initiation of the data logger must have occurred a fraction of a second later than the start of withdrawal of the slugging rod because the data indicate that the equilibrium (reference) water

level was "missed" at the beginning of the test. Because t_0 is not exactly known, t_0 is assumed to be the time, $t_0 = 0.4$ sec, when the maximum observed water-level change occurred.

The data on the graphs were approximated with linear best-fit straight lines. For test #1, a straight-line approximation of the data for time less than approximately 1 sec was projected to the Y_t intercept at time $t_0 = 0$. For test #2, a straight-line approximation of the data for t < 6.6 sec was projected to the Y_t intercept at time $t_0 = 0$. These projected values, 0.56 ft for test #1 and 1.07 ft for test #2, were used for Y_0 in the Bouwer and Rice equation.

A summary of the parameters substituted into the Bouwer and Rice equation is presented in Appendix E.

Summary of Test Results

Values of transmissivity and equivalent hydraulic conductivity from the analytical methods applied for each of the slug tests are summarized in Table 4.4. The hydraulic properties were determined solely for the entire test interval. The best estimates of these hydraulic properties are determined to be most representative of the test interval.

Analysis of the slug withdrawal data using the Bouwer and Rice method yielded values of hydraulic conductivity of 410 ft/d for test #1 and 180 ft/d for test #2. These values of hydraulic conductivity multiplied by the thickness of the test interval of 13.9 ft yielded values of transmissivity of 5700 and 2500 ft 2 /d, respectively, for the upper part of the aquifer.

The values from test #2 are considered to be the best estimates of transmissivity and equivalent hydraulic conductivity of the test interval because the value of Y_0 used in the calculations is closer to the theoretical value, calculated using the dimensions of the slugging rod.

WELL 299-E27-14

This well is located on the southeastern side of C the Tank Farm in the 200-East Area (see Figure 1.3). Refer to Appendix F for the as-built diagram, field records, data-logger output, and graphs of the data.

TABLE 4.4. Summary of Hydraulic Property Values Determined for Tests Performed in Well 299-E27-13

Test Method	Analysis Method	Transmissivity,(a) ft²/d	Equivalent Hydraulic Conductivity, ft/d
Slug Withdrawal (Test #1)	Bouwer and Rice (1976)	5700	410
Slug Withdrawal (Test #2)	Bouwer and Rice (1976)	2500	180
Best Estimate		2500	180

⁽a) Transmissivity was calculated by multiplying equivalent hydraulic conductivity by the thickness of the test interval (i.e., 13.9 ft).

Stratigraphy

The screened interval is presumed to lie within the undifferentiated sediments of the Hanford/Ringold Formation. The lithology of this interval is a sand, gravelly sand, and sandy gravel. The full saturated thickness of the sediments above the basalt at this location is inferred to be roughly 50 ft, based on available geologic information in Jensen et al. (1989). The bottom of the aquifer is presumed to be the top of the Elephant Mountain Basalt.

Test Performance and Data Analysis

Three slug withdrawal tests (tests #3, #4, and #5) were performed on October 20, 1989. The depth of the screened interval was reported to be approximately 246 to 267 ft below land surface. Before conducting the tests, the depth to the "static" water level was determined to be approximately 250 ft below land surface. Therefore, the tests were conducted within the screened interval.

The water level oscillated at the beginning of each of the tests before it recovered exponentially with time. For test #3, the data show that the data logger recorded a value of -4.69 ft at an elapsed time of 0.4 sec (0.0066 min) after initiation of the data logger. This change in water level

is much greater than the theoretical water-level displacement of 1.9 ft expected with the 6-ft slugging rod in a 4-in.-dia well. This difference indicates that the fluctuations in water level at the beginning of the tests may be the result of erroneous water-level measurements caused by a fluid column of air and water created at the instant the slugging rod was withdrawn. These fluctuations may also be influenced by induced inertial effects.

The data indicate that the observed initial water-level change for test #3 (just before the water level began to rise exponentially) was 1.54 ft. The water level returned to its pretest level within 11 sec. The observed initial water-level change for test #5 (just before the water level began to rise exponentially) was 1.08 ft. The water level returned to its pretest level within 10 sec.

For test #4, the observed initial water-level change was over 4 ft before rising exponentially. The water level rose to and leveled off at 2.66 ft below the equilibrium water level 17 sec into the test and then gradually rose to its pretest level within 7 min. This observed initial water-level change of over 4 ft is much greater than the theoretical water-level displacement of 1.9 ft expected with the 6-ft slugging rod. The water-level response recorded by the data logger after 17 sec does not resemble the responses recorded for tests #3 and #5. The data for test #4 are suspect and may be the result of upward movement of the transducer during withdrawal of the slugging rod. This upward movement would cause the water-level changes to appear greater than the actual water-level changes. To correct for this movement, 2.66 ft was added to the recorded values. Only those data for t < 17 sec were_analyzed.

The slug withdrawal data could not be analyzed with the Cooper et al. method because the values of H_0 for the tests could not be determined accurately. However, the slug withdrawal data for tests #3, #4, and #5 were analyzed using the Bouwer and Rice method. Semilogarithmic plots of the water-level change versus time since the slugging rod was withdrawn are shown in Appendix F. For test #3 and #4, a correction was applied to the elapsed times because of the time difference between initiation of the data logger

and withdrawal of the slugging rod. The data indicate that the slugging rod was withdrawn between 0.2 sec (0.0033 min) and 0.4 sec (0.0066 min) elapsed time, t_e , for test #3 and between 0.6 sec (0.0099 min) and 0.8 sec (0.0133 min) elapsed time for test #4. The time the slugging rod was withdrawn, t_0 , is chosen as a midpoint between these elapsed times (i.e., t_0 = 0 at t_e = 0.3 sec for test #3 and t_0 = 0 at t_e = 0.7 sec for test #4). Therefore, 0.3 and 0.7 sec were subtracted from all the elapsed times for tests #3 and #4, respectively.

For test #5, the data indicate that the slugging rod was withdrawn before the data logger was initiated because the equilibrium water level was "missed." The elapsed times for test #5 were shifted 1.2 sec in the positive direction so that the exponential portion of the data for test #5 matches the exponential portion of the data for test #3. The correction of 0.3 sec applied to test #3 to account for the time difference between initiation of the data logger and the withdrawal of the slugging rod was also applied to the data for test #5, yielding a net positive shift of 0.9 sec for test #5. These corrections allow some consistency between the analyses for each test.

The times, t_0 , for tests #3 and #4 are known because the data logger was initiated before the slugging rod was withdrawn (i.e, the data logger recorded the equilibrium water level). Therefore, a linear best-fit straight line through the data can be projected to the Y_t intercept at $t_0 = 0$. The value at the intercept, Y_0 , was determined to be 2.86 ft for test #3 and 3.42 ft for test #4. For test #5, Y_0 was determined to be 3.28 ft. These values were used for the calculations in the Bouwer and Rice equation. The data for which the straight lines were fit were 2.7 sec < t < 6.7 sec for test #3, 3.3 sec < t < 8.3 sec for test #4, and t < 9 sec for test #5.

A summary of the parameters substituted into the Bouwer and Rice equation for each test is presented in Appendix F.

Summary of Test Results

A summary of slug test results for each of the tests is presented in Table 4.5. The hydraulic properties are determined solely for the entire test interval. The best estimates of these hydraulic properties are determined to be most representative of the test interval.

TABLE 4.5. Summary of Hydraulic Property Values Determined for Tests Performed in Well 299-E27-14

Test Method	Analysis Method	Transmissivity,(a) ft ² /d	Equivalent Hydraulic Conductivity, ft/d
Slug Withdrawal (Test #3)	Bouwer and Rice (1976)	2600	160
Slug Withdrawal (Test #4)	Bouwer and Rice (1976)	2400	150
Slug Withdrawal (Test #5)	Bouwer and Rice (1976)	2900	180
Best Estimate		2600	<u>160</u>

⁽a) Transmissivity was calculated by multiplying equivalent hydraulic conductivity by the thickness of the test interval (i.e., 16.0 ft).

Analyses of the slug withdrawal data using the Bouwer and Rice method yielded values of hydraulic conductivity of 160, 150, and 180 ft/d for tests #3, #4, and #5, respectively. These values of hydraulic conductivity multiplied by the thickness of the test interval of 16.0 ft yielded values of transmissivity of 2600, 2400, and 2900 ft 2 /d, respectively, for the upper part of the aquifer.

The best estimates of transmissivity and equivalent hydraulic conductivity of the test interval are those values determined from test #3 because of possible errors associated with shifting the data for tests #4 and #5. The best estimate for transmissivity is $2600 \, \text{ft}^2/\text{d}$, and the best estimate for equivalent hydraulic conductivity is $160 \, \text{ft/d}$.

WELL 299-E27-15

This well is located on the northwestern side of the C Tank Farm in the 200-East Area (see Figure 1.3). Refer to Appendix G for the field records, raw data, graphs of the data, and as-built diagrams.

Stratigraphy

The screened interval is presumed to lie within the undifferentiated sediments of the Hanford/Ringold Formation. The lithology of this interval is a muddy sandy gravel. The full saturated thickness of the sediments above the basalt at this location is inferred to be roughly 50 ft, based on available geologic information in Jensen et al. (1989). The bottom of the aquifer is presumed to be the top of the Elephant Mountain Basalt.

Test Performance and Data Analysis

Two slug injection tests and two slug withdrawal tests were conducted on October 19, 1989. The depth of the screened interval was reported to be approximately 241 to 261 ft below land surface. Before conducting the tests, the depth to the "static" water level was determined to be approximately 245 ft below land surface. Therefore, the tests were conducted within the screened interval.

Data from the slug injection tests (tests #0 and #2) are not usable for analysis because the slugging rod was not lowered into the water quickly enough. The assumption requiring an instantaneous initial water-level change was grossly violated.

Withdrawal of the slugging rod during test #1 yielded an observed initial water-level change of approximately 1 ft at an elapsed time of 0.6 sec after the data logger was initiated. After that time, the water level returned to its pretest level within 6.4 sec.

The data for test #1 indicate that the initial water-level change is much less than the theoretical water-level displacement of 1.90 ft expected, calculated using the dimensions of the 6-ft slugging rod. This difference indicates that formation water was entering the well during withdrawal of the slugging rod. Although this condition violates the assumption requiring an instantaneous water-level change, it does not necessarily invalidate the results. However, the analytical results may be less reliable because of the error in determining the parameters (i.e., Y_0 , Y_t , t, H_0) used in the analytical equations.

The slug withdrawal data could not be analyzed with the Cooper et al. method because the value of $\rm H_0$ for the test could not be accurately determined. However, the data for test #1 were analyzed with the Bouwer and Rice method. A semilogarithmic plot of water-level change versus time since the slugging rod was withdrawn is shown in Appendix G. A correction was applied to the elapsed times to eliminate the effects from withdrawal of the slugging rod at the beginning of the test. An elapsed time of 0.0099 min (0.6 sec) was subtracted from all the elapsed times so that $\rm t_0$ = 0 at $\rm t_e$ = 0.6 sec. Initiation of the data logger occurred slightly later than the start of withdrawal of the slugging rod because the data indicate that the equilibrium (reference) water level was "missed" at the beginning of the test. Because $\rm t_0$ is not exactly known, $\rm t_0$ is assumed to be the elapsed time, $\rm t_e$ = 0.6 sec, when the maximum observed water-level change occurred.

The data on the graph were approximated with a linear best-fit straight line. A straight-line approximation of the data for time less than 0.0234 min (1.4 sec) was projected to the Y_t intercept at time $t_0 = 0$. This projected value, 0.96 ft, was used for Y_0 in the Bouwer and Rice equation.

A summary of the parameters substituted into the Bouwer and Rice equation is presented in Appendix G.

Summary of Test Results

A summary of the slug test results is presented in Table 4.6. The hydraulic properties are determined solely for the entire test interval. The best estimates of these hydraulic properties are determined to be most representative of the test interval.

Analysis of the slug withdrawal data using the Bouwer and Rice method yielded a hydraulic conductivity value of approximately 390 ft/d for test #1. This value of hydraulic conductivity multiplied by the thickness of the test interval of 14.3 ft yielded a transmissivity of approximately 5600 ft 2 /d for the upper part of the aquifer.

Withdrawal of the slugging rod during test #3 occurred late with respect to initiation of the data logger, yielding data during the data collection sequence of a 1-sec time interval. This rate of data collection is

TABLE 4.6. Summary of Hydraulic Property Values Determined for Tests Performed in Well 299-E27-15

Test Method	Analysis Method	Transmissivity, (a) ft²/d	Equivalent Hydraulic Conductivity, ft/d
Slug Withdrawal (Test #1)	Bouwer and Rice (1976)	5600	390
Slug Withdrawal (Test #3)	Insufficient Data		
Slug Injection (Tests #0 and #2)	Data Not Analyzable		
Best Estimate		5600	390

⁽a) Transmissivity was calculated by multiplying equivalent hydraulic conductivity by the thickness of the test interval (i.e., 14.3 ft).

insufficient for analysis because of a lack of data collected during the early portion of the test after the slugging rod was withdrawn.

WELL 299-E33-33

This well is located east of the B Tank Farms in the 200-East Area (see Figure 1.2). Refer to Appendix H for the as-built diagram, field records, data-logger output, and graphs of the data.

Stratigraphy

The screened interval is presumed to lie within the Hanford formation. The lithology of this interval is a muddy sandy gravel. The full saturated thickness of the sediments above the basalt at this location is 20 ft. The bottom of the aquifer, which is the top of the underlying Elephant Mountain basalt, was encountered at this well.

Test Performance and Data Analysis

Two slug injection tests and one slug withdrawal test were conducted on September 27, 1989. The depth of the screened interval was reported to be approximately 227 to 248 ft below land surface. Before conducting the tests,

the depth to the "static" water level was determined to be approximately 232 ft below land surface. Therefore, the tests were conducted within the screened interval.

Data from the slug injection tests (tests #0 and #1) are not usable for analysis because the slugging rod was not lowered into the water quickly enough. The assumption requiring an instantaneous initial water-level change was grossly violated.

The withdrawal test (test #2) yielded an observed initial water-level change of approximately 1.2 ft at an elapsed time of 0.8 sec after the data logger was initiated. The water level returned approximately to its pretest level in less than 5 sec. The water level did not return exactly to its pretest level possibly because the transducer moved during the test.

The observed initial water-level change is much less than the theoretical water-level displacement of 4.17 ft expected, calculated using the dimensions of the 8-ft slugging rod. In addition, the slugging rod was still being withdrawn after the data logger was initiated, as indicated by the decline in water level between 0 and 0.8 sec elapsed time. This difference indicates that formation water was entering the well during withdrawal of the slugging rod. Although this condition violates the assumption requiring an instantaneous water-level change, it does not necessarily invalidate the results. However, the analytical results may be less reliable because of the error in determining the parameters (i.e., Y₀, Y_t, t, H₀) used in the analytical equations.

The slug withdrawal data could not be analyzed with the Cooper et al. method because the value of $\rm H_0$ for the test could not be determined accurately. However, the slug withdrawal data for test #2 were analyzed with the Bouwer and Rice method. A semilogarithmic plot of the water-level change versus time since the slugging rod was removed is shown in Appendix H. A correction was applied to the elapsed times to eliminate the effects from withdrawal of the slugging rod at the beginning of the test. An elapsed time of 0.0133 min (0.8 sec) was subtracted from all the elapsed times so that $t_0 = 0$ at $t_0 = 0.8$ sec. Initiation of the data logger must have occurred slightly later than the start of withdrawal of the slugging rod because the

data indicate that the equilibrium (reference) water level was "missed" at the beginning of the test. Because t_0 is not exactly known, t_0 is assumed to be the elapsed time, t_e = 0.8 sec, when the maximum observed water-level change occurred.

The data on the graph were approximated with a linear best-fit straight line. A straight-line approximation of the data for time less than approximately 0.02 min (1.2 sec) was projected to the Y_t intercept at time $t_0 = 0$. This projected value, 1.20 ft, was used for Y_0 in the Bouwer and Rice equation. The observed value for Y_0 was 1.19 ft.

Summary of Test Results

A summary of slug test results is presented in Table 4.7. The hydraulic properties are determined solely for the entire test interval. The best estimates of these hydraulic properties are determined to be most representative of the test interval.

Analysis of the slug withdrawal data for test #2 using the Bouwer and Rice method yielded a hydraulic conductivity value of approximately 320 ft/d.

TABLE 4.7. Summary of Hydraulic Property Values Determined for Tests Performed in Well 299-E33-33

Test Method	Analysis Method	Transmissivity, (a) ft ² /d	Equivalent Hydraulic Conductivity, ft/d
Slug Withdrawal (Test #2)	Bouwer and Rice (1976)	5400	320
Slug Injection (Tests #0 and #1)	Data Not Analyzable	A CALL THE ST	
Best Estimate		<u>5400</u>	320

⁽a) Transmissivity was calculated by multiplying equivalent hydraulic conductivity by the thickness of the test interval (i.e., 17.0 ft).

The value of hydraulic conductivity multiplied by the thickness of the test interval of 17.0 ft yielded a transmissivity of approximately 5400 $\rm ft^2/d$ for the upper part of the aquifer.

These values are considered to be the best (and only) estimates of transmissivity and equivalent hydraulic conductivity of the test interval.

WELL 299-W10-15

This well is located on the north side of the T Tank Farm in the 200-West Area (see Figure 1.4). Refer to Appendix I for the as-built diagram, field records, data-logger output, and graphs of the data.

Stratigraphy

The screened interval is presumed to lie within the middle unit of the Ringold Formation. The lithology of this interval is a sandy gravel. The full saturated thickness of the sediments above the basalt at this location is inferred to be 275 ft, based on available geologic information in Jensen et al. (1989). The bottom of the aquifer is presumed to be either the top of one of the fine-grained units of the Ringold Formation or the top of the underlying Elephant Mountain Basalt.

Test Performance and Data Analysis

Two slug withdrawal tests were performed on November 3, 1989, both producing similar results. The depth of the screened interval was reported to be approximately 201 to 222 ft below land surface. Before conducting the tests, the depth to the "static" water level was determined to be approximately 206 ft below land surface. Therefore, the tests were conducted within the screened interval.

The water level oscillated at the beginning of each of the tests before it recovered exponentially with time. The data show that the data logger recorded values of -7.52 ft at an elapsed time of 0.4 sec (0.0033 min) after initiation of the data logger for test #2 and -15.19 ft at an elapsed time of 0.6 sec (0.0099 min) after initiation of the data logger for test #3. These changes in water level are much greater than the theoretical water-level displacement of 1.9 ft expected with the 6-ft slugging rod in a 4-in.-dia well.

These recorded values indicate that the fluctuations in water level may be the result of erroneous water-level measurements caused by a fluid column of air and water created at the instant the slugging rod was withdrawn. These fluctuations may also be influenced by induced inertial effects.

An arithmetic plot of the data indicates that the observed initial water-level change was 1.97 ft for test #2 and 1.93 ft for test #3. These initial values are close to the theoretical water-level displacement of 1.90 ft expected, calculated using the dimensions of the slugging rod. The water level fully returned to its pretest level within 58 sec for test #2 and 53 sec for test #3.

A correction was applied to the elapsed times because of the time difference between initiation of the data logger and withdrawal of the slugging rod. For test #2, the data indicate that the slugging rod was withdrawn between 0.2 sec (0.0033 min) and 0.4 sec (0.0066 min) elapsed time, t_e . The time the slugging rod was withdrawn, t_o , is chosen as a midpoint between these elapsed times (i.e., t_o = 0 at t_e = 0.3 sec). For test #3, the slugging rod was withdrawn between 0.4 sec (0.0066 min) and 0.6 sec (0.0099 min) elapsed time. The t_o value for test #3 is 0.5 sec. Therefore, 0.3 and 0.5 sec were subtracted from all the elapsed times for tests #2 and #3, respectively, for analysis.

Hydraulic property values could not be determined from the Cooper et al. analytical method. The portion of the data considered to be "representative" of the aquifer materials is non-unique and can be analyzed using several type curves. However, the data for tests #2 and #3 were analyzed with the Bouwer and Rice method. Semilogarithmic plots of the water-level change versus time (i.e., corrected time) since the slugging rod was removed are shown in Appendix I. The data on the graphs were approximated with linear best-fit straight lines. The latter part of the data (i.e., t > 30 sec for tests #2 and #3) indicate a curvi-linear relationship and therefore were not used to approximate the straight lines. The approximated best-fit lines were projected to the Y_t intercept at time t_0 = 0. These projected values at the intercept, 2.15 ft for test #2 and 2.13 ft for test #3, were used for Y_0 in the Bouwer and Rice equation.

A summary of the parameters substituted into the Bouwer and Rice equation is presented in Appendix I.

Summary of Test Results

Values of transmissivity and equivalent hydraulic conductivity from the analytical methods applied for each of the slug tests are summarized in Table 4.8. The hydraulic properties are determined solely for the entire test interval. The best estimates of these hydraulic properties are determined to be most representative of the test interval.

Hydraulic conductivity values of 32 and 34 ft/d were calculated for tests #2 and #3, respectively, using the Bouwer and Rice equation. These values of hydraulic conductivity multiplied by the thickness of the test interval of 15.8 ft yielded values of transmissivity of approximately 510 and $540 \text{ ft}^2/\text{d}$, respectively, for the upper part of the aquifer.

TABLE 4.8. Summary of Hydraulic Property Values Determined for Tests Performed in Well 299-W10-15

Test Method	Analysis Method	Transmissivity, (a) ft ² /d	Equivalent Hydraulic Conductivity, ft/d
Slug Withdrawal (Test #2)	Bouwer and Rice (1976)	510	32
Slug Withdrawal (Test #3)	Bouwer and Rice (1976)	540	34
Slug Withdrawal (Test #2)	Cooper et al. (1967)	Non-unique S	Solution
Slug Withdrawal * (Test #3)	Cooper et al. (1967)	Non-unique S	Solution
Best Estimate	En and the second	<u>530</u>	<u>33</u>

⁽a) Transmissivity was calculated by multiplying equivalent hydraulic conductivity by the thickness of the test interval (i.e., 15.8 ft).

The best estimate of transmissivity, an average value, was determined to be $530 \text{ ft}^2/\text{d}$. The best estimate of equivalent hydraulic conductivity, an average value, was determined to be 33 ft/d.

WELL 299-W10-16

This well is located on the south side of the T Tank Farm in the 200-West Area (see Figure 1.4). Refer to Appendix J for the as-built diagram, field records, data-logger output, and graphs of the data.

Stratigraphy

The screened interval is presumed to lie within the middle unit of the Ringold Formation. The lithology of this interval is a sandy gravel. The full saturated thickness of the sediments above the basalt at this location is inferred to be 275 ft, based on available geologic information in Jensen et al. (1989). The bottom of the aquifer is presumed to be either the top of one of the fine-grained units of the Ringold Formation or the top of the underlying Elephant Mountain Basalt.

Test Performance and Data Analysis

One slug withdrawal and one slug injection test were performed on October 30, 1989. The depth of the screened interval was reported to be approximately 198 to 219 ft below land surface. Before conducting the tests, the depth to the "static" water level was determined to be approximately 203 ft below land surface. Therefore, the tests were conducted within the screened interval.

The water level oscillated at the beginning of each of the tests before it recovered exponentially with time. The data show that the data logger recorded a value of -8.46 ft at an elapsed time of 0.8 sec (0.0133 min) after initiation of the data logger for the withdrawal test (test #3). This change in water level is greater than the theoretical water-level displacement of 1.9 ft expected with the 6-ft slugging rod in a 4-in.-dia well. This difference indicates that the fluctuations in water level may be the result of erroneous water-level measurements caused by a fluid column of air and water

created at the instant the slugging rod was withdrawn. These fluctuations may also be influenced by induced inertial effects.

An arithmetic plot of the data for withdrawal test #3 indicates that the observed initial water-level change was 1.65 ft. This value is less than the theoretical water-level displacement of 1.90 ft expected, calculated using the dimensions of the 6-ft slugging rod. This difference indicates that formation water was entering the well during withdrawal of the slugging rod. Although this condition violates the assumption requiring an instantaneous water-level change, it does not necessarily invalidate the results. However, the analytical results may be less reliable because of the error in determining the parameters (i.e., Y_0 , Y_t , t, H_0) used in the analytical equations. The water level fully recovered to its pretest level within 82 sec.

For the slug withdrawal test, a correction was applied to the recorded elapsed times because of the time difference between initiation of the data logger and withdrawal of the slugging rod. For this test, the data indicate that the slugging rod was withdrawn between 0.6 sec (0.0099 min) and 0.8 sec (0.0133 min) elapsed time. The time the slugging rod was withdrawn, t_0 , is chosen as a midpoint between these elapsed times (i.e., t_0 = 0 at t_e = 0.7 sec). Therefore, 0.7 sec was subtracted from all the elapsed time values for test #3 for analysis.

The data for test #3 were analyzed with the Bouwer and Rice methods. A semilogarithmic plot of the water-level change versus time (i.e., corrected time) since the slugging rod was removed is shown in Appendix J. The early portion of the data (t < 25 sec) on the graph was approximated with a linear best-fit straight line. For t > 25 sec, the data indicate a curvi-linear relationship and therefore were not used to approximate the straight line. The approximated best-fit line was projected to the Y_t intercept at time $t_0 = 0$. This projected value at the intercept, 2.05 ft, was used for Y_0 in the Bouwer and Rice equation.

The Bouwer and Rice method yielded an equivalent hydraulic conductivity of approximately 33 ft/d for test #3. This value of equivalent hydraulic conductivity multiplied by the thickness of the test interval of 16.4 ft

yielded a value of transmissivity of $540 \text{ ft}^2/\text{d}$ for the upper part of the aquifer. A summary of the parameters substituted into the Bouwer and Rice equation is presented in Appendix J.

For slug injection test #2, water-level fluctuations occurred at the beginning of the test. The data logger recorded values greater than the theoretical water-level displacement of 1.9 ft expected at the beginning of the test. This difference indicates that these fluctuations may be the result of erroneous water-level measurements caused by a fluid column of air and water created at the instant the slugging rod was injected. These fluctuations may also be influenced by induced inertial effects.

An arithmetic plot of the data indicates that the observed initial water-level change (just before recovering exponentially) was 0.85 ft for injection test #2. This value is less than the theoretical water-level displacement of 1.90 ft expected, calculated using the dimensions of the 6-ft slugging rod. This difference indicates that borehole water flowed through the screen into the formation during injection of the slugging rod. Although this condition violates the assumption requiring an instantaneous water-level change, it does not necessarily invalidate the results. However, the analytical results may be less reliable because of the error in determining the parameters (i.e., Y_0 , Y_t ,

The water level recovered to its pretest level within approximately 45 sec. However, the water level did not recover exactly to its pretest level, possibly because the transducer moved during injection of the slugging rod.

A correction was applied to the slug injection test data because of the water-level fluctuations that occurred at the beginning of the test. An elapsed time of 0.05 min (3 sec) was subtracted from all the elapsed times so that $t_0 = 0$ at $t_0 = 3$ sec. Initiation of the data logger must have occurred slightly later than injection of the slugging rod because the data indicate that the equilibrium (reference) water level was "missed" at the beginning of the test. Because t_0 is not exactly known, t_0 is assumed to be the elapsed time, $t_0 = 3$ sec, when the maximum observed water-level change occurred just before the water level recovered exponentially.

The data for test #2 were analyzed with the Bouwer and Rice method. A semilogarithmic plot of the water-level change versus time (i.e., corrected time) since the slugging rod was injected is shown in Appendix J. The early portion of the data (t < 9 sec) on the graph was approximated with a linear best-fit straight line. For t > 9 sec, the data indicate a curvi-linear relationship and therefore were not used to approximate the straight line. The approximated best-fit line was projected to the Y_t intercept at time $t_0 = 0$. This projected value at the intercept, 0.91 ft, was used for Y_0 in the Bouwer and Rice equation.

A summary of the parameters substituted into the Bouwer and Rice equation is presented in Appendix J.

Summary of Test Results

Values of transmissivity and equivalent hydraulic conductivity from the analytical methods applied for each of the slug tests are summarized in Table 4.9. The hydraulic properties are determined solely for the entire test interval. The best estimates of these hydraulic properties are determined to be most representative of the test interval.

The Bouwer and Rice method yielded an equivalent hydraulic conductivity of approximately 41 ft/d for test #2. This value of equivalent hydraulic conductivity multiplied by the thickness of the test interval of 16.4 ft yielded a value of transmissivity of 670 ft 2 /d for the upper part of the aquifer.

The best estimate of transmissivity was determined to be $540 \text{ ft}^2/\text{d}$, the value calculated from the slug withdrawal test (test #3). The results from this test are considered to yield the best estimates of the hydraulic properties because the observed initial water-level change was closer to the theoretical water-level displacement of 1.9 ft expected with the 6-ft slugging rod. Smaller differences between the observed and theoretical water-level displacement reduced the error in the calculations.

In addition, the analytical results from the slug injection test are considered to be overestimates of the test interval because the fall of the water level occurred through the vadose zone above the water table. The

TABLE 4.9. Summary of Hydraulic Property Values Determined for Tests Performed in Well 299-W10-16

Test Method	Analysis Method	Transmissivity,(a) ft ² /d	Equivalent Hydraulic Conductivity, ft/d
Slug Injection (Test #2)	Bouwer and Rice (1976)	670(b)	41
Slug Withdrawal (Test #3)	Bouwer and Rice (1976)	540	33
Slug Injection (Test #2)	Cooper et al. (1967)	Non-unique	Solution
Slug Withdrawal (Test #3)	Cooper et al. (1967)	Non-unique	Solution
Best Estimate		<u>540</u>	<u>33</u>

⁽a) Transmissivity was calculated by multiplying equivalent hydraulic conductivity by the thickness of the test interval (i.e., 16.4 ft).

(b) Analytical results from the slug injection tests are considered to be overestimates of the test interval.

rate of fall of the water level in the well caused by inflow into the vadose zone is greater than the fall of the water level in the well caused by inflow into the saturated zone.

. The best estimate of equivalent hydraulic conductivity was determined to be 33 ft/d.

Hydraulic property values could not be determined from the slug withdrawal test (#3) using the Cooper et al. analytical method. The portion of the data considered to be "representative" of the aquifer materials is non-unique and can be analyzed using several type curves. The slug injection test (#2) data could not be analyzed with the Cooper et al. method because the value of H_0 for the test could not be determined accurately.

5.0 REFERENCES

Bouwer, H. 1989. "The Bouwer and Rice Slug Test - An Update." Ground Water 27(3):304-309.

Bouwer, H., and R. C. Rice. 1976. "A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely or Partially Penetrating Wells." Water Resources Research 12(3):423-428.

Cooper, H. H., Jr., J. D. Bredehoeft, and I. S. Papadopulos. 1967. "Response of a Finite-Diameter Well to an Instantaneous Charge of Water." <u>Water Resources Research</u> 3(1):263-269.

Jensen, E. J., S. P. Airhart, M. A. Chamness, T. J. Gilmore, D. R. Newcomer, and K. R. Oster. 1989. 40 CFR 265 Interim-Status Ground-Water Monitoring Plan for the Single-Shell Tanks. WHC-SD-EN-AP-012, prepared by Pacific Northwest Laboratory for Westinghouse Hanford Company, Richland, Washington.

Papadopulos, S. S., J. D. Bredehoeft, and H. H. Cooper, Jr. 1973. "On the Analysis of 'Slug Test' Data." Water Resources Research 9(4):1087-1089.

PNL. 1989. <u>Procedures for Ground-Water Investigations</u>. PNL-6894, Pacific Northwest Laboratory, Richland, Washington.

Roberson, J. A., and C. T. Crowe. 1985. <u>Engineering Fluid Mechanics</u>. 3rd ed., Houghton Mifflin Company, Boston, Massachusetts.

Walter, G. R., and G. M. Thompson. 1982. "A Repeated Pulse Technique for Determining the Hydraulic Properties of Tight Formations." <u>Ground Water</u> 20(2):186-193.

APPENDIX A

TEST DATA AND ANALYSIS FOR WELL 299-E24-19

APPENDIX A

TEST DATA AND ANALYSIS FOR WELL 299-E24-19

This appendix contains the as-built diagram for the well construction, Slug Test Record Form, Aquifer Test Data Sheets, Equipment Record Forms, Electronic Data Control Forms, and accompanying data logs and plots for well 299-E24-19.

Battelle
Pacific Northwest Laboratories

AS-BUILT DIAGRAM

Well Number	299 · = 24 - 19	Geologist	GOOMIN, AIRHART,	Page 1 of 3
			LUBRECHT, KENNEDY	
Reviewed by	71.4 Mc Ela.		Date 14-8-99	

Construction Data		Depth	Geo	eologic/Hydrologic Data	
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description	
151"10" OF 10" CARCON	XX XX	5 '	1-9-4	MUDDY SAND	
STEEL CASING		10 '	0	GRAVELLY MUDDY SAND	
	W W	15'	. 0	GRAVELLY SAND	
302'6" OF 8" CARBON -	*	20'		SAND	
STEEL CASING	5-1 1-7	25'	0 0	SLIGHTLY GRAVELLY ST	
	17 17	30'		SANDT GRAVEL	
290.57 of 4" STAINLESS	17 17	35'			
STEEL CASING	子してい	40'			
	17 -7	45'		GRAVELLY SAND	
	1	50'		SANDY GRAVEL	
	17 54	55'	0 0 0	MADDA 2440 @ 24.	
	1	60'		SAND	
	4114	65'		•	
	17 17	70'		GRAVELLY SAND	
	1 1	75'			
	よして	80'		•	
	41 17	85.		•	
	1	90'	•	•	
	17 17	95'		SANDY GRAVEL	
	1	100			
	41 14	105'			
	11/11	110'		GRAVELLY SAND	
	4/ 1/	115'		•	
	ナインナ	120'	•		
	K. I.	125		SAND	

AS-BUILT DIAGRAM

Well Number	299 - 524 - 19	Geologist	GOODEN ANHART	Page of _3
			LUBTECHT, KENNEDY	
Paviawed by	74 resse		Date / 2 - 5 - 84	

Construction Data		1	ologic/Hydrologic Data	
Description	Diagram	Depth in Feet	Diagram Litho.	Lithologic Description
151'10" OF 10" CARSON	137 14	135'	0	SLIGHTLY GRAVELLY SHND
STEEL CASING WITH GRINS		140 '		
H-6	171	145		SANO
	153 33	150'	0	SLIGHTLY GRAVELLY SAN
02'6" OF 8" CARBON	- 1	155		SANO
	- 11			
TEEL CASINE		100		
	- 11	165		
90 . 57 OF 4" STAINLESS	- 1	170		••
STEEL CASING	- 1.	175		
	11:11	180		•
	Y 1	185"		"
		190'		*** ** *** ** ** ** ** ** ** *** ** *** *** *** *** ***
	- 13 13	195'		HE CONTAM, DETECTED 191'- 194'
	- 12			350-400 com @ 195'
	- 1,01	200		M. COMTAM. Derected & 200
	Ki (1 -	205		
	- 11	210		
	- 1	215		•
	11-11	220'		-
	1,, ,)	225'		•
		230'		6
	1111 11	235'		n
	1,63,4	240'		и
		245'		
	111	250	. 0	614444
	- 23 3	255'		SLIGHTLY GRAVELLY SAND
	- 11 11			GRAHLLY SAND
		260'		SAND

-	Battelle	
	Pacific Northwest Laboratories	

AS-BUILT DIAGRAM

Reviewed by 719-mc Sl	4		Date 12-5		
Construction Date	Depth	Geologic/Hydrologic Data			
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description	
STEEL CASING -/ DRIVE SHEE CING' OF M' STAINLESS STEEL CHANNEL-PACK SCALCH CAMPLETION SUMBOLS: CEMENT GROUT BENTONIKE CRUMBLES TX BENTONIKE PELLETS SILICA SAND CASING JOINTS CASING CEMTRALIZ		265' 270' 275' 280' 285' 290' 295' 298' 303'		MUD MUDOY SANDY GRAVEL SAND SAND SAND SAND COMPLETION DEPTH = 300.66	

E
吉
EAS.
The same of

Aquifer Test Data Location 200 East Area. Type of Aquifer Test Sign Training	WHC-SD-EN-TI-147, Rev.	Data f Pumpi	or Well <u>E24-19</u> ing Well <u>—</u> vation Wells <u>—</u>
How Q Measured	Pump C	Off: date	time
Time t = at t' = 0	Water Level Data Vater Level 286-32' keley ToC	Discharge D	Comments
	Conversions Water For Corrections Level s or s	Read- ing Q &	33
		1 1 2/1-	10

Time t = at t' = 0				= 0	Static	Water Level Data Static Water Level 286.32' kel-v ToC				Disch	Discharge		Comments	
Day	Clock Time	t	ť.	vr	Reading	Conversions or Corrections	Water			Read- ing	a	Recorded By	Comments	Comments
192	1003				237	-0.68	296.12				10/	3 = 2	9.3 +2.5 = 301.7 inm	
,												TOC	is 0.9' above around	
	1035				Ke h=	D @ 136	3'	Senie	= 949	0-50		C. 0	Stro # 8	
													V 259198	
										Deta			SN 1KB-701	
											1	DRN		
	1040				Drop	Sluce 15	Ina h		p - i+	wes	Hota,		reduced within 10 sta	
	1.50				Stoppe	d longing	dota	1				DRN		
1						33 3						1		
						ref=0 e	13.67	'	Step	49		18		
	1058				With	Vraw Slu	-	_			fore	Le j	cycle)	
	1109			1		Vogaina do						DEN		
						1								
	_			. 2						- 37				
					Switch	to a differ	ent d	Ita Lin.	11				Datalande IKB-750	
						all Step				d				
	-	_												
					Steo	#0 n:	C = 0	@ 13	.73	Sca	Ve =	7.99 3	ffset = 0.0	
	1118				Dro	o Slua	m+	= 0 0	15.75	(51.	and	r-000	Slumly so it won't hu	
T	1129				Stop	luggion de	+4					PRN		
						3, 5						1		
					Teri :	= 1 176=1	0 0	3.741				14		
1	1132				wit	hdraw Slud	6	ullod	+ fo	t : 1.	- 4	efore	in 1 chi2)	
	1140				Stap	longing D	ata					USA		
												3		
V	11551				Ext	acted une	ta:1	1-ung			0	1. He	diety	
										1				
										Unal	W	rus	rome 10/2/89	
	i													
										1				

Wall Number 70		Form Date of Test 10	PNL-MA-567
Hell Mannel 7	79-E24-19	Procedure Number_	AT-6 Revø
Type of Test(s)	Slug Injec	tion / Withdrawal	
Personnel Condu	cting Test	R. Newcomer	
e de		WELL CONFIGURATION	
Well Depth 30a	9' below groundsus	rface Borehole Diameter	8 "
Well Casing Inside Diameter	. 4"	Well Screen Inside Diameter	4" 279.65' to 300.68' below ground
		(1.6) (1.8)	279.65' to 300.68' below ground
Length of Scree	ned Interval 15.0	6 (below water) Depth of	Screen 2821-3011 DK 10/26/89
Comments	well is undevelop	ed	
		SLUG INFORMATION	
Slug Constructi	on Materials	Carbon Steel	
Length of Slug_	8.05'	Diameter of Slug_a	2. 24'
Length of Slug_ Comments	8.05'	Diameter of Slug_c	2. 24'
Comments			2. 24
Take the Control of t			2. 24
Comments	hments (if appli		
Comments	hments (if appli	cable)	
Comments	hments (if appli	cable)	TION
Comments Volume of Attack	hments (if appli	cable)	TION
Volume of Attac	hments (if appli MEASUR Make	cable)EMENT INFORMATEMENT Model	TION Serial Number
Comments Volume of Attack Electric Tape Steel Tape	hments (if appli MEASUR Make	cable) EMENT EQUIPMENT INFORMAT Model Super Hi-way Numan	TION Serial Number

Devell Neurone 10/2/89

Equipment Record Form for the Installation and Removal of Data Loggers and Pressure Transducers

Initial Check:		
Purpose of Installation: To monitor Slug in	njection (withdrawal test	responses
Monitored Hydrologic Unit of Upper most Unconfi	ined Aquifer (Hanford	formation)
Date/Time of Installation:	0/2/89 1:015 hrs. Procedure	Followed: PNI-MA-567
Data Logger Make/Model:	In Situ / SE1000B	
Serial No.: 1KB-701	Number of Channels Used	: 1
Pressure Transducer Make/Model:	Full Scale Range: 10 psi	Well No.: 299-E24-9
Druck / PTX=161D	Serial No.: 259198	Depth: ~299' was grand surh
Pressure Transducer	Full Scale Range:	Well No.:
Make/Model:	Serial No.:	Depth:
Comments: S/uq was positioned	Stickup of a source of a sourc	ater before
were filled-and with the	t set of tests because the data could not be dumped	e step numbers
	arrell Newcomer	
Date/Time of Equipment Remo	val: 10/2/89 1145 ha	
Decontamination-Procedure (if required):	
Equipment Removed By	ell. Newcomer	

(5/18/89, Rev. 0)

ELECTRONIC DATA CONTROL FORM

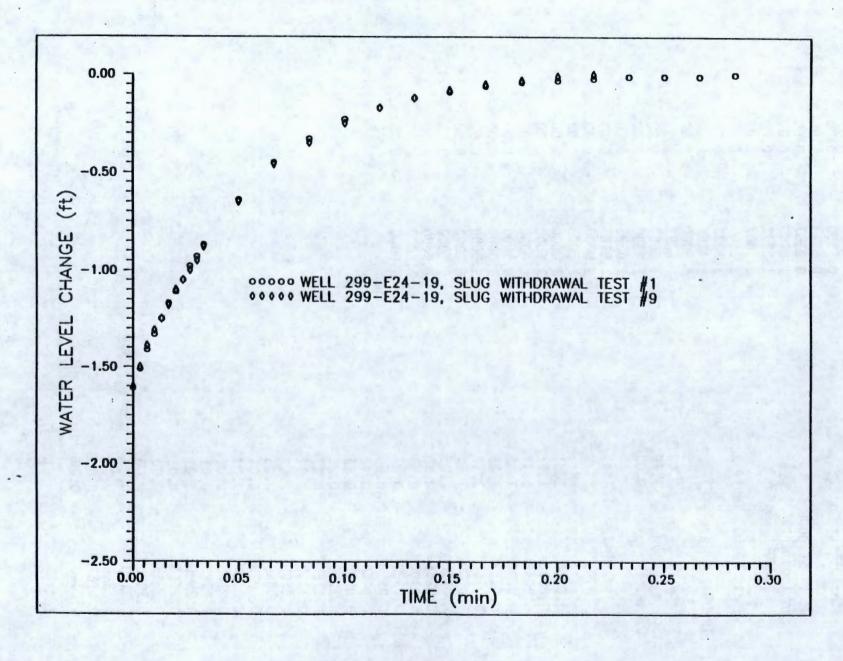
DATE AND START TIME OF DATA ACQUISITION 10/2/89, 1040 hrs.
DATE AND END TIME OF DATA ACQUISITION 10/2/84, 1050 hrs.
WELL NUMBER
TYPE OF TEST OR DATA Slug Test
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER In Situ Hermit SE1000 B Serial # 1 KB-701
TEST NUMBER 8
CHANNEL OR INPUT NUMBER 1
UNITS OF VALUES RECORDED <u>feet</u>
NUMBER OF PAGES ATTACHED 2
COMMENTS: Test 8 = Submerge Slug
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Name, title Date
Name, title Date'

1	Start Time: SE1000 Environmenta 10/02 1	tober 2, 10:40 B 1 Logger	1989	0.6667 0.7500 0.8333 0.9167 1.0000 1.0833 1.1667 1.2500 1.3333	0.01 0.01 0.02 0.01 0.02 0.02 0.02 0.01 0.02
1	INPUT 1: Leve	1 (F)		1.4166 1.5000 1.5833	0.01 0.01 0.02
	Reference Scale factor Offset	0.00 9.99 0.00		1.6667 1.7500 1.8333 1.9167	0.02 0.02 0.01 0.02
	Elapsed Time, min	Value, ft		2.0000 2.5000	0.02
	0.0000 0.0033 0.0066 0.0099 0.0133 0.0166	0.17 0.17 0.19 0.19 0.19		3.0000 3.5000 4.0000 4.5000 5.0000 6.0000	0.02 0.02 0.02 0.02 0.02 0.02 0.02
**	0.0500	0.11 0.08 0.05 0.03 0.01		6.5000 7.0000 7.5000 8.0000 8.5000 9.0000	0.03 0.03 0.03 0.03 0.03
	0.0666 0.0833 0.1000 0.1166 0.1333 0.1500 0.1666 0.1833 0.2000 0.2166 0.2333 0.2500 0.2666 0.2833 0.3000 0.3166 0.3333 0.4167 0.5000 0.5833	0.01 0.01 0.01 0.01 0.01 0.01 0.00 - 0.01 0.02 0.01 0.90 0.31 0.07 0.03 0.23 - 0.00 0.03 0.03		9.5000 10.0000 END	0.03

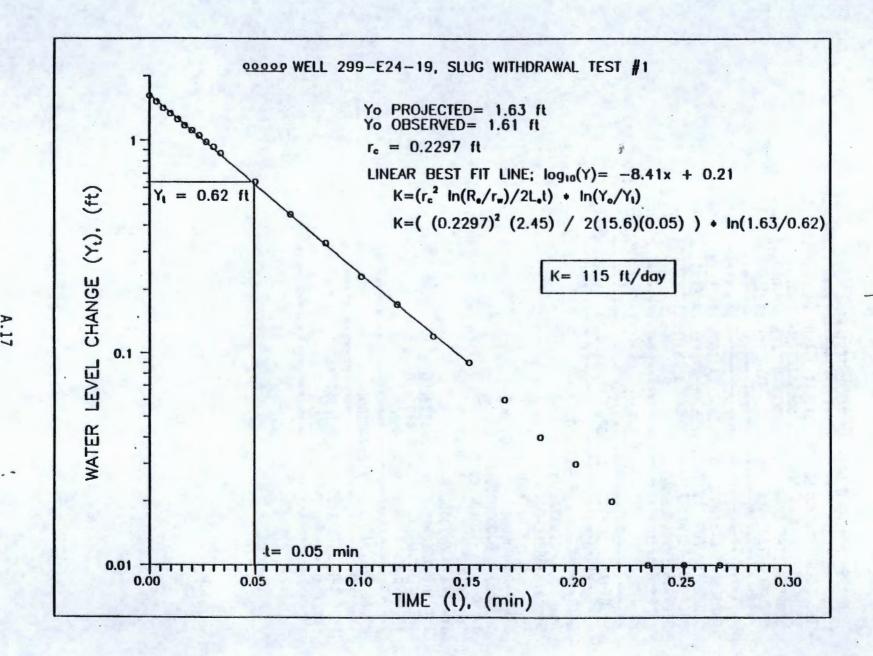
(5/18/89, Rev. 0)

ELECTRONIC DATA CONTROL FORM

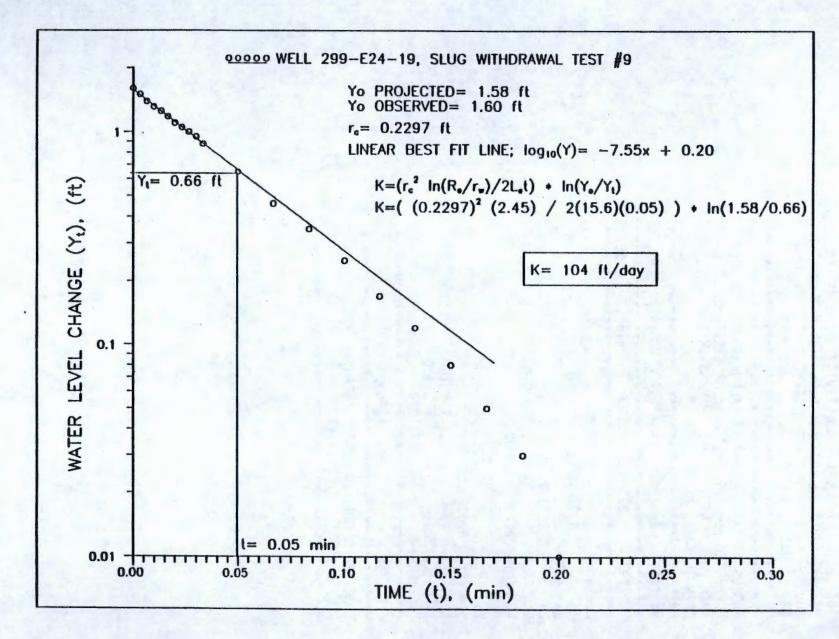
DATE AND START TIME OF DATA ACQUISITION 10/2/09, 1058 675.
DATE AND END TIME OF DATA ACQUISITION 10/2/89, 1108 hrs.
WELL NUMBER 299-E24-19
TYPE OF TEST OR DATA Slug Test
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER In Situ Hermit SE1000B Serial # 1 KB-701
TEST NUMBER 9
CHANNEL OR INPUT NUMBER
UNITS OF VALUES RECORDED <u>feet</u>
NUMBER OF PAGES ATTACHED
COMMENTS: Test 9 = Withdraw Slug
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Name title Neuromes, Scientist 10/3/89


Well: 299-E24-19 Test Date: October 2, Start Time: 10:58 SE1000B Environmental Logger 10/02 15:40	0.8333 0.9167 1.0000 1.0833 1.1667 1.2500	0.02 0.01 0.01 0.02 0.02 0.02 0.02
Unit# 00701 Test# 9	1.3333 1.4166	0.02
INPUT 1: Level (F)	1.5000 1.5833	0.02
Reference 0.00 Scale factor 9.99 Offset 0.00	1.6667 1.7500 1.8333 1.9167	0.02 0.02 0.02 0.02
Elapsed Time, Value, min ft	2.0000 2.5000 3.0000	0.02 0.02 0.02
0.0000 - 1.60 0.0033 - 1.50 0.0066 - 1.39	3.5000 4.0000 4.5000	0.02 0.02 0.02
0.0099 - 1.31 0.0133 - 1.25 0.0166 - 1.18 0.0200 - 1.10	5.0000 5.5000 6.0000 6.5000	0.02 0.02 0.02 0.02
0.0233 - 1.05 0.0266 - 1.00 0.0300 - 0.95 0.0333 - 0.88	7.0000 7.5000 8.0000 8.5000	0.02 0.03 0.03 0.02
0.0500 - 0.65 0.0666 - 0.46 0.0833 - 0.35 0.1000 - 0.25	9.0000 9.5000 10.0000 END	0.02 0.02 0.02
0.1166 - 0.17 0.1333 - 0.12 0.1500 - 0.08 0.1666 - 0.05 0.1833 - 0.03 0.2000 - 0.01		
0.2166 - 0.00 0.2333 0.00 0.2500 0.00 0.2666 0.00 0.2833 0.01 0.3000 0.01 0.3166 0.01		
0.3333 0.02 0.4167 0.02 0.5000 0.02 0.5833 0.02		

DATE AND START TIME OF DATA ACQUISITION 10/2/89 1118 45.
DATE AND END TIME OF DATA ACQUISITION 10/2/89 1128 hrs.
WELL NUMBER 299-E24-19
TYPE OF TEST OR DATA Slug Test
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER In Situ Hermit SE1000 B Serial # 1 EB-700
TEST NUMBER Ø
CHANNEL OR INPUT NUMBER 1
UNITS OF VALUES RECORDED <u>Seet</u>
NUMBER OF PAGES ATTACHED 2
COMMENTS: Test Ø = Submerge Slug
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Darrel Neumer, Scientist 10/3/89 Name, title. Date
Name, title. Date'


Well: 299- Test Date: Oc	E24-19	1000	0.6667 0.7500	0.00
		1909		
Start Time:	11:18		0.8333	0.00
251000			0.9167	0.00
SE1000			1.0000	0.00
Environmenta			1.0833	0.00
10/02 1	5:44		1.1667	0.00
			1.2500	0.00
Unit# 00700	Test# 0		1.3333	0.00
			1.4166	0.00
INPUT 1: Leve	1 (F)		1.5000	0.00
			1.5833	0.00
Reference	0.00		1.6667	0.00
Scale factor	9.99		1.7500	0.00
Offset	0.00		1.8333	0.00
			1.9167	0.00
Elapsed Time,	Value,		2.0000	0.00
min	ft		2.5000	0.00
			3.0000	0.00
0.0000	0.31		3.5000	0.00
0.0033	0.31		4.0000	0.00
0.0066	0.30		4.5000	0.00
0.0099	0.32		5.0000	0.00
0.0133	0.31		5.5000	0.00
0.0166	0.32		6.0000	0.00
0.0200	0.31		6.5000	0.00
0.0233	0.33		7.0000	0.00
0.0266	0.32		7.5000	0.00
0.0300	0.32		8.0000	0.00
0.0333	0.35		8.5000	0.00
0.0500	0.33		9.0000	0.00
0.0666	0.39		9.5000	0.00
0.0833	0.41		10.0000	0.00
0.1000	0.40		END	
0.1166	0.40			
0.1333	0.41			
0.1500	0.23			
0.1666	0.29			
0.1833				
	0.00			
0.2000	0.01			
0.2166	0.03			
0.2333	0.00			
0.2500	- 0.03			
0.2666	- 0.08			
0.2833	0.09			
0.3000	- 0.00			
0.3166	0.00			
0.3333	0.00			
0.4167	0.00			
0.5000	0.00			
0.5833	0.00			
0.000	0.00			

DATE AND START TIME OF DATA ACQUISITION 10/2/89, 1132 hrs.
DATE AND END TIME OF DATA ACQUISITION 10/2/89, 1140 hs.
WELL NUMBER 299- E24-19
TYPE OF TEST OR DATA Slug Test
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER In Situ Hermit SE1000B Serial# 1KB-700
TEST NUMBER
CHANNEL OR INPUT NUMBER
UNITS OF VALUES RECORDED Sect
NUMBER OF PAGES ATTACHED 2
COMMENTS: Tes+ 1 = Withdraw slug
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Darrell Newcomes, Scientist 10/3/89 Name, title Date
Name, title . Date '


	11.22 000				
	Well: 299-	E24-19		0.5833	-
	Test Date: Oc	toher 2	1080	0.6667	-
			1303		
	Start Time:	11:32		0.7500	-
				0.8333	-
	251000				
	SE1000			0.9167	-
	Environmenta	1 Lonner		1.0000	
	Tild it olimence	Logger			_
	10/02 1	5:46		1.0833	-
				1.1667	
	Unit# 00700	Test# 1		1.2500	-
				1.3333	
					-
	INPUT 1: Leve	1 (F)		1.4166	-
•				1.5000	
	Reference	0.00		1.5833	-
i.e	Scale factor	9.99		1.6667	-
	Offset	0.00		1.7500	-
		pr.		1.8333	_
					-
	Elapsed Time,	Value,		1.9167	-
	min	ft		2.0000	
	111 111				
			•	2.5000	-
	0.0000	- 1.61		3.0000	_
		1.01			
	0.0033	- 1.51		3.5000	-
	0.0066	- 1.41		4.0000	
	0.0099	- 1.33		4.5000	
	0.0133	- 1.25		5.0000	
	0.0166	- 1.17		5.5000	-
	0.0200	- 1.11		6.0000	-
	0.0233	- 1.05		6.5000	
	0.0266	- 0.98		7.0000	-
	0.0300	- 0.93		7.5000	
	0.0333	- 0.87		8.0000	
	0.0500	- 0.64			
				END	
	0.0666	- 0.45			
	0.0833	- 0.33			
		- 0.33			
	0.1000	- 0.23			
	0.1166	- 0.17			
		0.17			
	0.1333	- 0.12			
	0.1500	- 0.09			
	0 1666				
	0.1666	- 0.06			
	0.1833	- 0.04			
	0.2000	- 0.03			
	0.2000	- 0.03			
	0.2166	- 0.02			
	0.2333	- 0.01			
		0.01			
	0.2500	- 0.01			
	0.2666	- 0.01			
	0.2833	- 0.00			
	0.3000	- 0.00			
	0.2166				
	0.3166	- 0.00			
	0.3333	- 0.00			
	0.4167	- 0.00			
	0.5000	- 0.00			

A.16


```
WELL 299-E24-19, SLUG WITHDRAWAL TEST #1
 THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
 USING THE BOUWER AND RICE SLUG TEST METHOD.
 SOURCE= "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
 GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
 RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
 PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
Rc (ft) Rw (ft) Le (ft) Lw (ft) H (ft)
 .2297 .3333 15.6000 15.6000 95.0000
Le/Rw = 46.8000000
A= 3.0229800
B= 4.898688E-001
C= 2.6137240
SANDPACK POROSITY= 3.000000E-001
t (min) = 5.000000E-002
1/t= 20.0000000
Yo= (ft) 1.6300000
Yt= (ft) 6.200000E-001
1/t ln(Yo/Yt) = 19.3323200
ln[(H-Lw)/Rw] = 5.4731110
ln(Re/Rw) = 2.4515670
K (ft/day) = 115.4481000
T OF THE SATURATED SCREEN INTERVAL
 (ft2/day)= 1800.9900000
```



```
WELL 299-E24-19, SLUG WITHDRAWAL TEST #9
THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
USING THE BOUWER AND RICE SLUG TEST METHOD.
SOURCE= "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
Rc (ft) Rw (ft) Le (ft) Lw (ft) H (ft)
  .2297 .3333 15.6000 15.6000 95.0000
**************
Le/Rw = 46.8000000
A= 3.0229800
B= 4.898688E-001
C= 2.6137240
SANDPACK POROSITY= 3.000000E-001
t (min)= 5.000000E-002
1/t= 20.0000000
Yo= (ft) 1.58000
Yt= (ft) 6.600000E-001
          1.5800000
1/t ln(Yo/Yt)= 17.4588100
ln[(H-Lw)/Rw]= 5.4731110
ln(Re/Rw)= 2.4515670
K (ft/day) = 104.2599000
T OF THE SATURATED SCREEN INTERVAL
(ft2/day)= 1626.4540000
```

APPENDIX B

TEST DATA AND ANALYSIS FOR WELL 299-E25-40

YMMS FAGE INTERVENCENT

THIS PAGE INTENTIONALLY
LEFT BLANK

APPENDIX B

TEST DATA AND ANALYSIS FOR WELL 299-E25-40

This appendix contains the as-built diagram for the well construction, Slug Test Record Form, Aquifer Test Data Sheets, Equipment Record Forms, Electronic Data Control Forms, and accompanying data logs and plots for well 299-E25-40.

AS-BUILT DIAGRAM

Reviewed by VZ Mc			Date _/2-4	9-89 eologic/Hydrologic Data	
Construction D	yata	Depth		eologic/ Hydrologic Data	
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description	
143.7 " OF 10" CARBON	XX	5	0 0 0	SAND (Tr CHILL)	
STEEL CASING	K_K_K	10		SAND	
CEMENT GOOT -		15		SAND	
		20	000	SAND (Tr. Globs)	
L73.1 of B' CARRON	+11/1 1/1	25		<u> </u>	
STEEL CASING		30	•	-	
	1 1	35		•	
	147	40	0.0	SANOY GRAVEL	
	17 17	45		SANO	
CENTRALIZERS	Kalendar H	50		•	
	1	55		•	
53.25' of	111 14	60		•	
DIA STAINLESS STEEL	1	65		SLIGHTLY GRAVELLY SAMO	
	177 51	70	.0	SI. Gravelly SARD	
	11/1	75	Δ.	Sandy GRAVEL	
	177 17	80	N 0	Gravelly SAND	
	17 17	85	، ومع	Grevelly SAND	
20 BENTONITE -	173 57	90		Gravelly SAND	
	17	95	4	gravelly SAND	
	Ed 121	100		SAND	
	12 5	105		SAND	
	151 17	110		SAUD	
	1577	115		SAND	
		120		SAND	
				Sand	
	4 17	125		SANO	

AS-BUILT DIAGRAM

Well Number 299- 825-40	Geologist M.O Lobrecht, Goodwin Page 2 of 3
Reviewed by V. Z. Mc Elan	Date 12-4-89

Construction Da	ta	Depth	Ge	ologic/Hydrologic Data	
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description	
10" DIA CARBON STEEL	K1-13	135		SANO	
CASING 0'- 143.7'	43 50	140		SAND	
	4: 17	145		SANO	
	1	150		SAND	
6" DIA. CARBON STEEL	1	155		,	
CASING 0' - 273.1'	1- 1	160		, , , , , , , , , , , , , , , , , , ,	
	17 17	165		Slightly gradly Stub	
	1	170			
	1	175		SAND	
· ·	6	180		1.	
>	1	185		•	
	1-7 5	190		•	
	1	195	3.0	Sandy GRAVEL	
	17 [7	200	4 7 7 4 6 5 .		
	1	205	P 4 - 0 - 2	, ,	
	17	210	A	SLIGHTLY GRAVELLY SAND	
		215	0 . 0	" " "	
	11 11	720		SAND	
	17 17	225		N	
8-20 BENTONITE	E1 13	230		N	
	17-17	235		"	
	17 17	240		11	
3/8" VOICLAY TABLETS		245		11	
		250		SLIGHTLY MUDDY SAND	
1-30 COL. SILICA SAND	₹	755		MUD	
		260	¥ 8-74-89 O	SUGUTLY GIRPVELLY SAN	

A-1800-186 (3/87)

Battelle
 Pacing Northwest Laboratories

AS-BUILT DIAGRAM

Well Number 299-E25-40 Geologist LUBRECHT, GOODWIN Page 3 of 3 Reviewed by 7). To Mc School Date 12-4-89									
Construction Da	nta	Depth	Geo	ologic/Hydrologic Data					
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description					
D-SLOT, STAINLESS STEE CHANNEL PACK SCREE -210		265 270 275	0 0 0 0 T.D. 274	SANDY GRAVEL II II					
		\equiv		-					

Lene D	5 Da	=	ime 8							uration	of Aqu	uifer	Test .	time
Line					= 0	Static	Water Level				Disch	Discharge		Comments
20	9/2	y Time	τ	r	vt.	Reading	Conversions or Corrections	Water Level	s or s'		Read- ing	٥	Record	Fransducer 262361
У.	22	9 13:00				258.13"		A		ottom or	we11			Dato larger 1KB-701
						2,74.43							wer	Transduce Madia
	-	13:43	_	-	-		+ revere				E 7	7	- 1	PAN Set slug a few , - ch
	+	1310	-	-		7/29/89		15 70	sca	= 1.7	. 1111	7 - 6	1	above water
	+	1311			1		a immersed	100	hole of	Secure	15 lute			Slua immoised
		1311					#00				^		wec	
		13:2					+ # 0	1 / /	Timo				. 1	
	-													
of an						ist			she	9				
1	<u>'</u>	1=	13;	36		1626	referen	11 -	net	to	0		-	
- (-												-	1/.:4/ /
	-	1/332				+ 1	1 2		10/					Withdran slug
		1.347				1.22	1/20	17074						
				-		Ties #	2 N	وما	24	KC				
المرار	-	11373		i			4 NU		7		כם			
2		1345					c drien							••
		1.353		1		tent	2.5	trans	2					
				-										
in-l		1.0-1				to	73	ist		un				
	_	1356		-		16.18	rugere	nce	120	1/70	u 0			
	-	1359				7	c rul	me						
	-	THIO				Too h	3 100	mu					V	
	7													
		1419					Deoth to	bott	em i	27	.8' A	ion	TOP	of 4° rasina
							Stick	up of	4" 6	asiha	is 1.	2 1	form	fround surface
•								1						
	-											-	-	
	-	+							7)	Aid	-110	_		a La Ina
	-	+							Lie	nec	7 (1	-20	orin	9/29/89
									11	m	1	Ca	ou	7/27/0/
												T		

Location 200 Eo	st. A Tank Fa	Date of Test 9/	29/89	
Well Number Z	99 - E25-40	Procedure Number_	AT-6, Ra	0
Type of Test(s)	Slug Inje	ction / Withdrowal		
Personnel Conduc	ting Test D	R. Newcomer, Bill C.	ronin	
		WELL CONFIGURATION		
Well Depth 270.	6' below ground su	Acce Borehole Diameter_	8"	
Well Casing Inside Diameter_	4"	Well Screen Inside Diameter	4"	
Length of Screen	ed Interval 16.1	(below water) Depth of S	creen 252'	-273'
Comments	Well is underela	roed		
Slug Construction Length of Slug		Carbon steel Diameter of Slug	0.24	
Comments				
Volume of Attach	ments (if applica	able)		
	MEASUREM	MENT EQUIPMENT INFORMAT	TON	
	Make	Model	Serial Num	ber
Electric Tape	£.			
Steel Tape	Lufkin	Super Himay Nubian	L 300-14	- M - 112.9/5
Data logger	In Situ	SE1000 B	262361	1KB-701
Transducer	Druck	PTX-161 D	262361	
Other				

Darrell Menemies 9/29/29

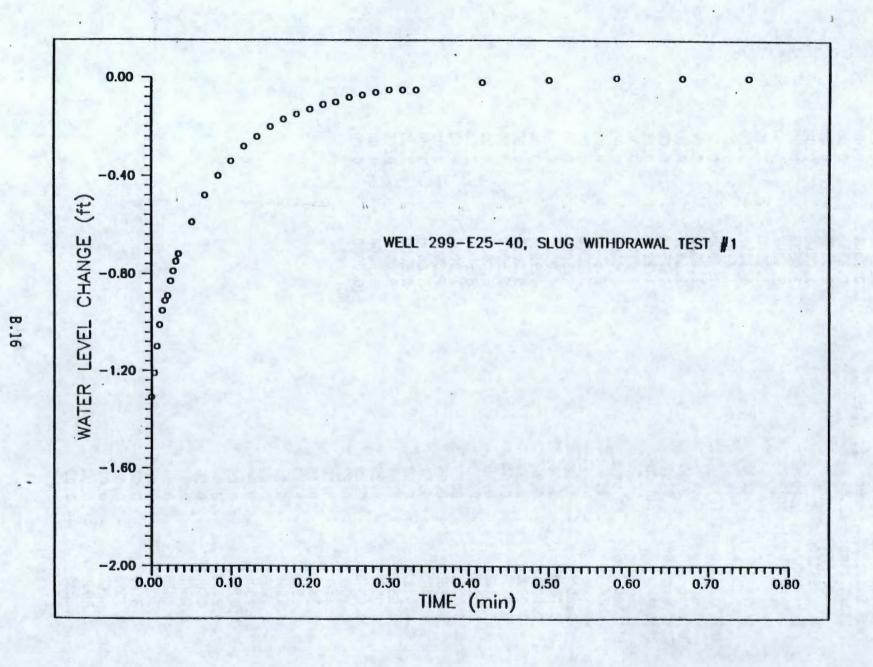
Equipment Record Form for the Installation and Removal of Data Loggers and Pressure Transducers

Initial Check:			
Purpose of Installation: To mon. for slug	injection / mithd	rawal +	est responses
Monitored Hydrologic Unit or Uppermost Unc			
Date/Time of Installation: 9/2	19/89 1300 hrs. PT	rocedure	Followed: Wi-4, Re
Data Logger Make/Model: I	n Situ / SElou	03	7 - 2 - 1
Serial No.: -1 KB-701	Number of Channe	ls Used:	1
Pressure Transducer	Full Scale Range: 10 ps; Serial No.: 262361		Well No.: 299-E25-40
Make/Model: Druck / PTX-161D			Depth:
Pressure Transducer	Full Scale Range:		Well No.:
Make/Model:	Serial No.:		Depth:
Description of Data Logger In Jetugary Comments: Slug was posite before placing the	stickup that above	of 4° ground	cosing is 1.2 ft. Surface the water
	Newcomer, B		
Date/Time of Equipment Remova Decontamination Procedure (if		1415 6	d.
Equipment Removed By D. R. M.	tweeiner, Bill	Conin	

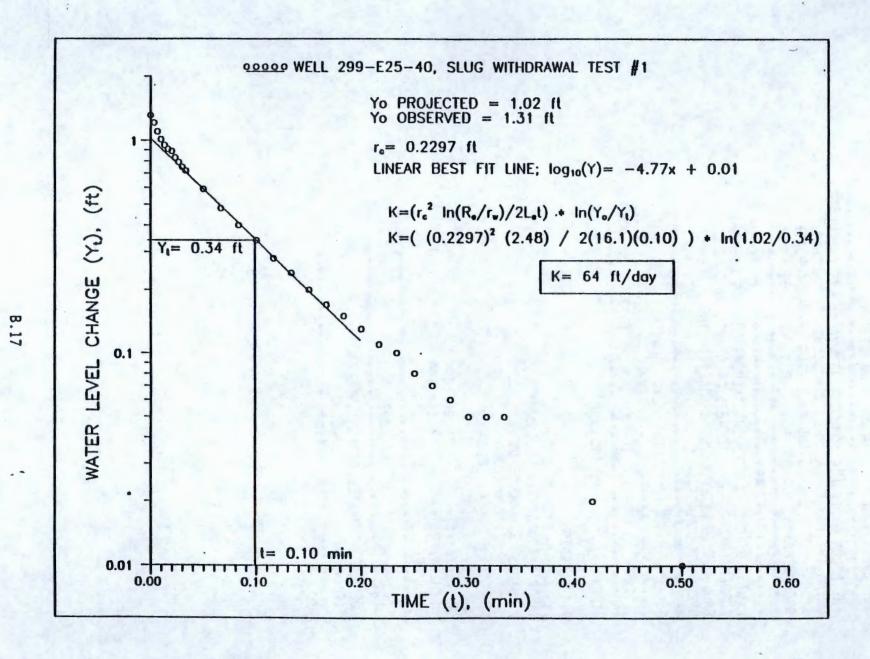
DATE AND START TIME OF DATA ACQUISITION	9/29/89	13:11
DATE AND END TIME OF DATA ACQUISITION		
WELL NUMBER E25-40		
TYPE OF TEST OR DATA Slug ter	+	
TYPE AND IDENTIFICATION NUMBER OF DATA L	OGGER <u>Ansi</u> 1KB-70	tu
TEST NUMBER		
CHANNEL OR INPUT NUMBER		
UNITS OF VALUES RECORDED 47		
NUMBER OF PAGES ATTACHED 2		
comments: Jest 0 = Subm	verging	Slerg
DATA VALIDATION STATEMENT:		
The attached data represent the data as data logger. Any exceptions and reasons the comments section.		
William 2 Com, Hephologet	10/21	187
Name, title	Date	•

	U-11. 000	FOF 40	0 6667		0 00	
		E25-40	0.6667		0.00	
	Test Date: Se	ptember 29, 1989	0.7500		0.00	
		3:11	0.8333		0.00	
ż	Jean C Time. 1					
			0.9167		0.00	
	SE1000		1.0000	-	0.00	
	Environmenta	1 Logger	1.0833	-	0.00	
-	09/29 1		1.1667		0.00	
64	03/23 1	0.22		-		
			1.2500	-	0.00	
	Unit# 00701	Test# 0	1.3333	-	0.00	
			1.4166		0.00	
	TAIDUT 1 . 1	3 (5)				
3400	INPUT 1: Leve	1 (1)	1.5000	-	0.00	
			1.5833	-	0.00	
	Reference	0.00	1.6667		0.00	
	Scale factor	9.99				
			1.7500	-	0.00	
	Offset	0.00	1.8333	-	0.00	
			1.9167	-	0.00	
	Elapsed Time,	Value,	2.0000		0.01	
	min	ft	2.5000	-		
			3.0000		0.01	
	0.0000	- 0.00	3.5000		0.02	
				1		
	0.0033	- 0.00	4.0000	-	0.02	
	0.0066	- 0.00	4.5000	-	0.02	
91	0.0099	- 0.00	5.0000	-	0.02	
	0.0133	- 0.00	5.5000		0.02	
				100		
	0.0166	0.70	6.0000	-	0.02	
	0.0200	0.09	6.5000	-	0.02	
	0.0233	0.60	7.0000		0.02	
	0.0266	0.76				
			7.5000	-	0.03	
	0.0300	0.78	8.0000	-	0.03	
-	0.0333	2.01	8.5000	-	0.03	
	0.0500	0.45	9.0000	-	0.03	
-	0.0666	0.81	9.5000	-	0.03	
	0.0833	0.28	10.0000	-	0.03	
	0.1000	0.15	12.0000	-	0.04	
	0.1166	0.10	14.0000		0.04	
	0.1333	0.08				
			16.0000	-	0.05	
	0.1500	0.06	END			
	0.1666	0.05				
	0.1833	0.05				
	0.2000	0.04				
	0.2166	0.04	The Property of the Control of the C			
9	0.2333	0.03				
	0.2500	0.03				
	0.2666	0.02				
	0.2833	0.02				
	0.3000	0.02				
	0.3166					
		0.01				
	0.3333	0.01				
	0.4167	0.01				
	0.5000	0.00				
	0.5833	0.00				

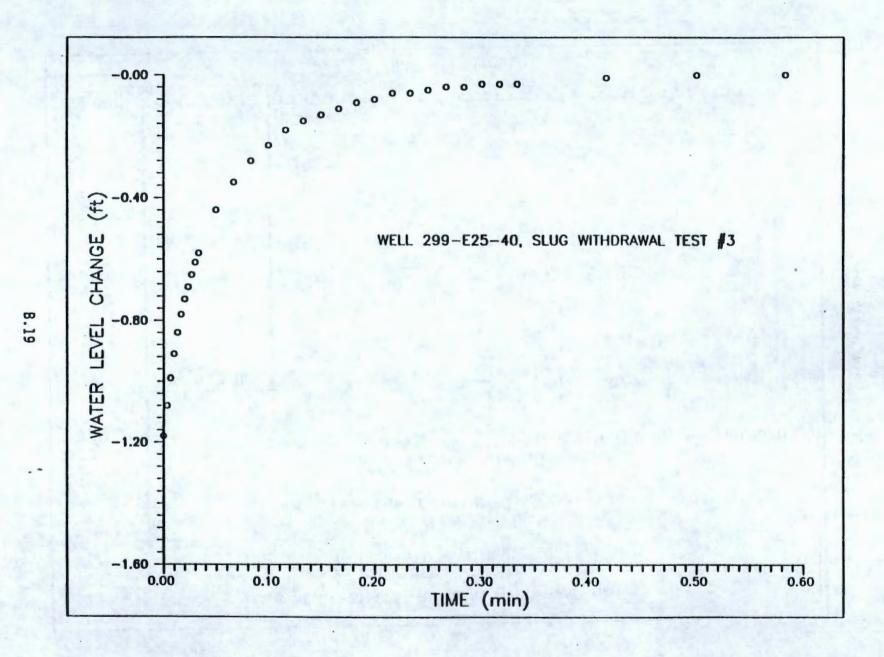
DATE AND START TIME OF DATA ACQUISITION 9/29/89 13:31
DATE AND END TIME OF DATA ACQUISITION 9/29/89 13:41
WELL NUMBER = F25-40
TYPE OF TEST OR DATA Slug test
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER 4 on Setter Hermit 1000B, Seven # 1KB-701
TEST NUMBER
CHANNEL OR INPUT NUMBER
UNITS OF VALUES RECORDED _ ++
NUMBER OF PAGES ATTACHED 2
COMMENTS: Fest 1 = Lifting Sling.
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Name, title Date
Name, title Date

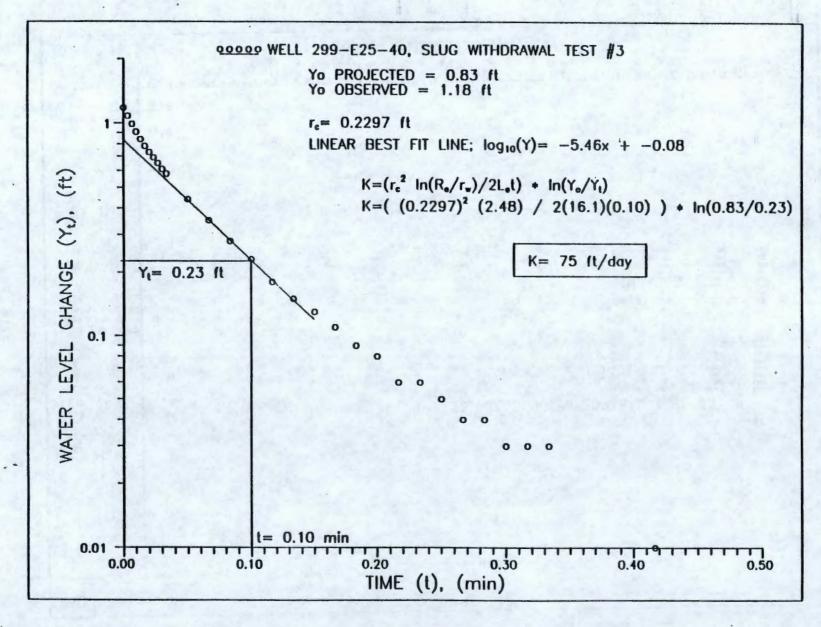

	B 1 Logger 6:25	0.6667 0.7500 0.8333 0.9167 1.0000 1.0833 1.1667 1.2500 1.3333	•	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
INPUT 1: Leve		1.4166 1.5000 1.5833		0.00 0.00 0.00
Reference Scale factor Offset	0.00 9.99 0.00	1.6667 1.7500 1.8333 1.9167		0.00 0.00 0.00 0.01
Elapsed Time, min	Value, ft	2.0000 2.5000 3.0000		0.00 0.00 0.01
0.0000 0.0033 0.0066	- 1.31 - 1.21 - 1.10	3.5000 4.0000 4.5000		0.00
0.0099 0.0133 0.0166 0.0200	- 1.01 - 0.95 - 0.91 - 0.89	5.0000 5.5000 6.0000 6.5000		0.00 0.00 0.00
0.0233 0.0266 0.0300	- 0.83 - 0.79 - 0.75	7.0000 7.5000 8.0000		0.00
0.0333 0.0500 0.0666 0.0833	- 0.72 - 0.59 - 0.48 - 0.40	8.5000 9.0000 9.5000 10.0000		0.00 0.00 0.00
0.1000 0.1166 0.1333	- 0.34 - 0.28 - 0.24	END		0.00
0.1500 0.1666 0.1833 0.2000	- 0.20 - 0.17 - 0.15 - 0.13			
0.2166 0.2333 0.2500	- 0.11 - 0.10 - 0.08			
0.2666 0.2833 0.3000 0.3166	- 0.07 - 0.06 - 0.05 - 0.05			
0.3333 0.4167 0.5000 0.5833	- 0.05 - 0.02 - 0.01 - 0.00			
0.0000	0.00			

DATE AND START TIME OF DATA ACQUISITION 9/29/87 13:45
DATE AND END TIME OF DATA ACQUISITION 7/29/89 13:55
WELL NUMBER =25-40
TYPE OF TEST OR DATA Slerg test
Hermit 1000 B, serial # 1KB-701
TEST NUMBER 2
CHANNEL OR INPUT NUMBER
UNITS OF VALUES RECORDED ++
NUMBER OF PAGES ATTACHED 2
comments: Fest 2 = Submerging slug.
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Name, title Date
Name, title Date


	Logger	0.6667 0.7500 0.8333 0.9167 1.0000 1.0833 1.1667	0.02 0.02 0.01 0.01 0.01 0.01
Unit# 00701	Test# 2	1.2500 1.3333	0.00
INPUT 1: Leve	1 (F)	1.4166 1.5000	0.00
Reference Scale factor Offset	0.00 9.99 0.00	1.5833 1.6667 1.7500 1.8333	0.00 0.00 0.00
Elapsed Time, min	Value, ft	1.9167 2.0000 2.5000 3.0000	0.00 0.00 0.00 0.00
0.0000 0.0033 0.0066 0.0099	0.36 0.33 0.29 0.25	3.5000 4.0000 4.5000 5.0000	0.00 0.00 0.00 0.00
0.0133 0.0166 0.0200	0.22 0.22 0.20 0.20	5.5000 6.0000 6.5000	0.00 0.00 0.00
0.0233 0.0266 0.0300 0.0333	0.18 0.17 0.15 0.14	7.0000 7.5000 8.0000 8.5000	0.00 0.00 0.00 0.00
0.0500 0.0666 0.0833	0.11 0.10 0.09	9.0000 9.5000 10.0000	0.00 0.00 0.00
0.1000 0.1166 0.1333	0.08 0.07 0.07 0.06	END	
0.1500 0.1666 0.1833 0.2000	0.06 0.06 0.05		
0.2166 0.2333 0.2500 0.2666	0.05 0.05 0.05 0.04		
0.2833 0.3000 0.3166	0.04 0.04 0.04		
0.3333 0.4167 0.5000 0.5833	0.04 0.03 0.02 0.02		

DATE AND START TIME OF DATA ACQUISITION 9/29/89 16.30 13:59
DATE AND END TIME OF DATA ACQUISITION 7/29/89 16:40 14:09
WELL NUMBER = E25-40
TYPE OF TEST OR DATA Slug test
Hermit 1000B, serial # 1KB-701
TEST NUMBER 3
CHANNEL OR INPUT NUMBER /
UNITS OF VALUES RECORDED <u>ft</u> .
NUMBER OF PAGES ATTACHED 2
COMMENTS: Fest 3 = Lifting Sleeg:
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
William & Curia, Hychologist 10/2/89 Name, title Date


Well: 299-E25-40	0.6667	- 0.00
Test Date: September 29,		0.00
Start Time: 13:59	0.8333	0.00
	0.9167	0.00
SE1000B	1.0000	0.00
Environmental Logger	1.0833	0.00
09/29 16:30	1.1667	0.00
05/25 20100	1.2500	0.00
Unit# 00701 Test# 3	1.3333	0.00
OHILE 00/01 1621# 2		
***************************************	1.4166	0.00
INPUT 1: Level (F)	1.5000	0.00
The State of the S	1.5833	0.00
Reference 0.00	1.6667	. 0.00
Scale factor 9.99	1.7500	0.00
Offset 0.00	1.8333	0.00
0.1000	1.9167	0.00
Elapsed Time, Value,	2.0000	0.00
min ft	2.5000	0.00
	3.0000	0.00
0.0000 - 1.18	3.5000	0.00
0.0033 - 1.08	4.0000	0.00
0.0066 - 0.99	4.5000	0.00
0.0099 - 0.91	5.0000	0.00
0.0133 - 0.84	5.5000	0.00
0.0166 - 0.78	6.0000	0.00
	6.5000	0.00
0.0233 - 0.69	7.0000	0.00
0.0266 - 0.65	7.5000	0.00
0.0300 - 0.61	8.0000	0.00
0.0333 - 0.58	8.5000	0.00
0.0500 - 0.44	9.0000	0.00
0.0666 - 0.35	9.5000	0.00
0.0833 - 0.28	10.0000	0.00
0.1000 - 0.23	END	0.00
0.1166 - 0.18	LIID	
0.1333 - 0.15		
0.1500 - 0.13		
0.1666 - 0.11		
0.1833 - 0.09		
0.2000 - 0.08		•
0.2166 - 0.06		
0.2333 - 0.06		
0.2500 - 0.05		
0.2666 - 0.04		
0.2833 - 0.04		
0.3000 - 0.03		
0.3166 - 0.03		
0.3333 - 0.03	•	
0.4167 - 0.01		
0.5000 - 0.00		
0.5833 - 0.00		



SECONS DAL


```
WELL 299-E25-40, SLUG WITHDRAWAL TEST #1
 THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
USING THE BOUWER AND RICE SLUG SLUG TEST METHOD.
 SOURCE= "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
Rc (ft) Rw (ft) Le (ft) Lw (ft) H (ft)
  .2297
          .3333 16.1000 16.1000 95.0000
Le/Rw =
          48.3000000
A=
           3.0530930
B= 4.990199E-001
C=
           2.6454010
SANDPACK POROSITY= 3.000000E-001
t (min)= 1.000000E-001
          10.0000000
1/t=
Yo= (ft)
                1.0200000
Yt= (ft) 3.400000E-001
1/t ln(Yo/Yt)= 10.9861200
ln[(H-Lw)/Rw]=
                     5.4667940
In(Re/Rw)= 2.4790210
K (ft/day) =
                  64.2809700
T OF THE SATURATED SCREEN INTERVAL
(ft2/day) = 1034.9240000
```


B.20

```
WELL 299-E25-40, SLUG WITHDRAWAL TEST #3
THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
USING THE BOUWER AND RICE SLUG TEST METHOD.
SOURCE - "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
        Rw (ft) Le (ft)
Rc (ft)
                                 Lw (ft)
                                            H (ft)
         .3333 16.1000
  .2297
                                 16.1000
                                             95.0000
Le/Rw =
                48.3000000
           3.0530930
A=
B= 4.990199E-001
C=
           2.6454010
SANDPACK POROSITY= 3.000000E-001
t (min) = 1.000000E-001
           10.0000000
1/t=
Yo= (ft) 8.300000E-001
Yt= (ft) 2.300000E-001
1/t ln(Yo/Yt)= 1
                      12.8334600
ln[(H-Lw)/Rw] =
                        5.4667940
                   2.4790210
ln(Re/Rw) =
                    75.0899400
K (ft/day) =
T OF THE SATURATED SCREEN INTERVAL
(ft2/day)= 1208.9480000
```

APPENDIX C

TEST DATA AND ANALYSIS FOR WELL 299-E25-41

APPENDIX C

TEST DATA AND ANALYSIS FOR WELL 299-E25-41

This appendix contains the as-built diagram for the well construction,
Slug Test Record Form, Aquifer Test Data Sheets, Equipment Record Forms,
Electronic Data Control Forms, and accompanying data logs and plots for
well 299-E25-41.

Battelle AS-BUILT DIAGRAM Pacific Northwest Laboratories				
Well Number 299-E25-4			1.1 steech+	Page of
Reviewed by D. S. VV. 1922			_ Date	
Construction Da	ita	Donth	G	eologic/Hydrologic Data
Description	Diagram	Depth in Feet	Diagram Litho.	Lithologic Description
10" CARDO STEL CASING		5		SAND
0-136'7'/2" (TEMPORAN!)		10		SAUD
		15		
		20	0 0 0	Soudy GRAVEL Soudy GRAVEL
An-141 - (A1- A4-11)			00000	See Grand
280'5" of 8" CARBON	11:7	25	0	San Grant
STEEL CACING	11:7	30		SANO
	11/1/1	35		SANO
	11/1/11	40	0.0 0	SI Growlly SAND
257.86 4 " STAINLESS	1	45		SI. Grovelly SAND
STEEL CASING	11	50		SANO
•	11,50,7	55		SAND
		60	0	SI Greatly SAND
	103 114	65		SI Gazly SAND
	1	70	0 0 0	
	1113	75	0	Gravelly SAND
				0
	111	80		SI. Granill. SAND
	11/1/14	85	0	Gravelly Shap
	H. 7 ()	90		Gradly SAND
•	10:00 in	95		Grank Stub
*	41111	100		SAND
1000 BUE	11/1/1/1	105		SANO
		110		SAUD
	W. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	115		SAND
4	7111	120		Interbelled State Family, (State
			-0	
	K. 1 11 X	125		Intertable SAND : m. 11, C.Se
	1111111111	130		SAWO

White the High

1	Battelle
	LECIUC LAGALIMAEN PROCESTONIES

AS-BUILT DIAGRAM

Reviewed by 71-67 1	9. Ge		Date /Z -7-	· \$4
reviewed by			_ Date	
Construction Da	ata	Depth	Geo	ologic/Hydrologic Data
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description
39 '7'/2" OF 10" CARRON		135		SAND
STEEL CASING	123 3	140		•
	11111	145		
80 '5" A 9" (ARKON	13 13	150		
STEEL CASING		155		и -
	11:3 1:3	160		"
	133	165		
7.43 OF 4 " STAINLESS	11.7	170		
itier latine	1	175		
	1:3 1:3	180		Slightly Grevelly Stan
	11:3	185		, p
	1:3 :4	190		SANO
	111	195		
	111 111	200		Soundy GRAPL
	1111111	205		SANDY GRAVEL
	112 11	210		grevelly SAND
	11/2/1	215	-0 - 0	
	119 119	220	0.00.	MUDDY SAMOY GRAVEL
	157 13	225	0	
	11/1 11/1	230	0 0	GRAVELLY SAND
	111	235		
	111 111	245	•	
	100	245		
•	13.5	29.		
		255		SANDY MUD

A-1800-186 (3/ 87)

Battelle Pacific Northwest Laboratories	AS-	BUILT D	IAGRAM			
Well Number 299 - E25. Reviewed by 7.4. Mc			M. LUB PECHT			
Construction	Construction Data			ologic/Hydrologic Data		
ं Description	Diagram	Depth in Feet	Diagram Litho.	Lithologic Description		
280' 3" OF 6" CARBON' STEEL CACING PACK SCREEN (10 SLOT CEMENT GROUT BENTOWING CRUMEN SILICA SANO CASING JOINT CASING JOINT CASING CONTRALIZED	- - - - - - - - - - - - - - - - - - -	205 270 275		SANDY MUD MUDOY SANDY GRAVEL SANDY GRAVEL		

Č
二
00
33
G

ype	of Aq	uifer	Tes	rt	slug I	A Tank for Junior Land	thdro	ewal	(En Si	<i>tu)</i> f Pump			ration Wells
						11 _2"							time
						4" casing							time
5 2	f" ca.	Sind	15	5.	21 abor	r sound s	urfue	2					
	T	ime	94			Water Le	vel Da	ta				D	
t =		at	t' =	= 0	Static	Water Levei	167.4	11 fram	Toe	Disch	arge	Ď >	Comments
Day	Clock Time	t	t'	vi.	Reading	Conversions or Corrections		s or s'		Disch Read-	Q	Reco	
ha	1433				267.41							DRN	
1	1442				14.11							1	Transducer redding
i				Dog	- in the second	Test #	4						
1				1									
	1445				Bot	ton of sla	in set	at	2651	ran.	TOC		
	1446				Ref	=0@14.	03"						
	1450					ly is drop			e sec	nds 1	910)		
	1501				to	+ # 4	sto	mes					
							0,0				_	*	
						#5 8						(vec	*6 -0
	1502		**			Acheren			20				-
	1505				se	1	ull	ed				V	
	1515				to	2 story	ned						
1 1													
+-		i					/						
			_			al # -							262361
•					113	tral #	DA	NO.	15	ages.		>_	1KB-70/
0'-		-	-		2			1				V 6	(16 1 1)
-	-	-	-		resel	Slug who p	م <i>در 4 ن</i> ي دا د د م	010					Cubic get cought on s
92	326					et to co			10	5+ #		DRN	
7	634		-			maina deta	1 102	-		T 1			
1		-			3100 100	Jana data							
11					161 PU	f = 0 @ 13	37'	70	it #	7		J.	
11	0840				J X.						4	richt	et land cycle)
_	7848				Ston	lunaina du						DRN	
Ti						J. J. J.						1	
V						D/B is	279.	o' fo	· +	of	casin	4	
						/							
								٠. ا					
								Jana	21	"Ment	zon	u	10/2/29
										20			97:10/1/57
	1		1		F-1			1			1		

Location 200 Ea	st A . Tonk For	Date of Test 9-25	-89, 10-2-89
Well Number 29	19-E25-41	Procedure Number_	PNL-MA-567 AT-6, Rev Ø
Type of Test(s)	Slug Injec	tin / Withdrawal	
		nell Newsomer, B	ill Cronin
21.		WELL CONSTOURATION	
		WELL CONFIGURATION	0.4
Well Depth 273	.8	Borehole Diameter_	8"
Well Casing Inside Diameter_	4"	Well Screen Inside Diameter	4"
Length of Screen	ed Interval 13.8	' (below mater) Depth of So	reen 255'-276'
Comments Cable	connecting transdu	icer to data bogger got o	inched by slug before
conduc	cting slug tests o	n 10/2/89. Well is us	ndeveloped
1716		SLUG INFORMATION	
Slug Construction	n Materials	Carbon steel	
Length of Slug_	8.05'	Diameter of Slug	0.24'
Comments			
Nolume of Attach	ments (if applica	ble)	
	MEASUREM	MENT EQUIPMENT INFORMAT	ION .
	Make	Model	Serial Number
Electric Tape			
Steel Tape	Lufkin	Super Hi-way Nubian	L300-14
Data "logger	In Situ	SE1000 B	1KB-701
Transducer	Druck	PTX-161 D	262361
Other			

Darrell Newsones 10/2/89

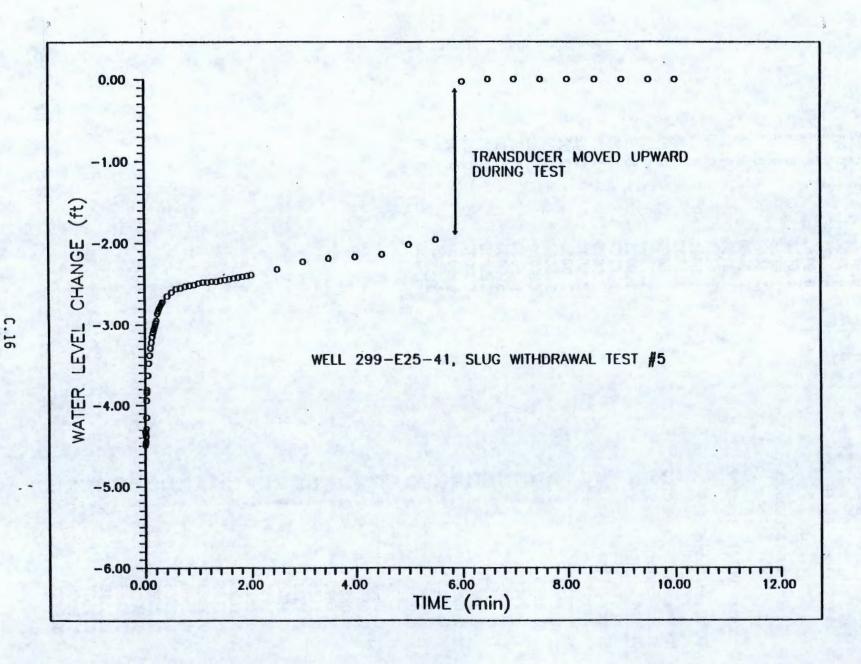
Equipment Record Form for the Installation and Removal of Data Loggers and Pressure Transducers

Purpose of Installation: To monitor slug in	ection/withdrawal test re	esponses	
Monitored Hydrologic Unit o			
Date/Time of Installation: 9	1/29/89 1430 hrs. Procedure	Followed: WL-4,R	
Data Logger Make/Model:	In Situ / SE1000 B		
Serial No.: 1kB-701	Number of Channels Used:	1	
Pressure Transducer	Full Scale Range: /o/s;	Well No.: 299-E25-4	
Make/Model: Druck / PTX-16/D	Serial No.: 26236/	Depth: 276' bear 5	
Pressure Transdücer	Full Scale Range:	Well No.:	
Make/Model:	Serial No.:	Depth:	
Description of Data Logger	Clubus of 4" ca	sing is 5.2 ft	
be repositioned be du	sitioned into place above transducer down the he wring tests on 10/2/89 being	the mater DEN 211. Third to	
Comments: Slug was po before placing the be repositioned be du cable. Transducer and	sitioned into place above transducer down the he ering tests on 10/2/89 being slug had to be taken out of	the mater DEN 211. Third to	
Comments: Slug was po before placing the be repositioned be du cable. Transducer and Equipment Installed By D.	sitioned into place above transducer down the he aring tests on 10/2/89 blid slug had to be taken out of R Newcomer, Bill Cronin	e the mater DRN 211. Third to 14se sing pinched well and reset.	
Comments: Slug was pobefore placing the be repositioned be di	sitioned into place above transducer down the he warmy tests on 10/2/89 being had to be taken out of R Newcomer, Bill Cronin 12/89 0900 hrs.	e the mater DRN 211. Third to 14se sing pinched well and reset.	

DATE AND START TIME OF DATA ACQUISITION 9/29/89, 14:50
DATE AND END TIME OF DATA ACQUISITION 9/27/89, 15:00
WELL NUMBER == 25-41
TYPE OF TEST OR DATA Slug test
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER & Setur / Serial # (KB-701
TEST NUMBER 4
CHANNEL OR INPUT NUMBER
UNITS OF VALUES RECORDED _++
NUMBER OF PAGES ATTACHED 2
COMMENTS: Just 4 = Submerging rleg.
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Name, title Date 10/2/89
Name, title

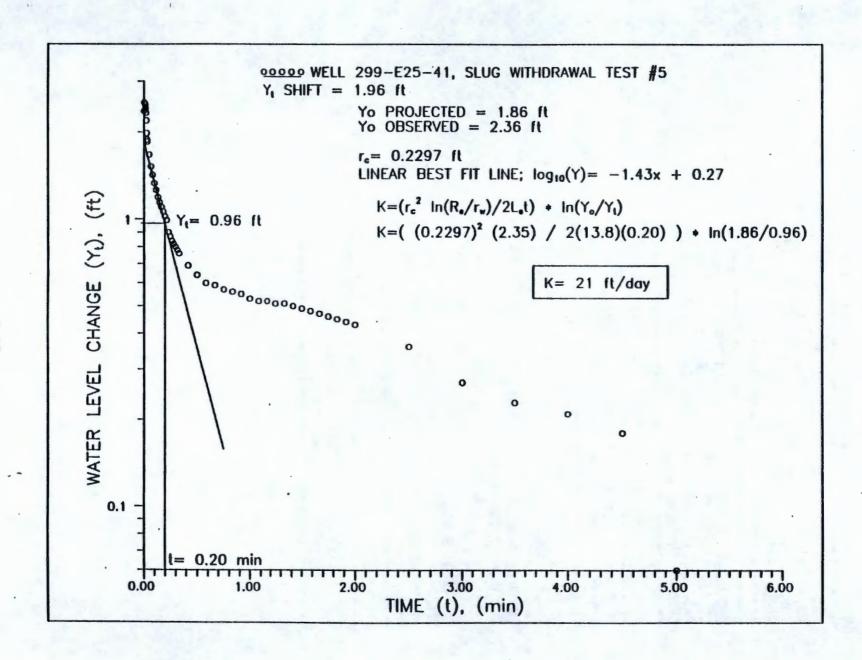
	Well: 299-E2	25-41			0.6667	- ,		0.00
Te	est Date: Sept	ember 29,	1989		0.7500			0.00
		4:50			0.8333			0.00
					0.9167			0.00
	SE1000B				1.0000			0.00
	Environmental	Logger			1.0833			0.00
	09/29 16:				1.1667			0.00
	09/29 10:	.33						
	11-1-1 00701 7				1.2500			0.00
	Unit# 00701 7	est# 4			1.3333		-	0.00
					1.4166		-	0.00
I	NPUT 1: Level	(F)			1.5000		•	0.00
-					1.5833		•	0.00
Re	eference	0.00			1.6667		-	0.00
S	cale factor	9.99			1.7500		-	0.00
	ffset	0.00			1.8333		_	0.00
	1300	4			1.9167			0.00
E.	lanced Time	Value,			2.0000			0.00
E	lapsed Time,						•	
	min	ft			2.5000		•	0.00
-					3.0000		-	0.00
	0.0000	0.94			3.5000		•	0.00
	0.0033	0.83			4.0000		•	0.00
	0.0066	0.74			4.5000		-	0.00
	0.0099	0.67			5.0000			0.00
	0.0133	0.61			5.5000		-	0.01
	0.0166	0.56		4	6.0000			0.01
	0.0200	0.51			6.5000			0.00
	0.0233	0.46			7.0000		_	0.01
	0.0266	0.42			7.5000			0.01
			•				•	
	0.0300	0.39			8.0000		-	0.01
.1	0.0333	0.36			8.5000		-	0.00
	0.0500	0.24			9.0000		-	0.01
	0.0666	0.17			9.5000		-	0.01
	0.0833	0.12			10.0000		-	0.01
	0.1000	0.09			END			
	0.1166	0.06						
	0.1333	0.05						
	0.1500	0.04						
	0.1666	0.03						
	0.1833	0.02						
	0.2000	0.02						
3	0.2166	0.01						
	0.2333	0.01						
	0.2500	0.01						
	0.2666	0.01						
	0.2833	0.01						
	0.3000	0.00						
	0.3166	0.00						
	0.3333	0.00						
	0.4167	0.00						
	0.5000	0.00						
	0.5833	0.00						
	0.3033	0.00						

DATE AND START TIME OF DATA ACQUISITION 9/29/89 15:55
DATE AND END TIME OF DATA ACQUISITION 9/19/89 15:10
WELL NUMBER _ E25-41
TYPE OF TEST OR DATA slug test
Hermit 1000 B, seniel # 1KB-701
TEST NUMBER 5
CHANNEL OR INPUT NUMBER /
UNITS OF VALUES RECORDED
NUMBER OF PAGES ATTACHED 2
COMMENTS: Fat 5 = Frifting sling
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Name title

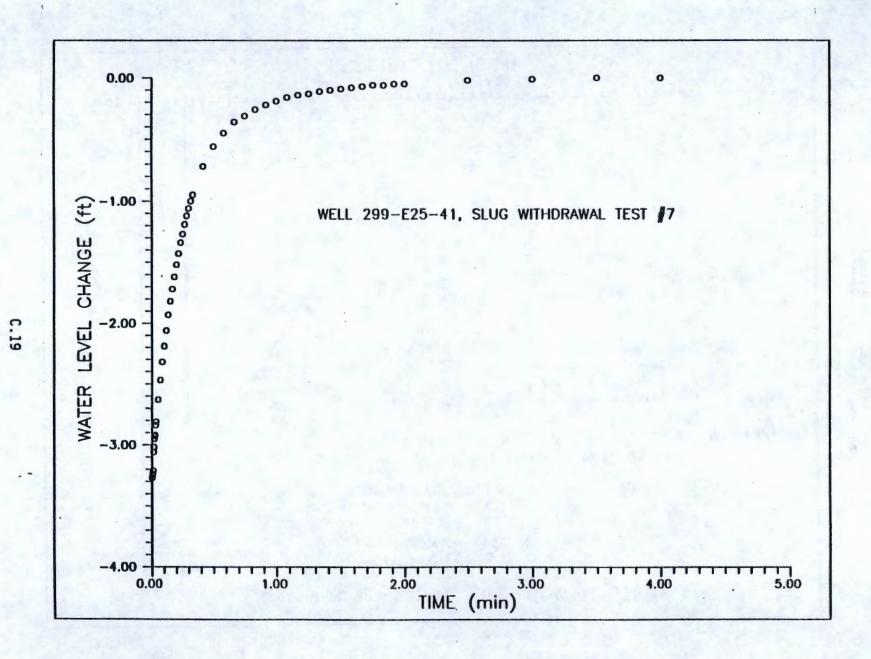

Well: 299-E25-41 Test Date: September 29, 1989	0.5833 0.6667	:	2.56
Start Time: 15:05	0.7500	-	2.53
	0.8333	-	2.52
SE1000B	0.9167	-	2.51
Environmental Logger	1.0000	-	2.49
09/29 16:35	1.0833	-	2.48
W. 14 # 00701 T4 # F	1.1667	-	2.48
Unit# 00701 Test# 5	1.2500	-	2.47
TAIDUT 1. Louis (E)	1.3333	-	2.47
INPUT 1: Level (F)	1.4166	•	2.46
Reference 0.00	1.5000		2.44
Scale factor 9.99	1.6667	-	2.43
Offset 0.00	1.7500		2.42
0.00	1.8333		2.41
Elapsed Time, Value,	1.9167		2.40
min ft	2.0000		2.39
min ic	2.5000		2.32
0.0000 - 4.32	3.0000		
0.0033 - 4.49	3.5000		2.19
0.0066 - 4.34	4.0000		2.17
0.0099 - 4.46	4.5000		2.14
0.0133 - 4.45	5.0000	-	2.02
0.0166 - 4.38	5.5000	-	1.96
0.0200 - 4.29	6.0000		0.03
0.0233 - 4.15	6.5000		0.00
0.0266 - 3.94	7.0000		0.00
0.0300 - 3.84	7.5000		0.00
0.0333 - 3.81	8.0000	-	0.00
0.0500 - 3.63	8.5000		0.00
0.0666 - 3.48	9.0000		0.00
0.0833 - 3.38	9.5000	-	0.00
0.1000 - 3.29	10.0000	-	0.00
0.1166 - 3.22	END		
0.1333 - 3.15			
0.1500 - 3.10			-
0.1666 - 3.06			
0.1833 - 3.02			
0.2000 - 2.98			
0.2166 - 2.95			
0.2333 - 2.86			
0.2500 - 2.83			
0.2666 - 2.80			
0.2833 - 2.78			
0.3000 - 2.76			
0.3166 - 2.74			
0.3333 - 2.72			
0.4167 - 2.65			
0.5000 - 2.60			

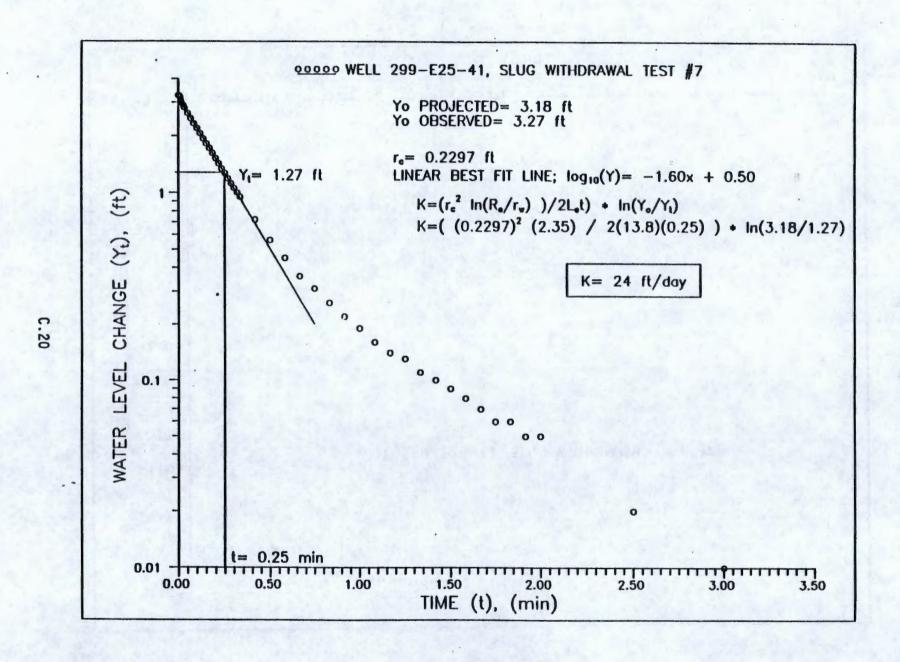
DATE AND START TIME OF DATA ACQUISITION	10/2/89	0826 45
DATE AND END TIME OF DATA ACQUISITION	10/2/89	0536 45.
WELL NUMBER 299- E25-41		San Street
TYPE OF TEST OR DATA Slug Injection	Test .	
TYPE AND IDENTIFICATION NUMBER OF DATA LO Hermit SE 1000 B Serial #		iitu
TEST NUMBER 6		
CHANNEL OR INPUT NUMBER 1		
UNITS OF VALUES RECORDED		
NUMBER OF PAGES ATTACHED 3		
COMMENTS: TEST 6 = Submerse S	lua	
	0	
DATA VALIDATION STATEMENT:		
The attached data represent the data as o data logger. Any exceptions and reasons the comments section.	for such are	indicated in
Name, title	10/3/ Date	189
Name, title	Date	S. L. Strain

	Well: 299-	E25-41		0.5833	0.05
	Test Date: Oct	tober 2,	1989	0.6667	0.05
	Start Time:	08:26		0.7500	0.04
	,			0.8333	0.04
	SE1000	R		0.9167	0.04
	Environmenta			1.0000	0.03
	10/02 14				0.03
	10/02 1	7.76		1.0833	
	11-4-4 00701	T+# C		1.1667	0.03
	Unit# 00701	lest# 6		1.2500	0.02
				1.3333	0.02
	INPUT 1: Leve	1 (F)		1.4166	0.02
				1.5000	0.02
	Reference	0.00		1.5833	0.02
	Scale factor	9.99		1.6667	0.02
	Offset	0.00		1.7500	0.01
				1.8333	0.01
	Elapsed Time,	Value,		1.9167	0.01
	min	ft		2.0000	0.01
				2.5000	0.01
	0.0000	0.81		3.0000	0.01
	0.0033				
		0.81	•	3.5000	0.01
	0.0066	0.81		4.0000	0.01
	0.0099	0.77		4.5000	0.01
	0.0133	0.72		5.0000	0.01
	0.0166	0.94		5.5000	0.00
	0.0200	0.88		6.0000	0.00
	0.0233	0.84		6.5000	0.00
	0.0266	1.01		7.0000	0.00
	0.0300	1.21		7.5000	0.00
	0.0333	1.09		8.0000	0.00
	0.0500	1.21		8.5000	0.00
	0.0666	1.42		9.0000	0.01
	0.0833	1.35		9.5000	0.00
	0.1000	0.61		10.0000	0.00
	0.1166	0.60		END	0.00
	0.1333	0.46		END	
	0.1500				
		0.36			
	0.1666	0.28			
	0.1833	0.23			
	0.2000	0.19			
	0.2166	0.16			
	0.2333	0.14			
	0.2500	0.12			
	0.2666	0.11			
	0.2833	0.10			
1	0.3000	0.09			
	0.3166	0.08			
	0.3333	0.08			
	0.4167	0.06			
	0.5000	0.05			
	0.5000	0.05			

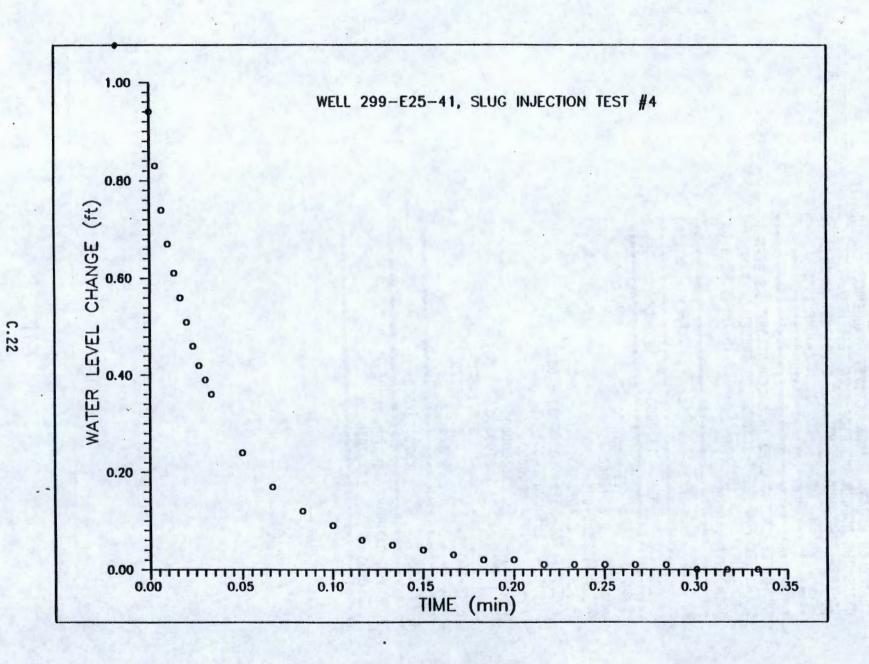

DATE AND START TIME OF DATA ACQUISITION 10/2/89, 0840 hrs.
DATE AND END TIME OF DATA ACQUISITION 10/2/89, 0848 hs.
WELL NUMBER 299 - E25-41
TYPE OF TEST OR DATA Slug Withdrawal Test
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER In Situ Hermat SE1000B Serial # 1kB-701
TEST NUMBER 7
CHANNEL OR INPUT NUMBER
UNITS OF VALUES RECORDED Sect
NUMBER OF PAGES ATTACHED 2
COMMENTS: Test 7 = Lifting slag
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Name, title Scientist 10/3/89 Date
Name, title Date'

	1 Logger	989	0.7 0.8 0.9 1.0	667 500 333 167 000 833 667		0.36 0.31 0.26 0.22 0.19 0.16 0.14
Unit# 00701			1.2	500 333	-	0.13
INPUT 1: Leve	1 (F)		1.5	166 000	-	0.09
Reference Scale factor Offset	0.00 9.99 0.00		1.6 1.7 1.8	833 667 500 333 167		
Elapsed Time, min	Value, ft		2.0 2.5	000	-	0.05
0.0000 0.0033 0.0066 0.0099 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0500 0.0666 0.0833 0.1000 0.1166 0.1333 0.1500 0.1666 0.1833 0.2000 0.2166 0.2333 0.2500 0.2666 0.2833	- 3.27 - 3.27 - 3.24 - 3.21 - 3.06 - 3.02 - 2.95 - 2.93 - 2.92 - 2.84 - 2.81 - 2.63 - 2.47 - 2.32 - 2.19 - 2.06 - 1.93 - 1.82 - 1.72 - 1.62 - 1.52 - 1.43 - 1.27 - 1.19 - 1.12		3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0	000 000 000 000 000 000 000 000		0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.3000 0.3166 0.3333	- 1.06 - 1.00 - 0.95					
0.3333 0.4167 0.5000 0.5833	- 0.95 - 0.72 - 0.56 - 0.45					

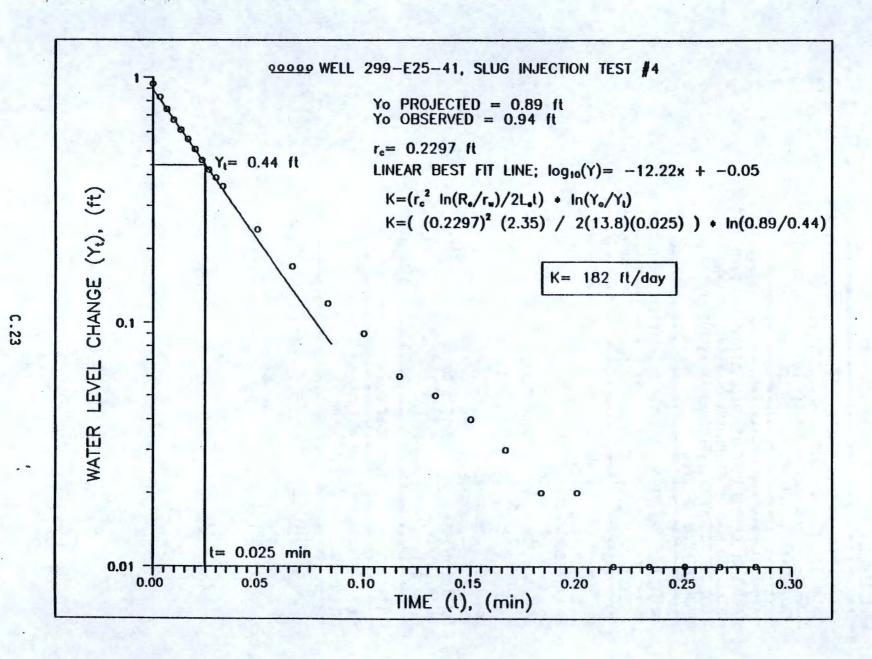



and the latest the same of the


```
WELL 299-E25-41, SLUG WITHDRAWAL TEST #5, Yt SHIFT =1.96 ft
THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
USING THE BOUWER AND RICE SLUG TEST METHOD.
 SOURCE = "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
 *********
RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
Rc (ft) Rw (ft) Le (ft) Lw (ft) H (ft)
  .2297 .3333 13.8000 13.8000 95.0000
************
          41.4000000
A= 2.8792960
B= 4.568365E-001
C=
          2.4968560
SANDPACK POROSITY= 3.000000E-001
t (min)= 2.000000E-001
           5.0000000
1/t=
Yo= (ft) 1.8600
Yt= (ft) 9.600000E-001
                1.8600000
1/t ln(Yo/Yt) = 3.3069920
ln[(H-Lw)/Rw] = 5.4955270
ln(Re/Rw)= 2.3494690
K (ft/day) = 21.3947600
T OF THE SATURATED SCREEN INTERVAL
(ft2/day) = 295.2477000
```

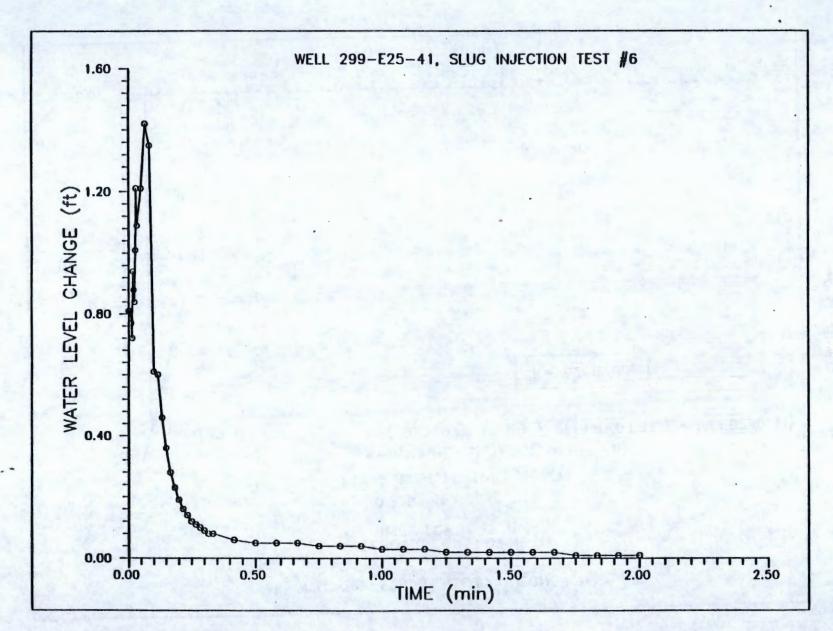


31301871

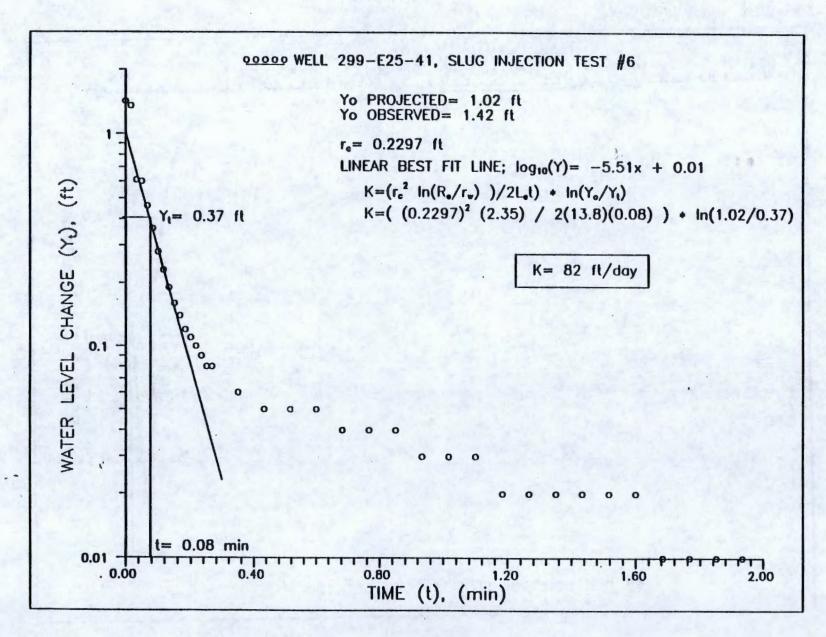
```
WELL 299-E25-41, SLUG WITHDRAWAL TEST #7
 THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
 USING THE BOUWER AND RICE SLUG TEST METHOD.
 SOURCE= "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
 RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
 CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
 PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
 OPEN INTERVAL OF WELL.
Rc (ft) Rw (ft) Le (ft) Lw (ft) H (ft)
 .............
  .2297 .3333 13.8000 13.8000 95.0000
 ********
Le/Rw = 41.4000000
A= 2.8792960
B= 4.568365E-001
 C= 2.4968560
 SANDPACK POROSITY= 3.000000E-001
 t (min)= 2.500000E-001
1/t= 4.0000000
Yo= (ft)
Yt= (ft)
                3.1800000
Yt= (ft) 1.2700000


1/t ln(Yo/Yt)= 3.6714570

ln[(H-Lw)/Rw]= 5.4955270

ln(Re/Rw)= 2.3494690
K (ft/day) = 23.7527200
T OF THE SATURATED SCREEN INTERVAL
(ft2/day)= 327.7876000
```




29


```
WELL 299-E25-41, SLUG INJECTION TEST #4
 THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
 USING THE BOUWER AND RICE SLUG TEST METHOD.
SOURCE= "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
 GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
Rc (ft) Rw (ft) Le (ft) Lw (ft) H (ft)
  .2297 .3333 13.8000 13.8000 95.0000
 *************
           41.4000000
Le/Rw =
A= 2.8792960
B= 4.568365E-001
C=
           2.4968560
SANDPACK POROSITY= 3.000000E-001
t (min)= 2.500000E-002
1/t=
          40.0000000
Yo= (ft) 8.90000E-001
Yt= (ft) 4.40000E-001
Yt= (Tt)
1/t ln(Yo/Yt)= 28.1778700
1/t ln(Yo/Yt)= 5.4955270
            2.3494690
ln(Re/Rw) =
K (ft/day) =
                  182.2982000
T OF THE SATURATED SCREEN INTERVAL
(ft2/day) = 2515.7150000
```


C.26

```
WELL 299-E25-41, SLUG INJECTION TEST #6
THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
USING THE BOUWER AND RICE SLUG TEST METHOD.
SOURCE- "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
********
RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
Rc (ft) Rw (ft) Le (ft) Lw (ft)
 .2297
        .3333 13.8000 13.8000
                                    95,0000
Le/Rw =
         41.4000000
A= 2.8792960
B= 4.568365E-001
C=
         2.4968560
SANDPACK POROSITY= 3.000000E-001
t (min)= 8.000000E-002
1/t=
        12.5000000
Yo= (ft)
              1.0200000
Yt= (ft) 3.700000E-001
1/t ln(Yo/Yt)=
                  12.6756900
                   5.4955270
ln[(H-Lw)/Rw]=
ln(Re/Rw) =
               2.3494690
**********
K (ft/day) = 82.0060400
T OF THE SATURATED SCREEN INTERVAL
(ft2/day)= 1131.6830000
```

APPENDIX D

TEST DATA AND ANALYSIS FOR WELL 299-E27-12

APPENDIX D

TEST DATA AND ANALYSIS FOR WELL 299-E27-12

This appendix contains the as-built diagram for the well construction,
Slug Test Record Form, Aquifer Test Data Sheets, Equipment Record Forms,
Electronic Data Control Forms, and accompanying data logs and plots for well
299-E27-12.

AS-BUILT DIAGRAM

eviewed by Mc Mc Sh	<u>u-</u>		Date	-89	
Construction I	Data	Depth	Geologic/Hydrologic Data		
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description	
emporary 100 carbon ste	上表表	5		Grand Sano	
my w/ drive shoe from	- 8 2	10		h	
o' to - 127'z'	-	15		Gravelly Strong +	
	X X	20	υ .υ	Gravelly SAND	
poren 8 6 cerbon steel		25		, n	
ing w/ drive shoe from	777	30	0	98	
" to 268'7"	- 111	35		Sed	
 	14; 17	40		le .	
10 . 32' of 4' DIA	- 1:03	45			
MINLESS STEEL CASING	- 1	50		h	
	- 100	55		10	
	- 1	60		p.	
	- 1: 4	65		n	
	-	10			
		75		Granelly SAND	
CTORY WELDED CASING		80		11	
CENTARLIZER	-	85		h	
	- 1	90		h	
	- 3	95		41	
	- 1	160		h	
	- 1	105		11	
	- 1	110		n .	
	- 3	11.5		[(* - * _j	
	- 111	120	0.4	SAND	
	- (6)	125	0.00	Granolly SAND (cobbles)	

	Battelle
-	Pacific Northwest Laboratories

AS-BUILT DIAGRAM

Well Number	299-E27-1Z	Geologist	R.H.IL	Page Z of 3
		- deologist		. 090 01

Reviewed by 72 Mc Slee _____ Date _12 -7 - 79

Construction Da	ita	Depth	G	eologic/Hydrologic Data	
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description	
Emporary B'd combon steel -	1 1	135		SAND (st. cometed)	
osing w/ drive shor from		140		st grandly SAND	
36" to 268'7"(272'1)	1	145			
		150		jt.	
	1 1	155		11	
		160	0 0 0 0	SANDY GRAVEL	
	1 31	165		st. granelly SAND	
250.32 of 4" DIA.		170		SAND	
TAINLESS STEEL CASING	, .1	175		11	
		180		11	
→ 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1		185		(I	
		190		11	
41		195		11	
	1 .1	200		11	
	1 3	205		h	
		210		h	
	1 . 1	2.5		h	
	1	220			
		225		н	
	1	230	1010101	Muddy Sandy GRAVEL	
	1 1	235	6.0	Sendy GRAVEL	
	1 1	240	0	n	
	1 1 1	245	2	m -	
11.03 of 4" DIA CHANNEL	252		6/8/64	Mudely Sandy GRAVEL	
PACK SCREW (10 567)	22	255	10000	" (wet)	
		260	000000	Soudy GRAVEL	

FUL - MASUT, CO-1, Per 0

-	Battelle	
	Pacific Nontwest Laboratories	

AS-BUILT DIAGRAM

Well Number 299-E27. Reviewed by U.T. Mc Sha			P. Miller Date 12-7	Page <u>3</u> of <u>3</u>		
Construction Data		Daret	Geologic/Hydrologic Data			
Description	Diagram	Depth in Feet	Diagram Litho.	Lithologic Description		
fram 156" to 208'7" (272'1")		245	000	Sounding GRAVEL		
21.03' OF 4' DIA. STAINLESS STEEL CHANNEL PACK SCREEN				T.D. = 270.0 ' CAMPUETION DEPTH = 267.55'		
COMPLETION SYMBOLS						
GRANDLAN BENTONITE						
SILICA SAND						
CASING CEMPALIZER CASING JOINT						
			-			

How W L.'s Measured Etan 12174

Rad./Dist. of/From Pumping Well _

Type of Aquifer Test___ How C Measured

Location 200 East Am, Clunk Farm

Data for Well	299-E27-12
Pumping Well	
Observation W	/eils —

Depth of Pump/Airpipe_

Pump On: date___ Pump Off: date __

	ation o	1 1416	85.	FUIL	/		2 6	U	uration	of Aq	uiter	rest_	
-			_	50	ind -c	7	3 -7			0 %	-0	10	
t =		me _ at	t' =		Water Level Data Static Water Level					Disch	Discharge		Comments
Day	Clock Time	t	t'	v1'	Reading	Conversions or Corrections	Water Level	s or s'		Read-	Q	Rec	
						-						JUB	skl tage 1300-14
													E-tane 1=174
					dr								DL= 1K2 701
													ram 259158
0/10	1357				255.95	E-tage							
1					260	E-tage	2.47	1 =	271.	7			bentonile in halo
	1420				14.98	trans							
	H211				14.98	rel. se	1						
		1				0							
	1425				Start	des+4	26	ec i	riect	20			
	1436				Stopp	of lest 4		1					
					14.99	trans	14	1 ~ 7	-				
	14391				Hand	- LEST 5		blue	w/	5			
	1449				.01	5-100		Vest.	5				
	1450				15.00	not a							
	1453				stan	+ Cent	6	de	···	ins			
	1503		i		0.00	Shop	-0 .	-		13			
	1506					not lest	7	0	ue	W/5	,		
	1516				0.0				0			ال	
327	1516:30				4/072	red de	o+ 7	- De	dlie		466	1 .	und Trans.
	i				/1	n	an ho	we de	24	Tars.	10.	Ks !	during tot ?
						•	1		7		7	7	
hal	0733	\dashv		-	15.11	and the second s						DRN	trans.
	0738					Slua bela	stor	50 00	4- 10-	-1		- N/V	,,,,,,
	0739				15.14'		Ø			b 0.0			
11													
	0743					Pull Slug							
1	753					Stop data	-						
							22					V	
V	0800				Withd	rav a b	ail l	pad	to ex	tract	cod	se ~	aterial . If bottom
-			-										
		+		-					2				
		1								1000	1 11		net 10/20/89

PNL-MA-567, AT-6, Rev. P

Equipment Record Form for the Installation and Removal of Data Loggers and Pressure Transducers

Initial Check:	TO LAR		
Purpose of Installation:	itered WL Slux test	changeo	during
Monitored Hydrologic Unit o	or Water Body:		
Date/Time of Installation:	10/19/89 1330	Procedure	Followed: WL-4
Data Logger Make/Model:	Hermit SE10	008	
Serial No.: 1×8-701	Number of Chan	nels Used:	1
Pressure Transducer	Full Scale Ran	ge: 1025	Well No.: 299-83
Make/Model: Ja Sita PTx 160	Serial No.: 2	Depth: 14.9 below 2	
Pressure Transducer	Full Scale Ran	Well No.:	
Make/Model:	Serial No.:	Depth:	
Description of Data Logger	Colore Loc	~a	Siir Igai aaroiis
Comments:			
Equipment Installed By	J. V. Borghoe		WIL
Date/Time of Equipment Remo	val: D. Logge	roma 10/2	0 21500
Decontamination Procedure (if required):		
Equipment Removed By	Boshese		

Location C -	TAUKS	Date of Test	10/19/89
Well Number 29	9- 527-12	Procedure Number_	AT-6
Type of Test(s)	She	}	
Personnel Conducti	ng Test	orghese	
	WE	LL CONFIGURATION	
Weil Depth 2	71.5 TOC	Borehole Diameter	8"
Well Casing Inside Diameter	4 -	Well Screen Inside Diameter_	4"
Length of Screened	Interval 10.	Depth of	Screen <u>25/- 2 ≠/</u>
Comments Well	is under	ve lope d	The state of the state of
Length of Slug			2.25 "
Volume of Attachme	nts (if applicabl	e)	
	MEASUREMEN	T EQUIPMENT INFORMA	TION
	Make	Mode1	Serial Number
Electric Tape			
Steel Tape	see	agunga	set form
Data logger	and	egup	,2012
Transducer	for	n.	
Other	U		T.0
			JUB 10/20/89

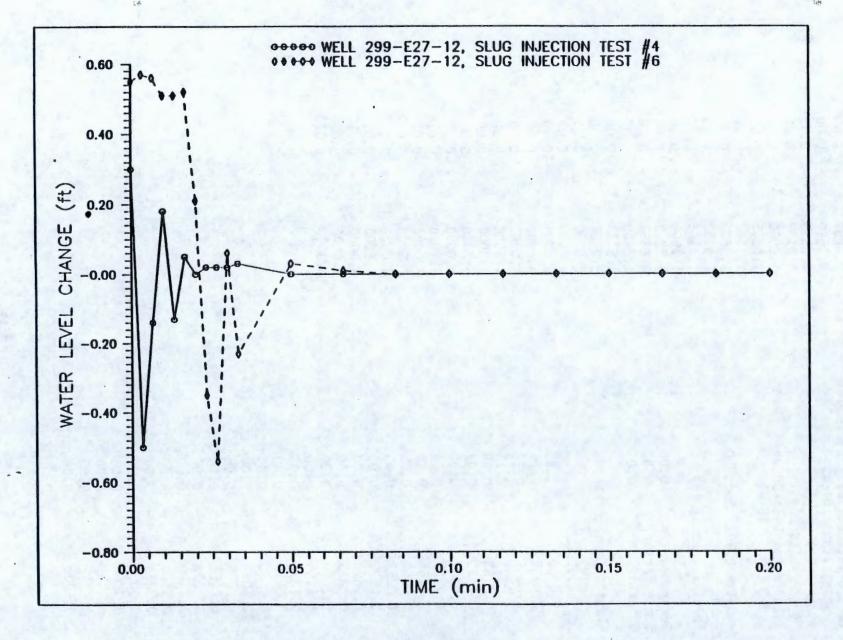
DATE AND END TIME OF DATA ACQUISITION "1436 WELL NUMBER 29-E27-12 TYPE OF TEST OR DATA 5/45 injection TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER Henrit SE,000B IKB-701 TEST NUMBER X 4 CHANNEL OR INPUT NUMBER UNITS OF VALUES RECORDED 4+ from ref. kinel NUMBER OF PAGES ATTACHED Z COMMENTS: Standal DL Jake	DATE AND START TIME OF DATA ACQUISITION 10/19/89	1425
TYPE OF TEST OR DATA		1436
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER Hermit SE1000B IKB-701 TEST NUMBER X 4 CHANNEL OR INPUT NUMBER UNITS OF VALUES RECORDED At from ref. level NUMBER OF PAGES ATTACHED Z COMMENTS: Standal DL Jale DATA VALIDATION STATEMENT:	WELL NUMBER	
TEST NUMBER X 4 CHANNEL OR INPUT NUMBER UNITS OF VALUES RECORDED At from ref. knell NUMBER OF PAGES ATTACHED Z COMMENTS: Started D2 /ale DATA VALIDATION STATEMENT:	TYPE OF TEST OR DATA Slug injection	
CHANNEL OR INPUT NUMBER UNITS OF VALUES RECORDED # from ref. knel NUMBER OF PAGES ATTACHED Z COMMENTS: Standal D2 /ale DATA VALIDATION STATEMENT:		105
UNITS OF VALUES RECORDED At from ref. level NUMBER OF PAGES ATTACHED Z COMMENTS: Started D2 /ale DATA VALIDATION STATEMENT:	TEST NUMBER X 4	
NUMBER OF PAGES ATTACHED 2 COMMENTS: Standal D2 rade DATA VALIDATION STATEMENT:	CHANNEL OR INPUT NUMBER	
DATA VALIDATION STATEMENT:	UNITS OF VALUES RECORDED At from ref. Les	el
DATA VALIDATION STATEMENT:	NUMBER OF PAGES ATTACHED	
	COMMENTS: Startel De lake	
The attached data represent the data as originally recorded on th	DATA VALIDATION STATEMENT:	
data logger. Any exceptions and reasons for such are indicated i the comments section.	the comments section.	
Name, title Seigntit 10/20/99 Date	SuBail Scientist 101-	20/69

Well: 299-E27-: Test Date: October Start time: 14:	r 19, 1989	0.5833 0.6667 0.7500	0.00 0.00 0.00
SE1000B Environmental Log 10/19 16:52	gger	0.8333 0.9167 1.0000 1.0833	0.00 0.00 0.00 0.00
Unit# 00701 Test	t# 4	1.1667	0.00
INPUT 1: Level (F		1.3333	0.00
Scale factor	0.00 9.99 0.01	1.5000 1.5833 1.6667 1.7500	0.00 0.00 0.00
min	lue, ft	1.8333 1.9167 2.0000 2.5000	0.00 0.00 0.00 0.00
0.0033 - 0 0.0066 - 0	0.30 0.50 0.14 0.18	3.0000 3.5000 4.0000 4.5000	0.00 0.00 0.00
0.0133 - 0 0.0166 0.0200	0.13 0.05 0.00	5.0000 5.5000 6.0000	0.00 0.00 0.00
0.0266	0.02 0.02 0.02 0.03	6.5000 7.0000 7.5000 8.0000	0.00 0.00 0.00 0.00
0.0500 - 0 0.0666 0.0833	0.00 0.00 0.00 0.00	8.5000 9.0000 9.5000 10.0000	0.00 0.00 0.00 0.00
0.1166 0.1333 0.1500 0.1666	0.00 0.00 0.00 0.00	END	0.00
0.2000 0.2166 0.2333 0.2500	0.00 0.00 0.00 0.00 0.00		
0.2833 0.3000 0.3166 0.3333	0.00 0.00 0.00 0.00 0.00		
	0.00		

DATE AND START TIME OF DATA ACQUISITION 10/19/89 1439
DATE AND END TIME OF DATA ACQUISITION
WELL NUMBER
TYPE OF TEST OR DATA SING WD
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER
TEST NUMBER
CHANNEL OR INPUT NUMBER/
UNITS OF VALUES RECORDED for from ref. level
NUMBER OF PAGES ATTACHED 2
COMMENTS: 5-tankel & /ale
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Name title Scentist 10/20/87

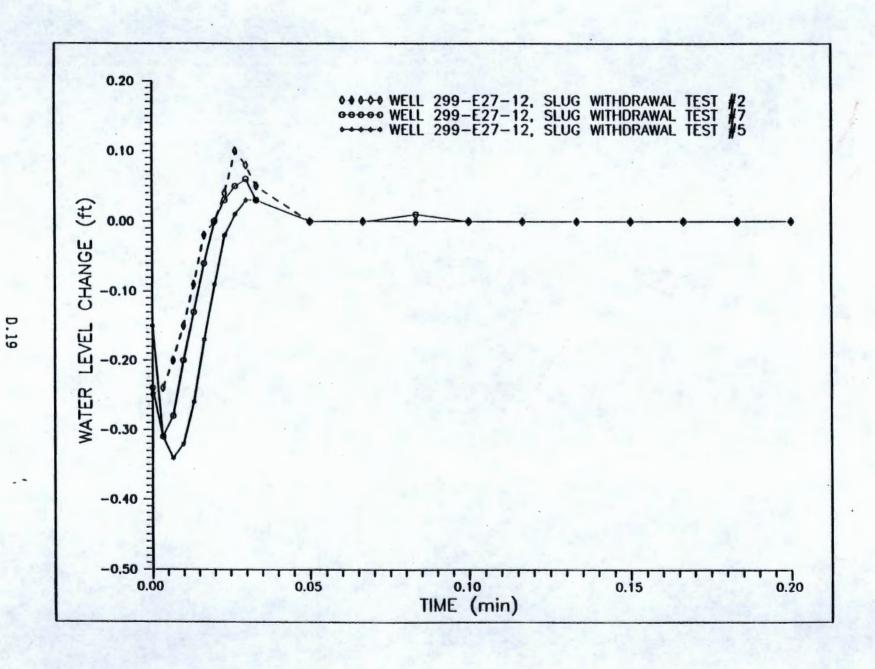
Well: 299-E27-12 Test Date: October Start Time: 14:39 SE1000B Environmental Logg	19, 1989	0.5833 0.6667 0.7500 0.8333 0.9167 1.0000		0.00 0.00 0.00 0.00 0.00	
10/19 16:53	34,000	1.0833	-	0.00	
Unit# 00701 Test#	The state of	1.1667 1.2500		0.00	
011114 00/01 16214	3	1.3333		0.00	
INPUT 1: Level (F)		1.4166	-	0.00	
	00	1.5000	-	0.00	
	.00	1.5833	-	0.00	
	.99	1.6667	-	0.00	
Offset - 0.	.01	1.7500	•	0.00	
F7 77 W-7-		1.8333	•	0.00	
Elapsed Time, Valu		1.9167	-	0.00	
min ft		2.0000	-	0.00	
0.0000	15	2.5000	-	0.00	
	.15 .31	3.0000 3.5000	-	0.00	
	.34	4.0000	-	0.00	
	.32	4.5000		0.00	
	.26	5.0000	_	0.00	
	.17	5.5000		0.00	
	.09	6.0000		0.00	
0.0233 -4: 0.		6.5000		0.00	
	.01	7.0000		0.00	
	.03	7.5000	-	0.00	
	.03	8.0000	-	0.00	
	.00	8.5000	-	0.00	
	.00	9.0000	-	0.00	
	.00	9.5000	-	0.00	
	.00	10.0000	-	0.00	
	.00	END			
	.00				
	.00				
0.1666 - 0.	.00				
	.00				
	.00				
	.00				
	.00				
	.00				
	.00				
	.00				
	.00				
	.00				
	.00				
	.00				
0.3000 - 0.	.00				

DATE AND START TIME OF DATA ACQUISITION 10/4/89 145
DATE AND END TIME OF DATA ACQUISITION
WELL NUMBER 299- E27-12
TYPE OF TEST OR DATA 5 lug injection
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER LINGUIT SE10008 1KB-701
TEST NUMBER
UNITS OF VALUES RECORDED # from ref. level NUMBER OF PAGES ATTACHED Z COMMENTS:
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on to data logger. Any exceptions and reasons for such are indicated the comments section.
J.V. Boylen Sinlit 10/20/97 Jame, title Date
lame, title / Date


	Well: 299-	F27 12		0.5833	0.00
			1000		
	Test Date: Oc		1989	0.6667	0.00
	Start Time:	14:53		0.7500	0.00
				0.8333	0.00
	SE1000	В		0.9167	0.00
	Environmenta			1.0000	0.00
	10/19 1			1.0833	0.00
	10/13 1	0.33			
3	11-144 00701	T		1.1667	0.00
	Unit# 00701	lest# 6		1.2500	0.00
-				1.3333	0.00
	INPUT 1: Leve	1 (F)		1.4166	0.00
				1.5000	0.00
	Reference	0.00		1.5833	0.00
	Scale factor	9.99		1.6667	0.00
	Offset	- 0.01			0.00
	UTTSEL	£ 0.01		1.7500	
				1.8333	0.00
	Elapsed Time,	Value,		1.9167	0.00
	min	ft		2.0000	0.00
				2.5000	0.00
	0.0000	0.55		3.0000	0.00
	0.0033	0.57		3.5000	0.00
	0.0066	0.56			
				4.0000	0.00
	0.0099	0.51		4.5000	0.00
~	0.0133	0.51		5.0000	0.00
	0.0166	0.52		5.5000	0.00
	0.0200	0.21		6,0000	0.00
	0.0233	0.35	0 4	6.5000	0.00
	0.0266	- 0.54		7.0000	0.00
47	0.0300	0.06		7.5000	0.00
4	0.0333	- 0.23		8.0000	0.00
	0.0500	0.03		8.5000	0:00
	0.0666	0.01		9.0000	0.00
	0.0833	0.00		9.5000	0.00
	0.1000	0.00		10.0000	0.00
	0.1166	0.00		END	
	0.1333	0.00			
	0.1500	0.00			
	0.1666	0.00			
	0.1833	0.00			
THE .	0.2000	0.00			
ě	0.2166	0.00			
	0.2333	0.00			
	0.2500	0.00			
	0.2666	0.00			
	0.2833	0.00			
	0.3000	0.00			
	0.3166	0.00			
	0.3333	0.00			
	0.4167	0.00			
	0.5000	0.00		•	

DATE AND START TIME OF DATA ACQUISITION	10/19/89	1506
DATE AND END TIME OF DATA ACQUISITION	10/19/89	1516
WELL NUMBER 299- 627-12		
TYPE OF TEST OR DATA STUE W/		
TYPE AND IDENTIFICATION NUMBER OF DATA L		51
TEST NUMBER 7		
CHANNEL OR INPUT NUMBER/		A PARTY DESIGNATION
UNITS OF VALUES RECORDED	ref.	enel
NUMBER OF PAGES ATTACHED 2		***
COMMENTS: Started Deogram	late	
DATA VALIDATION STATEMENT:		
The attached data represent the data as data logger. Any exceptions and reasons the comments section.	for such are	e indicated in
Jan UBoglos Scientit	10/20	0/89
Name, title /	Date	

Test Date: Oct	27-12 ober 19,	1989	0.5833 0.6667	0.00
Start Time:	15:06		0.7500 0.8333	0.00
SE1000B	2		0.9167	0.00
Environmental			1.0000	0.00
10/19 16			1.0833	0.00
20/22			1.1667	0.00
Unit# 00701	Test# 7		1.2500	0.00
			1.3333	0.00
INPUT 1: Level	(F)		1.4166	0.00
			1.5000	0.00
Reference	0.00		1.5833	0.00
Scale factor	9.99		1.6667	0.00
Offset	- 0.01		1.7500	0.00
			1.8333	0.00
Elapsed Time,	Value,		1.9167	0.00
min	ft		2.0000	0.00
0.0000	0.04		2.5000	0.00
0.0000	- 0.24		3.0000	0.00
0.0033	- 0.31		3.5000	0.00
0.0066	- 0.28		4.0000 4.5000	0.00
0.0133	- 0.20 - 0.13		5.0000	0.00
0.0166	- 0.06		5.5000	0.00
0.0200	0.00		6.0000	0.00
0.0233	0.03		6.5000	0.00
0.0266	0.05		7.0000	0.00
0.0300	0.06		7.5000	0.00
0.0333	0.03		8.0000	0.00
0.0500	0.00		8.5000	0.00
0.0666	0.00		9.0000	0.00
0.0833	0.01		9.5000	0.00
0.1000	0.00		10.0000	0.00
0.1166	0.00		END	
0.1333	0.00			Section 1
0.1500	0.00			
0.1666	0.00			
0.1833 0.2000	0.00			
0.2166	0.00			
0.2333	0.00	a bit		
0.2500	0.00			
0.2666	0.00			
0.2833	0.00			
0.3000	0.00			
0.3166	0.00			
0.3333	0.00	*		
0.4167	0.00			
0.5000	0.00			


DATE AND START TIME OF DATA ACQUISITION 19	20/89 0743 hz
DATE AND END TIME OF DATA ACQUISITION	20/89 0753 hrs
WELL NUMBER 291-E27-12	
TYPE OF TEST OR DATA	
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGI Hermit SE1000 B , S/N 1KB	
TEST NUMBER @	
CHANNEL OR INPUT NUMBER 1 UNITS OF VALUES RECORDED 57 NUMBER OF PAGES ATTACHED 2	
COMMENTS: Test Ø = Withdraw Slu	19
DATA VALIDATION STATEMENT:	
The attached data represent the data as originate logger. Any exceptions and reasons for the comments section.	such are indicated in
Name, title	10/20/89 Date

Well: 299-E27-12	0.583	3 - 0.00	
Test Date: October 20,	1989 0.666		
Start Time: 07:43	0.750	0.00	
	0.833	3 - 0.00	
SE1000B	0.916	7 - 0.00	
Environmental Logger	1.000		
10/20 15:54	1.083		
20/20 20101	1.166		
Unit# 00701 Test# 0	1.250		
Ollifon Corol Testin C	1.333		
INPUT 1: Level (F)	1.416		
INFOT I. Level (1)	1.500		
Reference 0.00	1.583		
Scale factor 9.99	1.666		
	1.750		
Offset - 0.01			
Flores Time Velue	1.833		
Elapsed Time, Value,	1.916		
min ft	2.000		
	2.500		
0.0000 - 0.25	3.000		
0.0033 - 0.24	3.500		
0.0066 - 0.20	4.000		
0.0099 - 0.15	4.500		
0.0133 - 0.09	5.000		
0.0166 - 0.02	5.500		
0.0200 0.00	6.000		
0.0233 0.04	6.500		
0.0266 0.10	7.000	0 - 0.01	
0.0300 0.08	7.500	0 - 0.01	
0.0333 0.05	8.000	0 - 0.01	
0.0500 0.00	8.500	0 - 0.01	
0.0666 - 0.00	9.000	0 - 0.01	
0.0833 0.00	9.500		
0.1000 0.00	10.000		
0.1166 0.00	END		
0.1333 0.00			
0.1500 - 0.00			
0.1666 - 0.00			
0.1833 - 0.00			
0.2000 - 0.00			
0.2166 - 0.00			
0.2333 - 0.00			
0.2500 - 0.00			
0.2666 - 0.00			
0.2833 - 0.00			
0.3000 - 0.00			
0.3166 - 0.00			
0.3333 - 0.00			
0.4167 - 0.00			
0.5000 - 0.00			
0.3000 - 0.00			

D.18

ATSTITUTES.

157

APPENDIX E

TEST DATA AND ANALYSIS FOR WELL 299-E27-13

APPENDIX E

TEST DATA AND ANALYSIS FOR WELL 299-E27-13

This appendix contains the as-built diagram for the well construction, Slug Test Record Form, Aquifer Test Data Sheets, Equipment Record Forms, Electronic Data Control Forms, and accompanying data logs and plots for well 299-E27-13.

AND A	Battelle	
-	Pacine Morthwest Laboratories	

Well Number 29-13 Reviewed by 77-McShe			Inn Kennedy	
Construction Da	ta .	Conth	Ge	eologic/Hydrologic Data
Description	Diagram	Depth in Feet	Diagram Litho.	Lithologic Description
10" Lauch Jeager Conformal (Wing with Live shoe from 0' to 138'-C' 8" Liandle temperary conformation classic control with inche Side Scom 1'62" to 277-12" 255.45" of 4" DIA. STAINLESS STEEL CASING		5 10 15 20 25 20 105 125 13G		Sandy Grand y muchy some Grand Standy stand grand Signify stand grandly so a decorated stand Stand Stand Stand Fraully stand

-	Battelle	
-	Pacific Northwest Laborasories	

Well Number 199-E17-13 Geologist In Kennety Page 2 of 3

Reviewed by V.Z. Milla Date 12-6-89

Construction Data		Depth	G	eologic/Hydrologic Data
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description
35 ' 6 19 " 04 10 " CARSON	4 2 31	1351		Sand
STEEL CASING	7.7	140		- 11
	13	145'		
	IN N	1501		W.
76 '8'19 - of 8 - CARGON	1	155'	D	LINES HARTO Y'AL
STEEL CASING	I.V. M	160	عرب هـ و	Gentil , Sans
	11	165	▽	Share lens win sund
	11	170		\$0.0
99.45 6F 4 - STAINGSS		126		
TEEL CASING	1	1801		5
		185		I liet thy groupily Sant
	11 11	105'		Sightly Gravelly sand
	1,1	175		" " "
		201	4	" " "
	13	135		Sand
	1/	2.151		
	1:23:	215'		Slightly gravelly cans Gravelly Sing
	111	220'		1
	1			Sant
		225		Sant
	11	230		
	1, 1	235'	******	Sant
	1		4 4 4 3 7 7	Soudy Gravel
	7	2451	272000000	" / "
		250	0.000	
		255'	2232	11 11

PNL MAS67 10-1, 184.6

140	Battelle
	Pacific Northwest Laboratories

Pacific Northwest Laboratories				
Well Number 299 - E27 - 1 Reviewed by VZ. West			Tan Kanna Date 12-6	Page 3 of 3
Construction Data		Donah	Ge	ologic/Hydrologic Data
Description	Diagram	Depth in Feet	Diagram Litho.	Lithologic Description
STEEL CASING	7	265 270 275		Samy Grave! Grave! GRAVEL
21' of 4" DIA. STAINLESS . STEEL CHANNEL PARK SEREEN (10 SUT)				C/R = 275. F6 10/9 /29
COMPLETION SYMPOLE:				
CIMENT GROUT GRANULAL BENTONINE PELLETS				
SILICA SAND				
CASING CONTALIZER				
#:	787			
*				
7 4				

PHL MAS67 CO-1, 101.0

Aquifer Test D	ata
----------------	-----

Elevation of Meas. Point .

Location 200 East C Tonk Form	D P	ata for Well 299-E27-13 umping Well bservation Wells
Type of Aquifer Test Slug Tes† How Q Measured	_	
How W.L.'s Measured E tape (s/n 12174), transdu	Depth of Pump/Airp	ipe
Rad/Dist of From Pumping Well 2"	Pump On: date	time
Meas. Point for W.L's Top of 4" casing	Pump Off: date	time

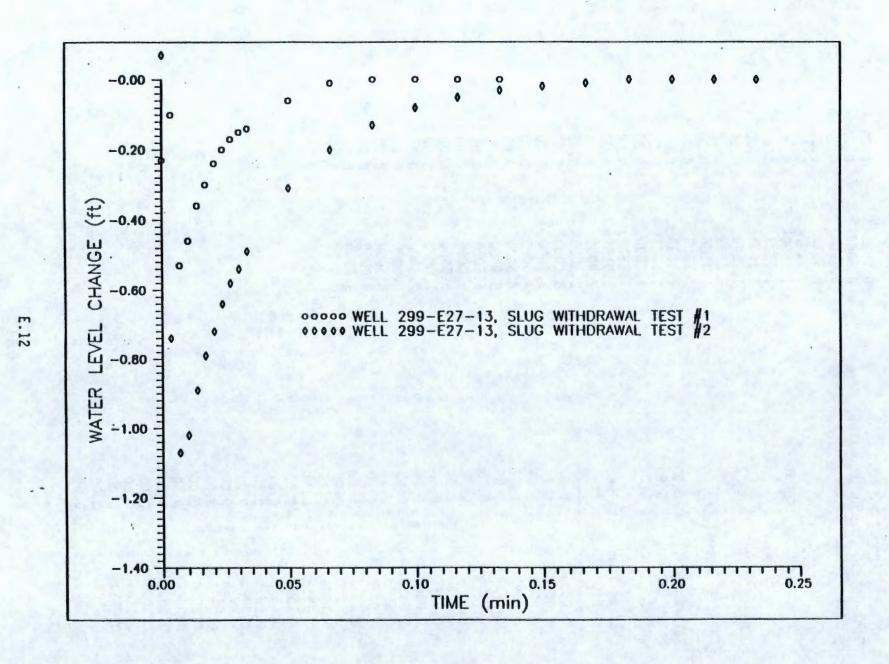
Duration of Aquifer Test

t =		ime	4.7.6		static	Water Level Data Static Water Level			Dischi	arge	rded	Comments	
	Clock Time					Conversions or Corrections	Water	s or s'		Dischi Read-	d	Reco	Comments
0/20	0820											DRN	Set up rig
	0826				262.34								E-tope
	2832					273.704	.47'=	276.	17'				Steel tape # L 300-
1													
1	2540				Set	slug belo	n st	stic a	afer				
	0844				13.86	set ref	=0	Test	# 1				Trens.
	0946					Pull Slug							
	0956					Ston datold	ager						
					set slu	g below s	tute	-ote-					
	0857	343				Rf=0		+ = 2					Trons.
1	0900					Re11 5/49							
	0910			-14		Stop test							
1													
*	0225				With	from a bai	1 load					*	
					-								
											-,,		
	1								2	2	-		
									Dur	2	VU	wo	mly 10/20/49
_											-		
											_		
_													
				-					N-11		-		
_		-											The state of the s
-			-	_			-						
-											-		
-			-	-									
			_					-					
-											-	-	
-		-	-								-		
			-								-	-	
	•		-								-		
		-	-					-					
- 1													

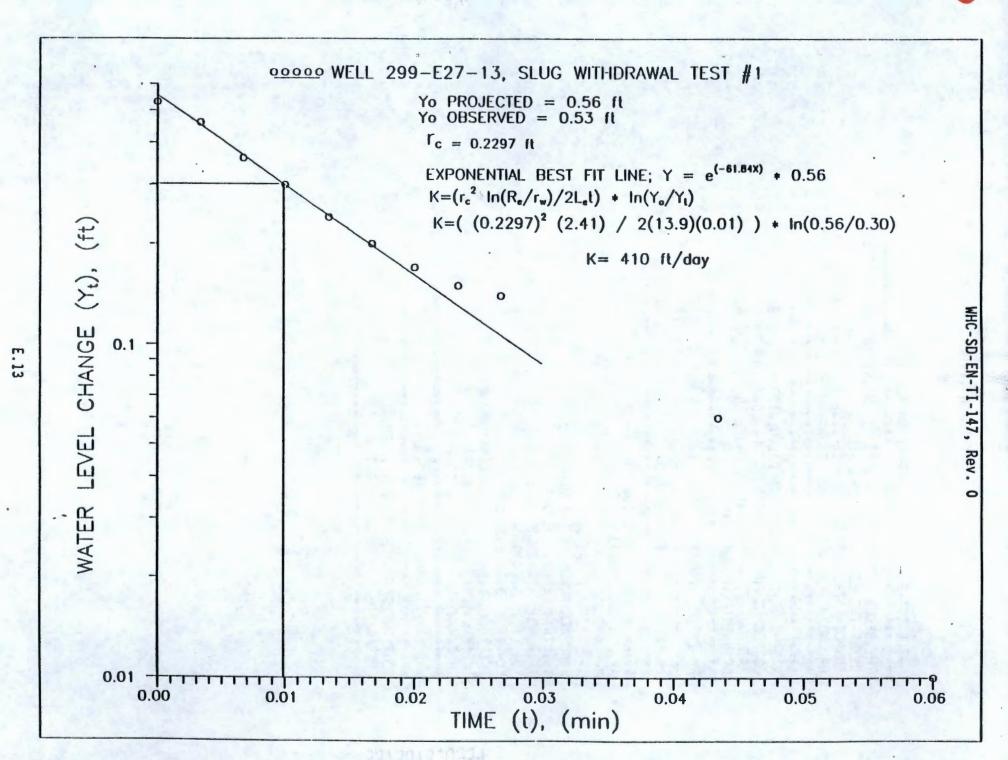
	. , .	Date of teat	7-101
Well Number 29	9-627-13	Date of Test	PNL-M4-567 AT-6 Rev 0
			71. 0 1 1/100 P
		al Test	
Personnel Conducti	ing Test D.R. N	ewcomer	
2	WEL	L CONFIGURATION	
Well Depth 274.37	7' below land surface	Borehole Diameter_	8"
Well Casing Inside Diameter	4"	Well Screen Inside Diameter	4 "
Length of Screened	i Interval 13.91 (bel	ow water Depth of So	reen 274.64'-25
Comments Well			
	SL	UG INFORMATION	
Slug Construction	Materials Con	rbon steel	
	*	rbon stee! Diameter of Slug 2	'4 "
Length of Slug	*	Diameter of Slug 2	'& "
Length of Slug	6.0'	Diameter of Slug 2	
Length of Slug	6.0'	Diameter of Slug 2	
Length of Slug	6.0'	Diameter of Slug 2	
Length of Slug	6.0' ents (if applicable MEASUREMENT Make	Diameter of Slug 2 E) EQUIPMENT INFORMATION Model	ON Serial Number
Length of Slug	6.0' ents (if applicable MEASUREMENT Make	Diameter of Slug 2 E) EQUIPMENT INFORMATION Model 51453	ON Serial Number
Length of Slug Comments Volume of Attachme	6.0' ents (if applicable MEASUREMENT Make	Diameter of Slug 2 E) EQUIPMENT INFORMATION Model	ON Serial Number
Length of Slug Comments Volume of Attachme	6.0' ents (if applicable MEASUREMENT Make Slope Indicator	Diameter of Slug 2 E) EQUIPMENT INFORMATION Model 51453	ON Serial Number 12174
Length of Slug Comments Volume of Attachme Electric Tape Steel Tape	MEASUREMENT Make Slope Indicator Lufkin	Diameter of Slug 2 EQUIPMENT INFORMATI Model 51453 Super-Hiway Nubian	ON Serial Number 12174 L300-14

Darrell Newcones 10/20/89

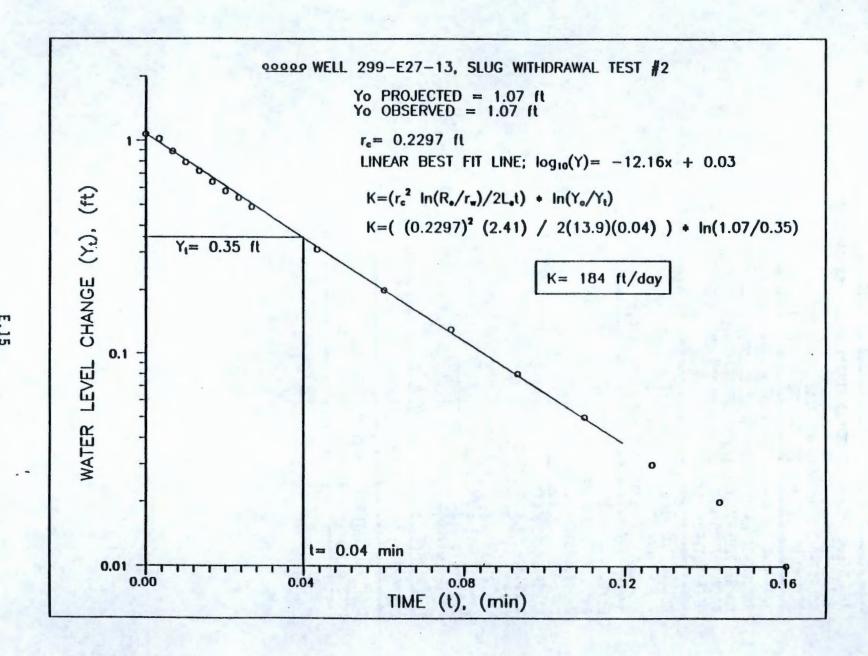
Equipment Record Form for the Installation and Removal of Data Loggers and Pressure Transducers


Initial Check: Purpose of Installation: To monitor slug withdrawal test response Monitored Hydrologic Unit or Water Body: Uppermost Unconfined Aquifer Procedure Followed: WL-4 Date/Time of Installation: 10/20/89 0840 hrs. Data Logger Make/Model: In Situ ISE1000 B Serial No.: 1KB-7Ø1 Number of Channels Used: Full Scale Range: 10 ps; Well No.: 299-E27-13 Pressure Transducer Make/Model: Depth: _274.4' below LS. Serial No.: 259198 Druck / PTX-161D Pressure Transducer Full Scale Range: Well No .: Make/Model: Serial No.: Depth: Description of Data Logger Installation and Well Head Configuration: Stickup of 4" casing is 1.8' above land surface. Comments: Slug was positioned above the water before placing transducer down to the bottom of the well. Slug was then lowered into position below water. Coment pad has not been poured yet. Equipment Installed By D. R. Newcomer Date/Time of Equipment Removal: 10/20/89 0915 hs. Decontamination Procedure (if required): Equipment Removed By D. R. Newcomer

DATE AND START TIME OF DATA ACQUISITION 10/20/89 0846 hrs.
DATE AND END TIME OF DATA ACQUISITION 10/20/89 0856 45.
WELL NUMBER 299 - E27-13
TYPE OF TEST OR DATA
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER
TEST NUMBER _/
CHANNEL OR INPUT NUMBER/
UNITS OF VALUES RECORDED _ ft
NUMBER OF PAGES ATTACHED 2
COMMENTS: Test 1 = Witndraw Slug
and the state of t
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on t data logger. Any exceptions and reasons for such are indicated the comments section.
Name, title Scientist 10/20/89 Date
Name, title Date


Well: 299-E27-13 Test Date: October 20, 1989	0.5833 0.6667	0.00
Start Time: 08:46	0.7500 0.8333	0.00
SE1000B	0.9167	0.00
Environmental Logger	1.0000	0.00
10/20 15:57	1.0833	0.00
	1.1667	0.00
Unit# 00701 Test# 1	1.2500	0.00
0111611 00701 163611 1	1.3333	0.00
INPUT 1: Level (F)	1.4166	0.00
Into 1. Level (1)	1.5000	0.00
Reference 0.00	1.5833	0.00
Scale factor 9.99	1.6667	0.00
Offset - 0.01	1.7500	0.00
011361	1.8333	0.00
Elapsed Time, Value,	1.9167	0.00
min ft	2.0000	0.00
min ic	2.5000	0.01
0.0000 - 0.23	3.0000	0.01
0.0033 - 0.10	3.5000	0.00
0.0066 - 0.53	4.0000	0.01
0.0099 - 0.46	4.5000	0.01
0.0133 - 0.36	5.0000	0.01
0.0153 - 0.30	5.5000	0.01
	6.0000	0.01
	6.5000	0.01
0.0266 - 0.17	7.0000	0.01
0.0300 - 0.15	7.5000	0.01
0.0333 - 0.14	8.0000	0.01
0.0500 - 0.06	8.5000	0.01
0.0666 - 0.01	9.0000	0.01
0.0833 - 0.00	9.5000 10.0000	0.01
0.1000 0.00		0.01
0.1166 0.00	END	
0.1333 0.00		
0.1500 0.00		
0.1666 0.00		
0.1833 0.00 0.2000 0.00		
0.2000 0.00 0.2166 0.00		
0.2333 0.00		
0.2500 0.00 0.2666 0.00		
0.2883 0.00		
0.3000 0.00		
0.3166 0.00		
	•	
0.3333 0.00		
0.4167 0.00		
0.5000 0.00		

DATE AND START TIME OF DATA ACQUISITION	0/20/5	9:00
DATE AND END TIME OF DATA ACQUISITION		
WELL NUMBER 299- E27-13		
TYPE OF TEST OR DATA Slug Test		
TYPE AND IDENTIFICATION NUMBER OF DATA LOGG Hermit SE1000 B , S/N 1K		itu
TEST NUMBER 2		Section of
CHANNEL OR INPUT NUMBER		
UNITS OF VALUES RECORDED		
NUMBER OF PAGES ATTACHED 2		
COMMENTS: Test 2 = Withdraw Slug		
DATA VALIDATION STATEMENT:		
The attached data represent the data as original data logger. Any exceptions and reasons for the comments section.	jinally red r such are	corded on the indicated in
Darrell Newcomer Scientist	10/2 d	/89
Name, title	Date	


Well: 299-E27-13	0.5833	0.00
Test Date: October 20, 1989	0.6667	0.00
Start Time: 09:00	0.7500	0.00
	0.8333	0.00
SE1000B	0.9167	0.00
Environmental Logger	1.0000	0.00
10/20 15:59	1.0833	0.00
10/20 10:05	1.1667	0.00
Unit# 00701 Test# 2	1.2500	0.00
Office Government L	1.3333	0.00
INPUT 1: Level (F)	1.4166	0.00
INFOI 1. LEVEL (1)	1.5000	0.00
Reference 0.00	1.5833	0.00
	1.6667	0.00
Offset - 0.01	1.7500	0.00
P1	1.8333	0.00
Elapsed Time, Value,	1.9167	0.00
min ft	2.0000	0.00
	2.5000	0.00
0.0000 0.07	3.0000	0.00
0.0033 - 0.74	3.5000	0.00
0.0066 - 1.07	4.0000	0.00
0.0099 - 1.02	4.5000	0.00
0.0133 - 0.89	5.0000	0.00
0.0166 - 0.79	5.5000	0.00
0.0200 - 0.72	6.0000	0.00
0.0233 - 0.64	6.5000	0.00
0.0266 - 0.58	7.0000	0.00
0.0300 - 0.54	7.5000	0.00
0.0333 - 0.49	8.0000	0.00
0.0500 - 0.31	8.5000	0.00
0.0666 - 0.20	9.0000	0.00
0.0833 - 0.13	9.5000	0.00
0.1000 - 0.08	10.0000	0.00
0.1166 - 0.05	END	0.00
0.1333 - 0.03	LIND	
0.1500 - 0.02		
0.1666 - 0.01		
0.1833 - 0.00		
0.2000 - 0.00		
0.2166 - 0.00		
0.2333 0.00		
0.2500 0.00		
0.2833 0.00		
0.3000 0.00		
0.3166 0.00		
0.3333 0.00		
0.4167 0.00		
0.5000 0.00		

12 130 13 026


```
WELL 299-E27-13, SLUG WITHDRAWAL TEST #1
THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
USING THE BOUWER AND RICE SLUG TEST METHOD.
SOURCE- "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
************
RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
Rc (ft) Rw (ft) Le (ft) Lw (ft)
                                     H (ft)
 .2297 .3333 13.9100 13.9100 50.0000
***********
         41.7300000
Le/Rw =
A=
         2.8929200
B= 4.568365E-001
C=
         2.4968560
SANDPACK POROSITY= 3.000000E-001
t (min) = 1.000000E-002
        100.0000000
1/t=
Yo= (ft) 5.600000E-001
Yt= (ft) 3.000000E-001
1/t in(Yo/Yt)=
              4.6846280
ln[(H-Lw)/Rw]=
                2.4072070
ln(Re/Rw) =
                410.4576000
K (ft/day) =
T OF THE SATURATED SCREEN INTERVAL
(ft2/day)= 5709.4660000
```


331301U 1829

```
WELL 299-E27-13, SLUG WITHDRAWAL TEST #2
THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
USING THE BOUWER AND RICE SLUG TEST METHOD.
SOURCE- "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
**********
RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
Rc (ft) Rw (ft) Le (ft) Lw (ft)
.2297 .3333 13.9100 13.9100 50.0000
          41.7300000
Le/Rw =
A= 2.8929200
B= 4.568365E-001
C=
          2.4968560
SANDPACK POROSITY= 3.000000E-001
t (min) = 4.000000E-002
         25.0000000
1/t=
Yo= (ft)
               1.0700000
Yt= (ft) 3.500000E-001
1/t \ln(Yo/Yt) = 27.9370200
\ln[(H-Lw)/Rw] = 4.6846280
in[(H-Lw)/Rw]=
in(Re/Rw)=
                 2.4072080
K (ft/day) = 183.7176000
T OF THE SATURATED SCREEN INTERVAL
(ft2/day) = 2555.5120000
```

APPENDIX F

TEST DATA AND ANALYSIS FOR WELL 299-E27-14 LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

Sale !

APPENDIX F

TEST DATA AND ANALYSIS FOR WELL 299-E27-14

This appendix contains the as-built diagram for the well construction, Slug Test Record Form, Aquifer Test Data Sheets, Equipment Record Forms, Electronic Data Control Forms, and accompanying data logs and plots for well 299-E27-14.

Battelle
 Pacific Northwest Laboratories

Description Description Peran 10" dia carban = 1 casina from 137'-7"	Diagram	Depth in Feet 5 10 15 20 25	Diagram Litho.	Lithologic Description Muddy SAND ** Sandy SAND ** Character SAND Sandy GRAVEL
mporam 10" dia carbon =		5 10 15 20 25	Litho.	Muddy SAND
el cosing from		16 15 20 25		
el cosing from		20 25	0	
		20	0	
		25	0 0	
	5	25	0	
	42/1/2			В
"cachin sted temp	1 1	30	0	ti
in the 11-1 + 267.1'	11: 17	35	000000	lı .
0	11: 31	40		и
	1 13 32	45		SAND
	1,00		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	48-47 SIGNTY MUCH SAND - WET
	0: 3	50		N
		55		le .
	1 4 \	60		
	1 N	65	3.3.3.3	- 12
		70	0.00	Sady GRAVEL
		75	0 0	
		80	00000	* "
		85	2	* ',
	111	90		GRAEUT SAND
	150	95		SAND (CLAY LEVE 94's 94.
		100		Slightly Muddy SAND
		105		SAND
	1111	110		SAND
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	115		SAND
	1	120		SAND
	13 61	125		SAND

PNL - MA - 567 DO - 1 , PEV. 0

1	Battelle
	Pacific Northwest Laboratories

Well Number 299-E27-14 Geologist M. Lubracht Page 2 of 3

Reviewed by 77 Nuclear Date 12-7-89

Construction Data		Geologic/Hydrologic Data			
Description Diagram		Depth in Feet	Diagram Litho.	Lithologic Description	
		135		SAIO	
10°@ 137'-7"		140		stightle grant SAND	
		145		Gravely SANO	
		150		SANO	
	1,4 1,4	122			
	1. 1	160	•	Slightly grantly SAND	
	انن	165		SAND	
	1, 1	170		gravelly SANO	
	1.	175			
	1: 11	190		- H	
how shall top		195			
		190			
		195		•	
8' of 4" Type 304,	11111	200		Sl. gnelly Sam	
Stainless Steel	13	245		SAND	
		210		SAND	
		215		SAND	
		220			
	14	225		*	
	k) '\	230		modely sendy benee	
	1	235		Sent GRANL	
		240			
	(245		Mardly Sandy Grand V 8/- = 249.81	
		250		Sandy Grame	
		25		и	
4567,00-1, Revo		260		Grewlly SAND	

-	Battelle
	Pacific Northwest Laboratories

Reviewed by 75% mullis			Date 12-7	-84			
Construction Date		Depth	Geologic/Hydrologic Data				
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description			
Fad 8" con ; e 267.1'		265		Sand -			
TDe 266.05'				T.D. = 266.8			
1 of 4" DIA. 10 SLOT				COMPLETION DEPTH = 266.			
HANNEL PACK SCREEN							
(STAINLESS STEEL)							
DMPLETION SYMBOLS:							
CEMENT GROUT							
11 GRANULAL BENTONITE							
BENTONITE PELLETS		-					
CASING JOINT							
D CASING CENTRALIZER							
		-					
2							
				-			

DNL - MA - 567 07 - 1 . TK V . 0

Aguifer Test Data W

C-SD-EN-TI-147, Rev. 0

page	1	of		_
Data fo	r Well	299.	£27-14	
Pumpir				
Observ	ation V	Valle -		

oca	tion	200	Ea	st	C Ta	nk Farm					F	um	pin	r Well 299-E27-14 ng Well — nation Wells —
Гуре	of Ac	uifer	Tes	st	5/49 -	rest	_				•	7036	• •	THOI WENS
woi	Q Me	asur	ed_	-							•			
low	W.L.	s Me	asu	red 4	E-tape ((N 12174) 1	runsd							
(ag	/Dist.	OF F	rom	Pun	nping We	2"								time
Mea	s. Poi	nt for	W.	L's.	Top of	4" casing		P	ump 0	ff: date	_		_	time
lev	ation (of Me	eas.	Poin	t	ft. above g		, D	uration	of Aq	uifer	Test	=	
			" 20	sing	15 055				ce		_	-	-	
t	Time = at t' = 0			= 0	Static	Water Level	ta		Disch Read-	arge	orded	By	Comments	
Day	Clock Time	t	t.	vi	Reading	Conversions or Corrections	Water Level			Read- ing	a			
10/20	0945				250.17							DRI	N	E-tope
-	0956				D/B =	263.70+2	47' =	266.1	7'			,		Meed to verify this mea
1						SARRI	tape =	4300	14					
1	1017				Set	tronsducer		_		ktat.z	was	er		slua is completely sub
+	1			T								1		
+	1018				16.98'	50+	25 5:0		Test #	2		1		Trans
+	1020			-	170.18	Pull Slug					10	1		
+	1030					Ston date	100	1	31190	114 14	-			
+	1030			-	7.4				-			1		che y a datale a la
+			-	-	-	Slug belo				1,				Slug is completely subm
+	1032		-		16.98"	Sct refo	0	76	5+ #				-	trons
+						5 51			1					
+	1035			-		Pull Sing			(ate)			1	-	
+	1047					Step dat							-	
-				_	16.95	1	Tes	# # 5						
1	1052					Pull slug							_	
	1103					Stop data	ugaer					1		
'										10/22/5		Y		Translucer SIN 259198
						Withdra								Databuger SN IKB-701
						Driller will	bail	we11	when	he sets	Subm	ers;	6/6	
				1.									-	
								1						
									1					
									Varr	229	ne	we	ai	U 10/20/89
													1	
													1	
-													1	
_				20									+	
_			_						-				-	
												-	-	
							-					_	-	
													-	
			-										į	
													1	
		1		1							1			

Location 200 E	ast , C Tank Form	Date of Test	20/89
		Procedure Number	2441 - 44 6 - 5/7
	Slug Withdraw		
		lewcomer Darrell	Ludke , KEH driller
*	WEI	L CONFIGURATION	
Well Depth ~265.	below ground surface	Ecrehole Diameter	8"
Well Casing Inside Diameter	4"	Well Screen Inside Diameter #	, ,
Length of Screen	ed Interval 16.0' (b	elow water) Depth of Scr	reen 266.8' - 245.8' b.l.s
Comments Well	is undeveloped : cen	ment pad has not been	poured
		UC INFORMATION	
Slue Construction		UG INFORMATION	
	n Materials <u>Carbo</u>	and the latest terminal and th	
Length of Slug	6.0'	Diameter of Slug 2	4
Comments			
Volume of Attach	ments (if applicable	e)	
	ME V CITDEMEN	T EQUIPMENT INFORMATIO	
	Make	Model	Serial number
Electric Tape	Slope Indicator	51453	12174
Steel Tape	Lufkin	Super Hi-way Nubian	L300-14
Data logger	In Situ	SE1000 B Hermit	1 k B-701
Transducer	Druck	PTX-161D	259198
Other			

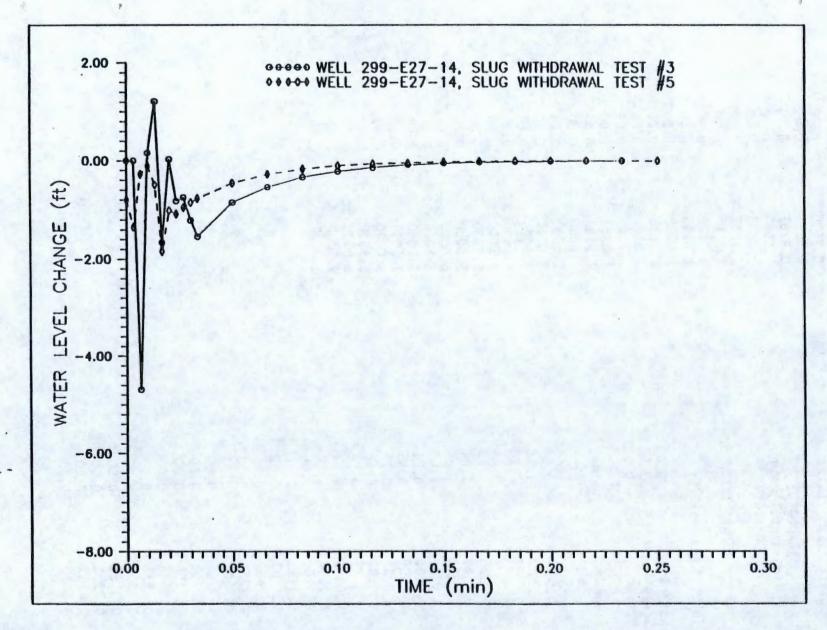
Devel Vencones: 10/20/89 F.6 Equipment Record Form for the Installation and Removal of Data Loggers and Pressure Transducers

Initial Check: OK Purpose of Installation: To monitor water levels during slug test Monitored Hydrologic Unit or Water Body: Upper Unconfined Aquifer within saturated screen interval Date/Time of Installation: 10/20/89 10/17/65 Procedure Followed: WL-4, Red @ Data Logger Make/Model: In Situ/ Hermit SE 1000B Serial No .: Number of Channels Used: | 1KB-701 Pressure Transducer Well No .: 299-E27-14 Full Scale Range: 10 ps; Make/Model: Depth: ~ 266' below Serial No.: 259198 Druck / PTX-1610 Pressure Transducer Full Scale Range: Well No .: Make/Model: Serial No.: Depth: Description of Data Logger Installation and Well Head Configuration: Stickup of 4" casing is 0.55' above land surface Comments: Slug was positioned above water before placing the transducer down to bottom. Slug was then burred into position below water. Water level was allowed to stabilize. Equipment Installed By D.R Neucomer Date/Time of Equipment Removal: 1705 hrs. 10/20/87 Decontamination Procedure (if required): Equipment Removed By D.R. Neucower

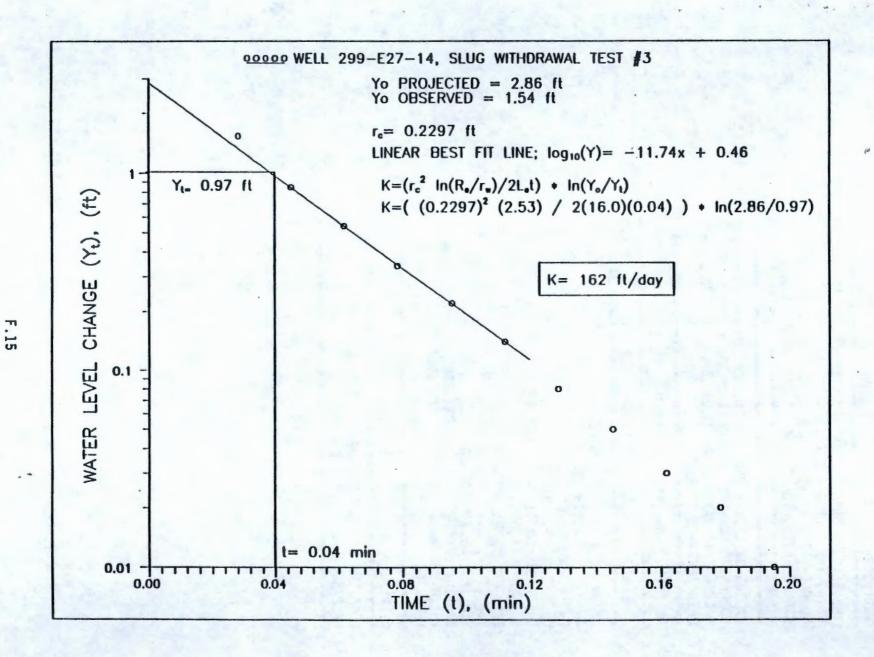
DATE AND START TIME OF DATA ACQUISITION 10/20/87 1020 hs
DATE AND END TIME OF DATA ACQUISITION 10/20/89 1030 hs
WELL NUMBER 299 - E27 - 14
TYPE OF TEST OR DATA Slug Test
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER
TEST NUMBER 3
CHANNEL OR INPUT NUMBER
UNITS OF VALUES RECORDED 51
NUMBER OF PAGES ATTACHED 2
COMMENTS: TET 3 = Withdraw Slug
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Darrell Newcomer Scientist 10/20/89 Name, title Date
Name, title Date

Te		E27-14 tober 20, 1989	0.5833 0.6667	0.00
	Start Time:	10:20	0.7500 0.8333	0.00
	SE1000	В .	0.9167	0.00
4	Environmenta	1 Logger	1.0000	0.00
	10/20 1		1.0833	0.00
			1.1667	0.00
	Unit# 00701	Test# 3	1.2500	0.00
			1.3333	0.00
IN	IPUT 1: Leve	1 (F)	1.4166	0.00
		. (. /	1.5000	0.00
Re	ference	0.00	1.5833	0.00
	ale factor	9.99	1.6667	0.00
	fset	- 0.01	1.7500	0.00
٠.	1000	1	1.8333	0.00
F1	apsed Time,	Value,	1.9167	0.00
-	min	ft	2.0000	0.00
-			2.5000	0.00
	0.0000	0.00	3.0000	0.00
	0.0033	0.00	3.5000	0.00
	0.0066	- 4.69	4.0000	0.00
4	0.0099	0.16	4.5000	0.00
	0.0133	1.21	5.0000	0.00
\$	0.0166	- 1.66	5.5000	0.00
	0.0200	0.03	6.0000	0.00
	0.0233	- 0.82	6.5000	0.00
1	0.0266	- 0.75	7.0000	0.00
4	0.0300	- 1.21	7.5000	0.00
1	0.0333	- 1.54	8.0000	0.00
	0.0500	- 0.85	8.5000	0.00
lyn.	0.0666	- 0.54	9.0000	0.00
	0.0833	- 0.34	9.5000	0,00
	0.1000	- 0.22	10.0000	0.00
	0.1166	- 0.14	END	
	0.1333	- 0.08		
	0.1500	- 0.05		
	0.1666	- 0.03		
	0.1833	- 0.02		
	0.2000	- 0.01		
*	0.2166	- 0.00		
	0.2333	- 0.00		
	0.2500	0.00		
	0.2666	0.00	•	
	0.2833	0.00		
	0.3000	0.00		
	0.3166	0.00		
	0.3333	0.00		
	0.4167	0.00		
	0.5000	0.00		

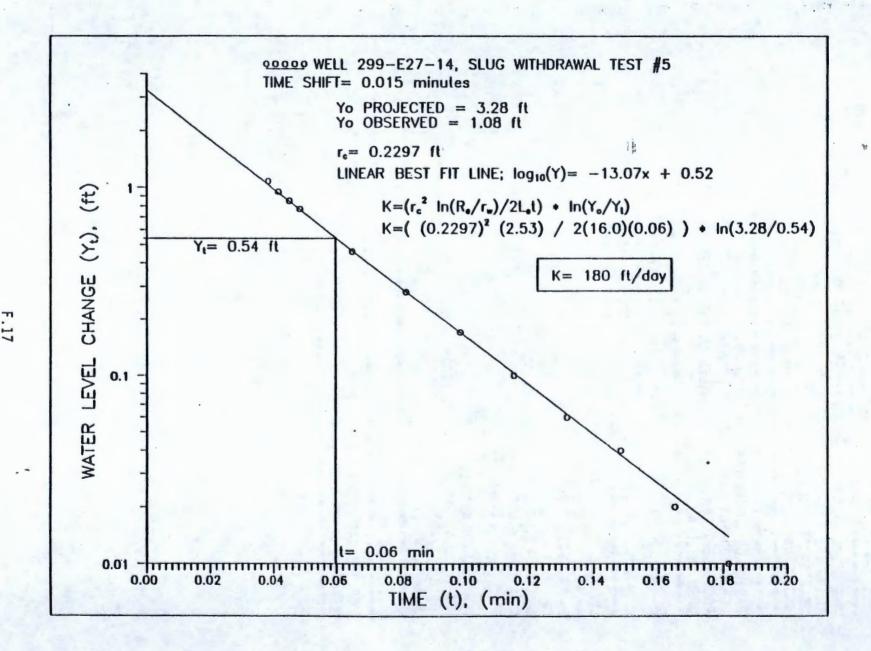
(5/18/89, Rev. 0)


DATE AND START TIME OF DATA ACQUISITION 10/20/89 1035 ha
DATE AND END TIME OF DATA ACQUISITION 10/20/89 1047 hrs.
WELL NUMBER 299 - E27-14
TYPE OF TEST OR DATA Slug Test
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER
TEST NUMBER 4
CHANNEL OR INPUT NUMBER 1
UNITS OF VALUES RECORDED S
NUMBER OF PAGES ATTACHED 2
COMMENTS: Test 4 = Withdraw Slug
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Darrell Muranes Scientist 10/20/89

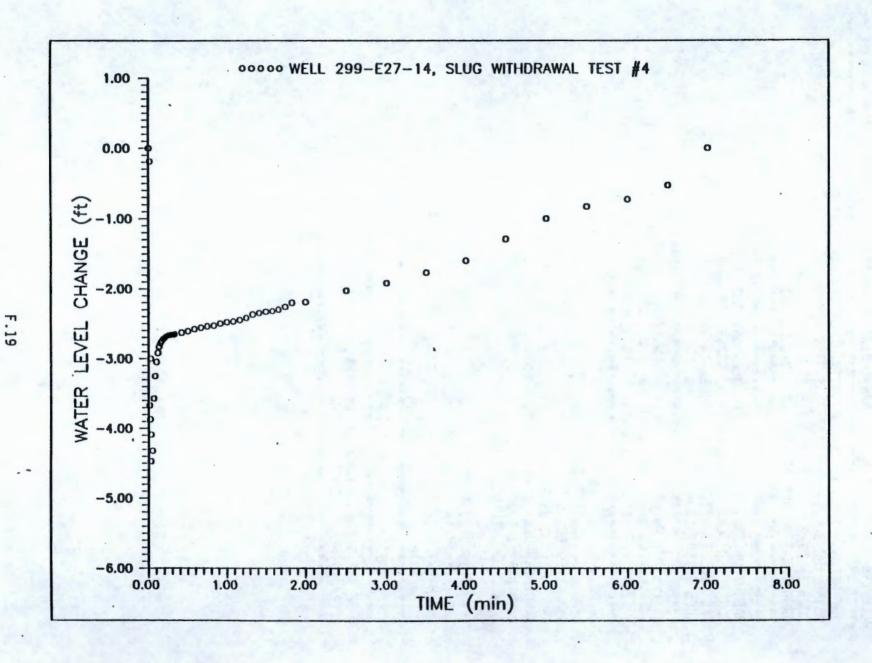
	E27-14		0.5833	-	2.58
	tober 20,	1989	0.6667	-	2.56
Start Time:	10:35		0.7500	-	2.54
			0.8333	-	2.53
SE1000			0.9167	-	2.50
Environmenta	Logger		1.0000	-	2.48
10/20 16	5:02	٠.	1.0833	<u>-</u>	2.47
A COLUMN TO THE REAL PROPERTY.			1.1667	-	2.45
Unit# 00701	Test# 4		1.2500		2.42
			1.3333		2.37
INPUT 1: Leve	(F)		1.4166		2.35
111101 11 2010	. (.)		1.5000	200	2.33
Reference	0.00		1.5833		2.32
Scale factor	9.99		1.6667		2.30
					2.26
Offset	- 0.01		1.7500	-	
			1.8333	-	2.24
Elapsed Time,	Value,		1.9167	-	2.21
min	ft		2.0000	•	2.19
			2.5000	-	2.03
0.0000	0.00		3.0000	-	1.92
0.0033	- 0.00		3.5000	-	1.77
0.0066	- 0.00		4.0000	-	1.60
0.0099	- 0.00		4.5000	-	1.29
0.0133	- 3.67		5.0000	4	1.00
0.0166	- 0.19		5.5000	-	0.83
0.0200	0.59		6.0000	-	0.73
0.0233	- 3.87	. 1	6.5000		
0.0266	- 3.00		7.0000		0.00
0.0300	- 4.47		7.5000	_	0.00
0.0333	- 4.09		8.0000	-	0.00
0.0500	- 4.32		8.5000		0.00
0.0666	- 3.57		9.0000	116	0.00
	- 3.25				
0.0833			9.5000	-	0.00
0.1000	- 3.05		10.0000	•	0.00
0.1166	- 2.92		12.0000	-	0.02
0.1333	- 2.83		END		
0.1500	- 2.78				
0.1666	- 2.7.5				
0.1833	- 2.72				
0.2000	- 2.71				
0.2166	- 2.69				
0.2333	- 2.68				
0.2500	- 2.67				
0.2666	- 2.67		•		
0.2833	- 2.66		•		
0.3000	- 2.66		·		
0.3166	- 2.66				
0.3333	- 2.65				
0.4167	- 2.63		•		
0.5000	- 2.61				
0.000					


(5/18/89, Rev. 0)

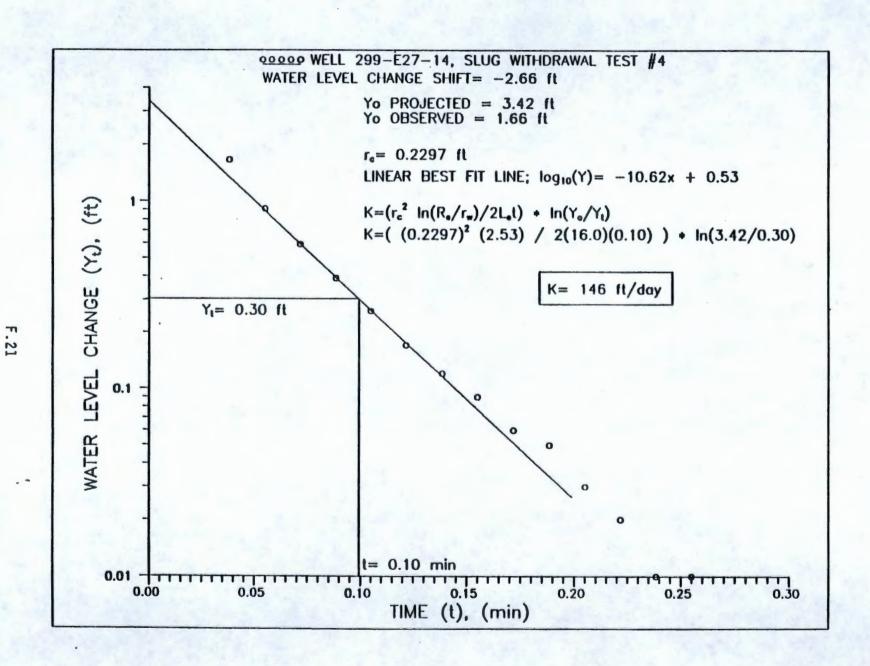
DATE AND START TIME OF DATA ACQUISITION 10/20/89 1052 hrs.
DATE AND END TIME OF DATA ACQUISITION 10/20/89 1102 hrs.
WELL NUMBER 299 - E27-H
TYPE OF TEST OR DATA SING TEST
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER In S; tu Hermit SE10008 . S/N 1 KB-701
TEST NUMBER
CHANNEL OR INPUT NUMBER 1
UNITS OF VALUES RECORDED 5+
NUMBER OF PAGES ATTACHED 2
COMMENTS: Test 5 = Withdraw Slug
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Darrell Newcomes, Scientist 10/20/89 Name, title Date
Name title Date


		27-14 ober 20, 1989 10:52	0.5833 0.6667 0.7500	0.00 0.00 0.00
	SE1000B Environmental 10/20 16:		0.8333 0.9167 1.0000 1.0833	0.00 0.00 0.00 0.00
	Unit# 00701 7	Test# 5	1.1667 1.2500	0.00
٠.	INPUT 1: Level	(F)	1.3333 1.4166	0.00
	Reference Scale factor Offset	0.00 9.99 - 0.01	1.5000 1.5833 1.6667 1.7500	0.00 0.00 0.00 0.00
	Elapsed Time, min	Value, ft	1.8333 1.9167 2.0000 2.5000	0.00 0.00 0.00 0.00
	0.0000 0.0033 0.0066 0.0099	0.80 1.35 0.28	3.0000 3.5000 4.0000 4.5000	0.00 0.00 0.00 0.00
	0.0133 0.0166 0.0200 0.0233	0.49 - 1.84 - 1.01 - 1.08	5.0000 5.5000 6.0000 6.5000	0.00 0.00 0.00 0.01
	0.0266 0.0300 0.0333	0.95 0.85 0.77	7.0000 7.5000 8.0000	0.00 0.01 0.00
	0.0666 -	0.46 0.28 0.17 0.10	8.5000 9.0000 9.5000 10.0000	0.00 0.00 0.00 0.00
	0.1166 0.1333 0.1500 0.1666		END	
	0.1833 0.2000 0.2166 0.2333	0.00 0.00 0.00 0.00		
	0.2500 0.2666 0.2833 0.3000	0.00 0.00 0.00 0.00		
	0.3166 0.3333 0.4167	0.00 0.00 0.00		
	0.5000	0.00		

T.




```
WELL 299-E27-14, SLUG WITHDRAWAL TEST #3
THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
USING THE BOUWER AND RICE SLUG TEST METHOD.
SOURCE= "THE BOUWER AND RICE SLUG TEST-AN UPDATE" GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
******
Rc (ft) Rw (ft) Le (ft) Lw (ft) H (ft)
  .2297 .3333 16.0000 16.0000 50.0000
Le/Rw = 48.0000000
A= 3.0530930
B= 4.990199E-001
          2.6303630
C=
SANDPACK POROSITY= 3.000000E-001
t (min)= 4.000000E-002
         25.0000000
1/t=
Yo= (ft) 2.86000
Yt= (ft) 9.700000E-001
                  2.8600000
1/t ln(Yo/Yt) = 27.0320200
ln[(H-Lw)/Rw] = 4.6249730
ln(Re/Rw) = 2.5262860
K (ft/day) = 162.1902000
T OF THE SATURATED SCREEN INTERVAL
(ft2/day) = 2595.0440000
```



```
WELL 299-E27-14, SLUG WITHDRAWAL TEST #5, TIME SHIFT= 0.015 min
 THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
USING THE BOUWER AND RICE SLUG TEST METHOD.
 SOURCE= "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
**********
Rc (ft) Rw (ft) Le (ft) Lw (ft) H (ft)
   .2297 .3333 16.0000 16.0000 50.0000
Le/Rw = 48.0000000
A= 3.0530930
B= 4.990199E-001
C=
          2.6303630
SANDPACK POROSITY= 3.000000E-001
t (min) = 6.000000E-002
1/t=
         16.6666700
Yo= (ft) 3.28000
Yt= (ft) 5.400000E-001
                3.2800000
1/t in(Yo/Yt)= 30.0671600
inf(H-Lw)/Rw]= 4.6249730
ln[(H-Lw)/Rw] = 4.624

ln(Re/Rw) = 2.5262860
K (ft/day) = 180.4008000
T OF THE SATURATED SCREEN INTERVAL
(ft2/day) = 2886.4140000
```


38 (3018 102)

```
.WELL 299-E27-14, SLUG WITHDRAWAL TEST #4, WATER LEVEL CHANGE SHIFT= -2.66 ft
* THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
 USING THE BOUWER AND RICE SLUG TEST METHOD.
 SOURCE= "THE BOUWER AND RICE SLUG TEST-AN UPDATE" GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
 RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
 CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
 PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
 OPEN INTERVAL OF WELL.
 *******
 Rc (ft) Rw (ft) Le (ft) Lw (ft) H (ft)
   .2297 .3333 16.0000 16.0000 50.0000
 **********
 Le/Rw = 48.0000000
 A= 3.0530930
 B= 4.990199E-001
 C=
          2.6303630
 SANDPACK POROSITY= 3.000000E-001
 t (min) = 1.000000E-001
 1/t=
          10.0000000
 Yo= (ft)
                 3.4200000
 Yt= (ft) 3.000000E-001
 1/t \ln(\acute{Y}o/Yt) = 24.3361300
\ln[(H-Lw)/Rw] = 4.6249730
 In(Re/Rw)= 2.5262860
 K (ft/day) = 146.0151000
 T OF THE SATURATED SCREEN INTERVAL
 (ft2/day) = 2336.2410000
```


APPENDIX G

TEST DATA AND ANALYSIS FOR WELL 299-E27-15

APPENDIX G

TEST DATA AND ANALYSIS FOR WELL 299-E27-15

This appendix contains the as-built diagram for the well construction, Slug Test Record Form, Aquifer Test Data Sheets, Equipment Record Forms, Electronic Data Control Forms, and accompanying data logs and plots for well 299-E27-15.

Well Number 29- E27-15 Geologist Jan Kennedy / Miller Page 1 of 2 Reviewed by J.L. Mc Shan Date 12-7-89 Construction Data Geologic/Hydrologic Data Depth Diagram in Description Lithologic Description Diagram Feet Litho. temporary " raibin . SAND 10 steel temporary course, uldrive shoe from +1"1" to :5 Sancy arase! 128'412" (129'51/2") 20 25 8 4 combon steel 30 cosing w/ drive shoe 55 Gravelly surd +2.25' to 261.87' bbs (264.12' 40 slicet I am jell cond 05 240.46 of 4" STAINLESS 55 STEEL CASING 60 Sand (In grand) 65 20 75 50 85 90 95 100 Grandly SAND 105 110 115 120 125

PNL M. K - 569 DO-1, YEU O

130

Well Number 299- 827-15 Geologist Kensely Reviewed by 7. 2. Mella

Construction D	ata	Depth	Geologic/Hydrologic Data		
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description	
mooney & curbonshel consta	2, 1 1	134		Sody Gawl	
to be one store		140		Sant	
		145	۵	Slightly Grandly Sand	
40.45' or 4" -	-	150	۵	"	
TRINUESS STEEL CASING		155		Sand	
		160	0 0 0	Slightly grandly soul	
		165	0 0	6 1 10 -	
	6 4	170		Soudy GRAVEL	
+4)Bn		175		Grandly SAND	
		180		SAND	
		185			
	-	195		и	
		200		21	
Cement Graut		205		n	
8-20 mesh Bentonite Crum	ale .	210		ŭ	
14" bentonite fellets		215		•	
. 16-30 mesh Silica Sand		220		h	
		225		•	
olchy pellets (4°)		230	000	Sudy GRAVEL	
		<u> 23</u> <	0.00.0	11	
		240	2.0	h	
order Silica Sund		245	0.	Muddy Sandy GRAVEL	
-binks steel		250	0.00	•	
slot charinel sack		322	0		
(21')		260		•	

٨	ifor	Tost	Data
Aqu	irer	lest	Data

WHC-SD-EN-TI-147, Rev. 0

page	/ of
Data for Wel	1 299-E27-15
Pumping We	11
Observation	Walle -

					Acea.	Tonk For						Pumpir	or Well	
											1	Observ	ation Wells	
					Jua Tes	-								
	Q Me					1.12174 \			,			_:		
						/N 12174).7	ransa							
					nping We								time	
						"J.D. casing							time	
Elev	ation o	of M	e85.	Poir	2.83	b'obore top	of com	est -	uration	of Aq	uiter	lest_		_
_		ime		-	/3 =	Water Le					-	-		
t :	=			= 0	Static	Water Level		-		Disch	arje	9		
	Clock Time			t/t'		Conversions or Corrections	Water			Read-	a	Recorded	Comment	S
-		,		101			Level	300		i iiig	-	-		
119	10940			-	248.04				1				E-tope	
+	0945			-,-									C Steel tope	#1300
+						D/B Heasun		_			_		10-11	
+					Slug	is 6' in le	ngth a	med 2	4 in a	iames	1		Dotaloger YN	
+	-							-					Transducer s/N	259198
1					Set	bottom of :	lug +	247	5'f1	- 700	-			
1												14		
1	1025					t to 0.0 @			Sc/ 0	50	it cl	ock		1
1	1028					sing (it a		leased	late)			1		1
-	1037	-	-			datalogger								1
1					L.	t data on	Test	0				1		
1														
1														•
1	1148				DIR				inco					-
1					trans				a 600	e 6	Hon	1		
1	1150				13.78	trans n	- de							
1	1/50.30				13.79								· · · · · · · · · · · · · · · · · · ·	
	1151				13.80									
	1152				13.81	uls	21							
1						U		<u> </u>	,					
1					7	est o	a	war	p at	100	2			
-	1237				5+77	al test				0		V		
-	1241				3 ten			ref	su	nea	2	Lest	D W/D	
-	12571				510	med test	1	0				1		
-					12.85	nam	,							
-	1258			4	13.86	ef or	+							
-	1361				9/4	of lest	2	1	je chi					-
	1323				5/2	and yes	- 2							
					13.91	wh.	et						1	
						18 10	-3					4	1.72	,
	1327	-			Stan	- Yest	3	-	1	1	w/	500	us a little	lele
H	13:9				Stan	and test	3				1		0	
					1			•						
		21												
1/20	0733	13	181		15.11	72 1							trans.	
		"												
		1												
										-	11	Ren	Lac	

PNL-MA-567 , AT-6, Rev. Ø 6.4

Equipment Record Form for the Installation and Removal of Data Loggers and Pressure Transducers

Initial Check:	LAR	
Purpose of Installation:	We changes	duing
Monitored Hydrologic Unit or 1		
Date/Time of Installation: 5/	19/89 1020 Procedure	Followed: WL-4
Data Langur Maka/Madala	nmit SE 10003	**
Serial No.: 1KB-701	Number of Channels Used:	1
Pressure Transducer	Full Scale Range: 10ps;	Well No .: 299-E27-
Make/Model: In situ PTx - 161 D	Serial No.: 259198	Depth: 13.7 # bubu
Pressure Transducer	Full Scale Range:	Well No.:
Make/Model:	Serial No.:	Depth:
Description of Data Logger Ins		
	P 12	
Date/Time of Equipment Removal	R. Dowcone	
Decontamination Procedure (if	10/14/84 1230	
Equipment Demoved By	Bonlose	

1 .			1
Location / -	TONE 2-EA	1 Date of Test_	10/19/89
Well Number 2	99-627-15	Procedure Numb	per AT-6
Type of Test(s)	sluc		
Personnel Conduct	ing Test	ryhere Ne	result
		VELL CONFIGURATION	
Well Depth 2	61' TOC	Borehole Diame	eter_ 4 8"
Well Casing Inside Diameter	Н.,	Well Screen Inside Diamete	er4"
Length of Screene	d Interval	Depth Depth	of Screen ~ 24/ - 26/
Comments (4)01	11 is unde	velope d	
Slug Construction Length of Slug			g 2,25 inch
Comments			
	ents (if applica	ble)	
	MEASUREM	ENT EQUIPMENT INFO	RMATION
	Make	Model	Serial Number
Electric Tape		Az Lest fo	rm
Steel Tape	ou		wood for
Data logger	and -	Linburg	record form.
Transducer			JUB 10/20/87
Other			

3313018_DSF

DATE AND START TIME OF DATA ACQUISITION 10/	19/89	מונגב	(150)
DATE AND END TIME OF DATA ACQUISITION 10/14			- 7
WELL NUMBER 299 - E27-15		a de la companya de l	_
TYPE OF TEST OR DATA SING Inje	etion_		
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGE			
TEST NUMBER			V 18
CHANNEL OR INPUT NUMBER/	, h		
UNITS OF VALUES RECORDED	ref.	Level	2
NUMBER OF PAGES ATTACHED		11	-
COMMENTS: Date Lossen started	late.		
			Tu-
	100		
DATA VALIDATION STATEMENT:			
The attached data represent the data as originate logger. Any exceptions and reasons for the comments section.	such are	indicate	
Name, title Books Sundit	10/20	189	3
Name, title	Date		

Well: 299-1 Test Date: Oct Start Time:	27-15 tober 19, 11:56	1989	0.5833 0.6667 0.7500	0.00 0.00 0.00
			0.8333	0.00
SE1000	3		0.9167	0.00
Environmenta	Logger		1.0000	0.00
10/19 16			1.0833	0.00
,			1.1667	0.00
Unit# 00701	Test# 0		1.2500	0.00
			1.3333	0.00
INPUT 1: Leve	(F)		1.4166	0.00
			1.5000	0.00
Reference	0.00		1.5833	0.00
Scale factor	9.99		1.6667	0.00
Offset	- 0.01		1.7500	0.00
			1.8333	0.00
Elapsed Time,	Value,		1.9167	0.00
min	ft		2.0000	0.00
			2.5000	0.00
0.0000	- 0.00		3.0000	0.00
0.0033	- 0.00		3.5000	0.00
0.0066	- 0.00		4.0000	0.00
0.0099	- 0.00		4.5000	0.00
0.0133	- 0.00		5.0000	0.00
0.0166	- 0.00		5.5000	0.00
0.0200	0.00	print to the second of	6.0000	0.00
0.0233	- 0.00		6.5000	0.00
0.0266	- 0.00		7.0000	0.00
0.0300	- 0.00		7.5000	0.00
0.0333	- 0.00		8.0000	0.00
0.0500	- 0.00		8.5000	0.00
0.0666	0.28		9.0000	0.00
0.0833	1.08		9.5000	0.00
0.1000	- 0.57		10.0000	0.00
0.1166	0.10		12.0000	0.01
0.1333	0.00		14.0000	0.01
0.1500	0.00		16.0000	0.01
0.1666	0.00		18.0000	0.01
0.1833	0.00		20.0000	0.01
0.2000	0.00		22.0000	0.01
0.2166	0.00		24.0000	0.01
0.2333	0.00		26.0000	0.01
0.2500	0.00		28.0000	0.01
0.2666	0.00		30.0000	0.01
0.2833	0.00		32.0000	0.01
0.3000	0.00		34.0000	0.02
0.3166	0.00		36.0000	0.02
0.3333	0.00		38.0000	0.02
0.4167	0.00		40.0000	0.02
0.5000	0.00		END	

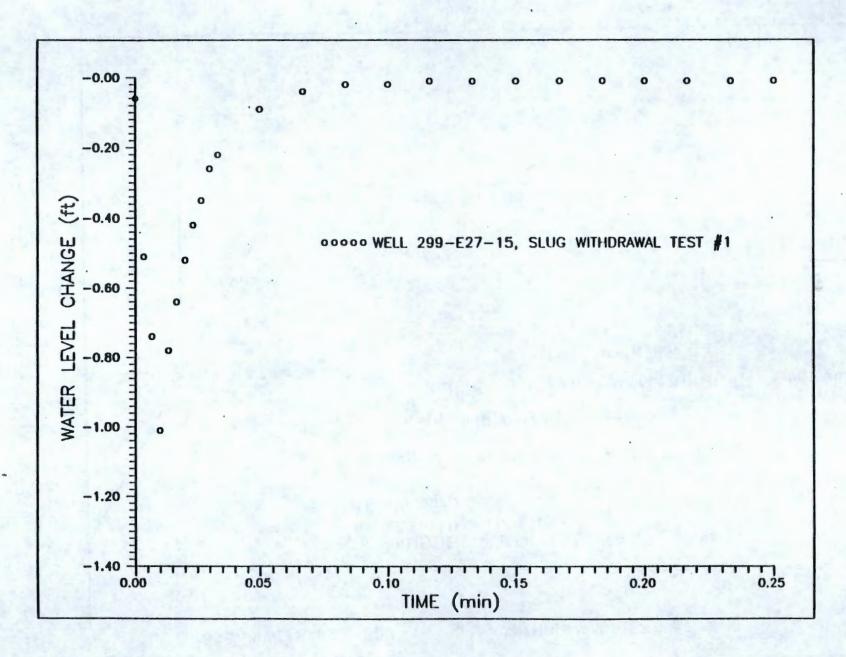
33130118_DSF~

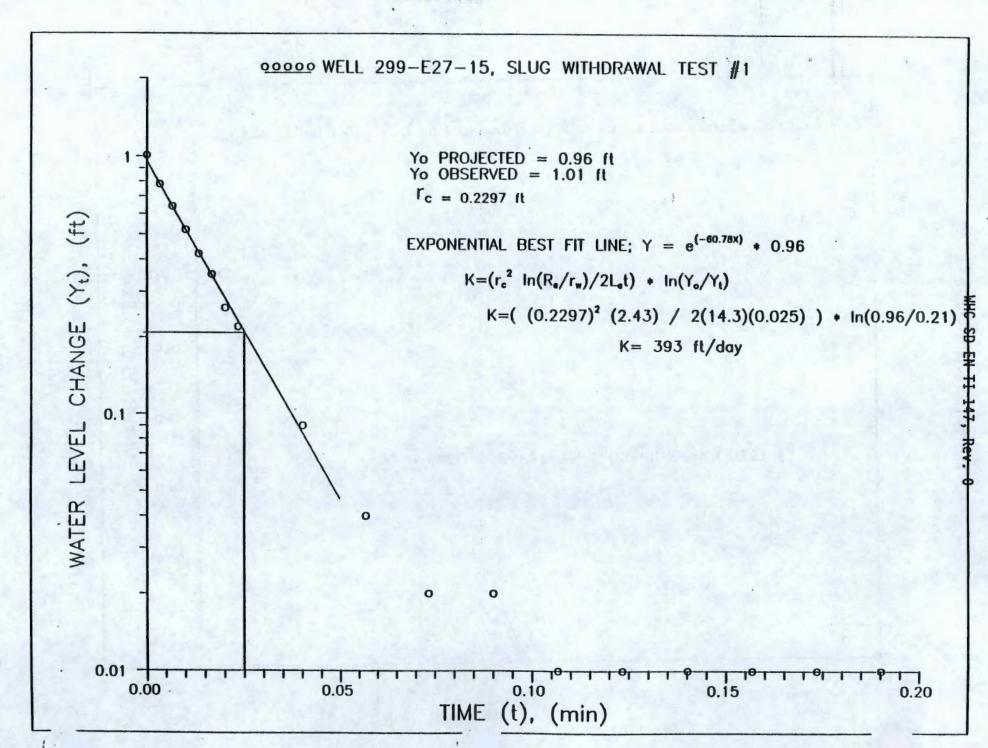
DATE AND START TIME OF DATA ACQUISITION	119/89	1241
DATE AND END TIME OF DATA ACQUISITION		1257
WELL NUMBER 299-E27-15		8-11-1
TYPE OF TEST OR DATA Slug wid		
TYPE AND IDENTIFICATION NUMBER OF DATA LOGG		
TEST NUMBER		The sales
CHANNEL OR INPUT NUMBER		<u> </u>
UNITS OF VALUES RECORDED 4 from	ref.	Cerul
NUMBER OF PAGES ATTACHED		PAN A
COMMENTS:		
DATA VALIDATION STATEMENT: The attached data represent the data as ori	ginally ma	corded on t
data logger. Any exceptions and reasons fo the comments section.	r such are	indicated
Jane V. By how Scientist	101	20/89
Name, file	Date	

Well: 299-	E27-15		0.5833	-	0.01
	tober 19,	1989	0.6667	-	0.01
Start Time:	12:41		0.7500		0.01
002.01.11110.			0.8333		0.01
SE1000	D		0.9167		0.01
				120	
Environmenta			1.0000	-	0.01
10/19 1	6:46		1.0833	-	0.01
			1.1667	-	0.01
Unit# 00701	Test# 1		1.2500	-	0.01
			1.3333		0.01
INPUT 1: Leve	1 (F)		1.4166	-	0.01
2	. (,)		1.5000		0.01
Reference	0.00		1.5833		0.01
				3.75	
Scale factor	9.99		1.6667	•	0.01
Offset	- 0.01		1.7500	-	0.01
			1.8333	-	0.01
Elapsed Time,	Value,		1.9167	-	0.01
min	ft		2.0000	-	0.01
			2.5000		0.01
0.0000	- 0.06		3.0000		0.01
0.0033	- 0.51		3.5000		
0.0066	- 0.74		4.0000	-	0.01
0.0099	- 1.01		4.5000		
0.0133	- 0.78		5.0000	-	0.01
0.0166	- 0.64		5.5000	-	0.01
0.0200	- 0.52		6.0000		0.01
0.0233	- 0.42		6.5000		0.00
0.0266	- 0.35		7.0000	-	0.00
			7.5000		0.00
0.0300	- 0.26				
0.0333	- 0.22		8.0000	•	0.00
0.0500	- 0.09		8.5000	-	0.00
0.0666	- 0.04		9.0000	-	0.00
0.0833	- 0.02		9.5000	-	0.00
0.1000	- 0.02		10.0000	-	0.00
0.1166	- 0.01		12.0000	-	0.00
0.1333	- 0.01		14.0000	-	0.00
0.1500	- 0.01		16.0000	-	0.00
				4.0	0.00
0.1666	- 0.01		END		
0.1833	- 0.01				
0.2000	- 0.01	- 1			
0.2166	- 0.01				
0.2333	- 0.01				
0.2500	- 0.01				
0.2666	- 0.01				
0.2833	- 0.01				
0.3000	- 0.01				
0.3166	- 0.01				
0.3333	- 0.01				
0.4167	- 0.01				
0.5000	- 0.01				

And the second

· / /
DATE AND START TIME OF DATA ACQUISITION 10/19/89 130/
DATE AND END TIME OF DATA ACQUISITION
WELL NUMBER 299 - E27 - 15
TYPE OF TEST OR DATA 5/42 injection
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER
TEST NUMBER
CHANNEL OR INPUT NUMBER
UNITS OF VALUES RECORDED # for vef. level
NUMBER OF PAGES ATTACHED
COMMENTS: STARTED Recording Late
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
J. V. Borglese Scientist 10/20/89 Name, title Date


Test Date: Oct	27-15 ober 19, 13:01	1989	0.5833 0.6667 0.7500	0.01 0.01 0.01
SE1000B Environmental	Logger		0.8333 0.9167 1.0000	0.01 0.01 0.01 0.01
10/19 16 Unit# 00701	Test# 2		1.0833 1.1667 1.2500 1.3333	0.01 0.01 0.01
INPUT 1: Level	(F)		1.4166 1.5000	0.01
Reference Scale factor Offset	0.00 9.99 - 0.01		1.5833 1.6667 1.7500	0.01 0.01 0.01
Elapsed Time, min	Value, ft		1.8333 1.9167 2.0000 2.5000	0.01 0.01 0.01 0.01
0.0000 0.0033 0.0066	1.25 1.65 - 1.03		3.0000 3.5000 4.0000	0.01 0.00 0.01
0.0099 0.0133 0.0166 0.0200	- 0.14 - 0.03 0.00 0.02		4.5000 5.0000 5.5000 6.0000	0.00 0.00 0.00 0.00
0.0233 0.0266 0.0300	0.03 0.02 0.02	, e.	6.5000 7.0000 7.5000	0.00 0.00 0.00
0.0333 0.0500 0.0666 0.0833	0.01 0.00 0.00 0.01		8.0000 8.5000 9.0000 9.5000	0.00 0.00 0.00 0.00
0.1000 0.1166 0.1333	0.01 0.01 0.01		10.0000 12.0000 14.0000	0.00 0.00 0.00
0.1500 0.1666 0.1833	0.01 0.01 0.01		16.0000 18.0000 20.0000	0.00 0.00 0.00 - 0.00
0.2000 0.2166 0.2333 0.2500 0.2666 0.2833 0.3000 0.3166 0.3333 0.4167 0.5000	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01		22.0000 END	- 0.00


9313018 1542

DATE AND START TIME OF DATA ACQUISITION 10/19/89 527
DATE AND END TIME OF DATA ACQUISITION
WELL NUMBER 299-E27-15
TYPE OF TEST OR DATA Sug wD
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER
TEST NUMBER 3
CHANNEL OR INPUT NUMBER
UNITS OF VALUES RECORDED & from ref. Level
NUMBER OF PAGES ATTACHED 2
COMMENTS: Trans tung we
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Name, title Sun Lit 10/20/89

Well:	299-E27-15	0.5833	- 1.0	7
Test Date		0.6667	- 1.07	
Start		0.7500	- 1.0	
002.0		0.8333	- 1.0	
	SE1000B	0.9167	- 1.0	
	nmental Logger	1.0000	- 1.0	
10,	/19 16:49	1.0833	- 1.0	
		1.1667	- 1.0	
Unit#	00701 Test# 3	1.2500	- 1.0	
		1.3333	- 1.0	
INPUT 1:	Level (F)	1.4166	- 1.0	
		1.5000	- 1.0	
Reference	e 0.00	1.5833	- 1.0	5
Scale fac	ctor 9.99	1.6667	- 1.0	5
Offset	0.01	1.7500	- 1.0	
		1.8333	- 1.0	
Elapsed '	Time, Value,	1.9167	- 1.0	
min		2.0000	- 1.0	
111111	16	2.5000	- 1.0	
0.000	1.06			
0.000		3.0000	- 1.0	
0.003		3.5000	- 1.0	
0.006		4.0000	- 1.0	
0.009		4.5000	- 1.0	
0.013		5.0000	- 1.0	
0.016		5.5000	- 1.0	
0.020	0 - 1.06	6.0000	- 1.0	
0.023	3 - 1.06	6.5000	- 1.0	
0.026	6 - 1.06	7.0000	- 1.0	5
0.030	0 - 1.06	7.5000	- 1.0	5
0.033	3 - 1.07	8.0000	- 1.0	6
0.050	0 - 1.07	8.5000	- 1.0	6
0.066		9.0000	- 1.0	5
0.083		9.5000	- 1.0	
0.100		10.0000	- 1.0	
0.116		12.0000	- 1.0	
0.133		END		•
0.150		LIND		
0.166				
0.183				
0.200				
0.216				
0.233				
0.250				
0.266				
0.283				
0.300				
0.316				
0.333	3 - 1.07			
0.416				
0.500				

6.16

```
WELL 299-E27-15, SLUG WITHDRAWAL TEST #1
 THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
 USING THE BOUWER AND RICE SLUG TEST METHOD.
 SOURCE= "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
 GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
 ************
 RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
 CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
 PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
 OPEN INTERVAL OF WELL.
 Rc (ft) Rw (ft) Le (ft) Lw (ft)
   .2297 .3333 14.3000 14.3000 50.0000
 **********
        42.9000000
A= 2.9202500
B= 4.656601E-001
C= 2.5309510
 SANDPACK POROSITY= 3.000000E-001
 t (min) = 2.500000E-002
 1/t= 40.0000000
Yo= (ft) 9.60000E-001
Yt= (ft) 9.800000E-001

Yt= (ft) 2.100000E-001

1/t ln(Yo/Yt)= 60.7930300

ln[(H-Lw)/Rw]= 4.6737630

ln(Re/Rw)= 2.4304660
 ********
K (ft/day) = 392.6369000
 T OF THE SATURATED SCREEN INTERVAL
(ft2/day)= 5614.7080000
```

APPENDIX H

TEST DATA AND ANALYSIS FOR WELL 299-E33-33

APPENDIX H

TEST DATA AND ANALYSIS FOR WELL 299-E33-33

This appendix contains the as-built diagram for the well construction,

Slug Test Record Form, Aquifer Test Data Sheets, Equipment Record Forms,

Electronic Data Control Forms, and accompanying data logs and plots for well 299-E33-33.

Battelle	
 Pacific Northwest Laboratories	

Reviewed by 27. Mc St.		eologist _	BRADON BERG		
Construction Da	ta	Donath	Geologic/Hydrologic Data		
Description	Diagram	Depth in Feet	Diagram Litho.	Lithologic Description	
154' 14" OF 10" CARBON STEEL CASING (REMOVED) CEMENT GROWT 253'734" OF 6" CARBON STEEL CASING (REMOVED) ZZ7.77' 4" DIA. STAINLESS STEEL CASING FACTORY INSTALLED LENTRALIZERS		5 10 15 20 25 30 35 40 45 50 65 70 75 80 85 90 95 100 105 110 115 120		MUDDY SANDY GRAVEL SANDY GRAVEL """" GRAVELLY SAND SAND SLIGHTLY GRAVELLY SAND GRAVELLY GRAVELLY SAND SLIGHTLY GRAVELLY SAND SLIGHTLY GRAVELLY SAND SLIGHTLY GRAVELLY SAND SLIGHTLY MUDDY SAND SAND "" SLIGHTLY MUDDY SAND SAND	

Well Number	299 - E33 - 33	Geologist	5000W.2	JENSEN.	Page _	2	_ of .	2
			BRANDEL	BCREEK		-		
Reviewed by	V & Mc Shen		Date /7	-19-89				

Construction Data			Ge	Seologic/Hydrologic Data	
Description	Diagram	Depth in Feet	Diagram Litho.	Lithologic Description	
54" 12" OF 10" CARRON -	171 に	135		SLIGHTLY GRAVELLY SAN	
STEEL CASILL WITH DRIVE		140	_	te po te	
SHOT (REMOVED)	T	145		6 6	
	17 14	150		CNAS	
227.17'	1, 57 54	155		SLIGHTLY GRAVELLY SAND	
4" DIA. STAINLESS STEEL CASING	1	160			
1.18	1	170		6. 6	
	12 13	175		SLIGHTLY MUDDY SAND	
	12 -3	130	-	P P P P P P P P P P P P P P P P P P P	
CENTRALIZERS	113	185		MUDDY SAND	
		190		SL GRAVELLY MUDDY SAND	
		195			
3-20 BENTONITE COUNSLES	1	200		GRAVELLY MUDDY SAND	
	153 73	205		SANO	
		210		MUDDY SAND	
	12 21	215	0-00	SAND	
1/ "	1 32	223	3.000	MUDDY SANDY GRAIGE	
4" VOLCLAY PELLETS -		225	- 2	\$0 \$1 \$4	
		23.5	V-366 €0		
20-40 COL SILICA SAND		240	.0 .00	40	
- IN OR SINGA SAND		245	o c - o - o	66 Mr 60	
TAINLESS STEEL, 4'		250	9.000		
	1 4 4 4 A	252 '		HIT BASALT @ 252'	

PNL - MA -567 DO - 1, R.V. O

Aquifer Test Data	Data for Well =33-33
Location 200 east, E33-33 Type of Aquifer Test slike in jection / with drawnel	Pumping Well <u>£33-33</u> W/ 1/ Observation Wells <u>M/A</u>
How Q Measured —	11 duce 3/W 259163

Time t = at t' = 0					Water Level Data Static Water Level 235.45 lclar Toc					Discharge		rded	Comments
	Clock Time	1	t'			Conversions or Corrections	Water			Read-	a	Recorded By	Comments
127	1044											wee	18'5/8" Kenth slug
	1047				235.45							1	0.24 A in diameter
-	1056				23545						liver		
	11:22				trans	Luces	act	to	16	19	4		XD
						0 =	dro	r de	dec				
									10				
	11:25				16.18								XD
11	11:29				16.18	Pete	hlan	AL:	1				XD
_	1:35				sur	dragate							
	11:46				- 1010	1/10	1 Lu	lee	TECA	2424	cl		XO
	11:50				N	oured?	100	_				1	
+					tent	11=	test	0	Dec	lon	/	de	march alex
Ш					Tin	+ 2 -							/
	1207				14.18	il here	nce						
												10	
						tat 2	=	Fu	11 20	Mary	De	4	
11	1:50				.6.17	refe	une	_	1	10			XD
	1:53				pul	Ded n	luc						
11					~								
					Vacto	loge	1	216	1	#			1KB-701
$+\!\!+\!\!\!+$						//				•			
11	3 10				7 7	-1	,			-	0.	7	
	3.15				+ Day	ile No	un.	3-1	elect	-	1	26	- sonely wester
	3:17				700	Bailer	Marie	me 17	- Lecor	7	الند	9	
J	3:26					in rida							1 11
4		- 1			299.5	+2.5	4 7	apr			1.4		septi to onthon
-	-		-			251.81 6	low To	E 12	dept	h to be	17on		
+	_	-		-								-	
+	-												
+	-			-							-	70.	
+				-									
+	-	-		-	- ,					-			
-					11	11/1-	5	_	11				
-					MA	1 year	_ 4		10	un			
	-		-			9/2	/	34			-		
+	1	+		-		1111	10			75.00			
+	-			-									
-													

H.4

PNL-MA-567, AT-6, Rev &

Location 200 E	ast B Tank Fa	Date of Test 9/21/2	89	
		Procedure Number	DM1 -M L-1	
Type of Test(s)	Slug Injection	n / Withdrowal	7 (10)	
Personnel Condu	cting Test <u>Dar</u>	rell Newcomer, Bill	Cronin Darrell Ludke (KE	H)
	12 14	WELL CONFIGURATION		
Well Depth248.8	" below cement puc	Borehole Diameter_	8"	
Well Casing Inside Diameter	4"	Well Screen Inside Diameter	4"	
Length of Scree	ned Interval	7 (below worker) Depth of So	reen 227 - 248	
Comments Slug	test conducted	in undeveloped well		-
		SLUG INFORMATION		-
Slug Constructi	on Materials	Carbon steel		-
Length of Slug_	8.05'	Diameter of Slug	0.24'	
Comments				
Volume of Attac	hments (if applic	able)		-
	MEASURE	WENT CONTONENT INCOMATI	·	
		MENT EQUIPMENT INFORMATI		
Florence Tons	Make	Model	Serial Number	
Electric Tape				
Steel Tape	Lufkin	Super Hi-Way Nubian	L 300-14	
Data logger	In Situ	SE1000 B	1 KB-701	
Transducer	Druck	PTX-161D	259198	
Other				

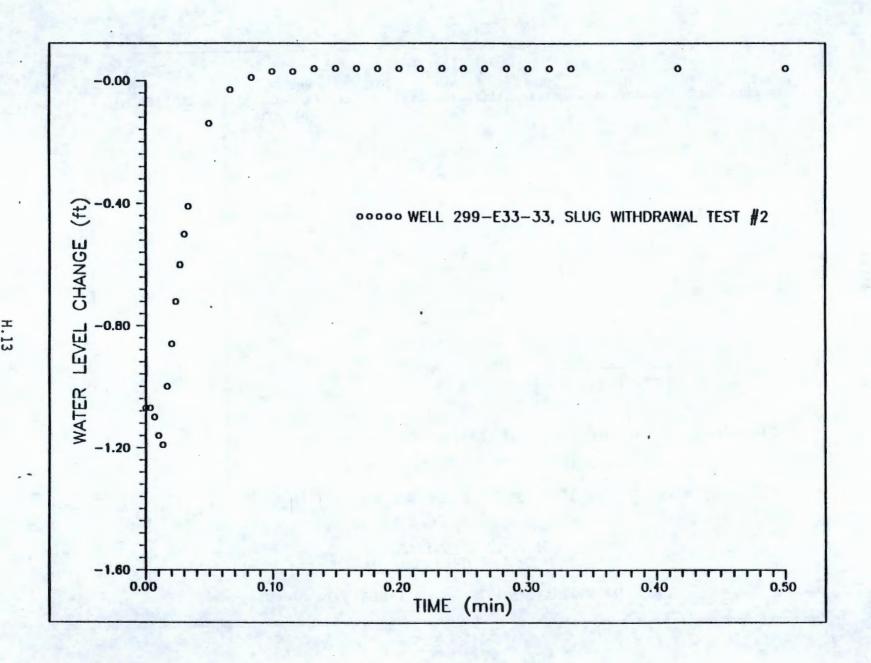
Darrell Newsones 9/27/29

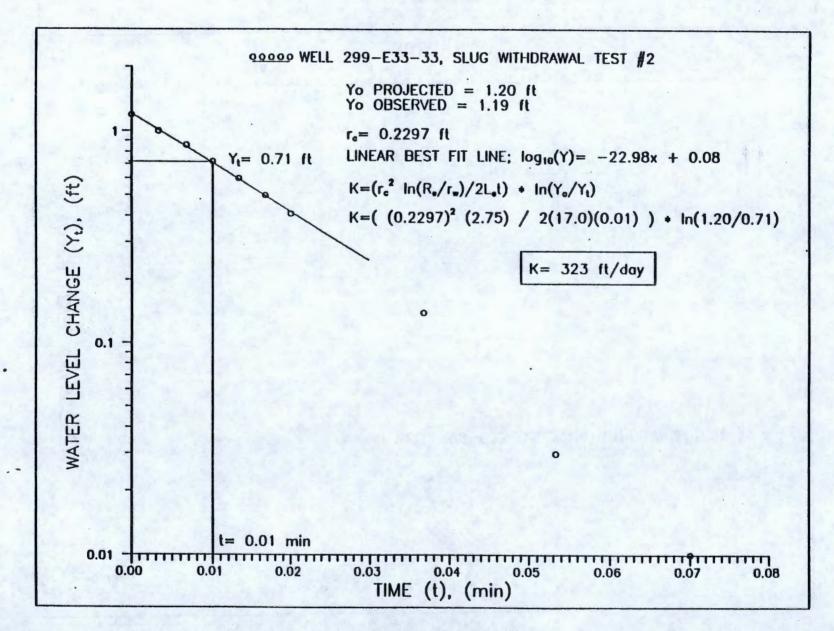
Equipment Record Form for the Installation and Removal of Data Loggers and Pressure Transducers

Initial Check: __ Purpose of Installation: To monitor slug injection/withdrawal test responses Monitored Hydrologic Unit or Water Body: Uppermost Unconfined Aquifer (Hanford formation) 1100 hrs Procedure Followed: WL-4, Rev Date/Time of Installation: 9/27/89 Data Logger Make/Model: In Situ / SE 1000 B Number of Channels Used: 3 Serial No.: 1 KB-701 Well No.: 299-E33-33 Pressure Transducer Full Scale Range: 10 ms; Make/Model: Depth: ~2486 below coment, Serial No.: 257 198 Druck / PTX-161D Pressure Transducer Full Scale Range: Well No .: Make/Model: Serial No.: Depth: Description of Data Logger Installation and Well Head Configuration: ~ 6" ID cowy Stickup of 6" casing is ~3 teet. Comments: Slug was positioned into place above the water before placing the transducer down the well Equipment Installed By D.R. Newcomer, Bill Cranin Date/Time of Equipment Removal: 9/27/89 1300 hrs. Decontamination Procedure (if required): Equipment Removed By Darrell R. Newcomer, Bill Cronin,

Darrell newioner 9/27/89

DATE AND START TIME OF DATA ACQUISITION 9/27/89 11:35
DATE AND END TIME OF DATA ACQUISITION 9/27/89 11:55
WELL NUMBER E 33-33
TYPE OF TEST OR DATA 5/45
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER In Situle 14 1KB-701
TEST NUMBER O
CHANNEL OR INPUT NUMBER
UNITS OF VALUES RECORDEDFT
NUMBER OF PAGES ATTACHED 2
COMMENTS: Fest 0 = Submerging slug
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
William 2 Crossin, Hyphologist 9/28/89 Name, title Date


Well: 299-E33-33 Test Date: September 27, 1989 Start Time: 11:35	0.5833 0.6667 0.7500 0.8333	- 0.01 - 0.01 - 0.01 - 0.01
SE1000B Environmental Logger 09/28 08:59	0.9167 1.0000 1.0833	- 0.01 - 0.01 - 0.01
Unit# 00701 Test# 0	1.1667 1.2500 1.3333	- 0.01 - 0.01 - 0.01
INPUT 1: Level (F)	1.4166 1.5000	- 0.01 - 0.01
Reference 0.00 Scale factor 9.98 Offset - 0.01	1.5833 1.6667 1.7500	- 0.01 - 0.01 - 0.01
Elapsed Time, Value, min ft	1.8333 1.9167 2.0000 2.5000	- 0.01 - 0.01 - 0.01 - 0.01
0.0000 - 0.01 0.0033 - 0.01 0.0066 - 0.01	3.0000 3.5000 4.0000	- 0.01 - 0.01 - 0.01
0.0099 - 0.01 0.0133 - 0.01 0.0166 - 0.01 0.0200 - 0.00	4.5000 5.0000 5.5000 6.0000	- 0.01 - 0.01 - 0.01 - 0.01
0.0233 °0.97 0.0266 0.52 0.0300 1.25	6.5000 7.0000 7.5000	- 0.01 - 0.01 - 0.01
0.0333 1.19 0.0500 0.49 0.0666 - 0.00 0.0833 - 0.01	8.0000 8.5000 9.0000 9.5000	- 0.01 - 0.01 - 0.01 - 0.01
0.1000 - 0.00 0.1166 - 0.00 0.1333 - 0.00	10.0000 12.0000 14.0000	- 0.01 - 0.01 - 0.01
0.1500 - 0.00 0.1666 - 0.00 0.1833 - 0.00 0.2000 - 0.00	16.0000 18.0000 20.0000 END	- 0.01 - 0.01 - 0.02
0.2166 - 0.00 0.2333 - 0.00 0.2500 - 0.00	END	
0.2666 - 0.00 0.2833 - 0.00 0.3000 - 0.00		
0.3166 - 0.00 0.3333 - 0.00 0.4167 - 0.00 0.5000 - 0.00		


DATE AND START TIME OF DATA ACQUISITION 9/27/87 /2:10
DATE AND END TIME OF DATA ACQUISITION 9/27/89 12:20
WELL NUMBER _ F 33 - 33
TYPE OF TEST OR DATA 5/45
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER In Situal Hermit, review # 1/18-701
TEST NUMBER
CHANNEL OR INPUT NUMBER
UNITS OF VALUES RECORDED
NUMBER OF PAGES ATTACHED 2
COMMENTS: We wanted to choo the
slug again to make sure that
working properly, test 1 = pulmerquis elu
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Name, title Date Date

Well: 299-E33-33 Test Date: September 27, Start Time: 12:10 SE1000B Environmental Logger 09/28 09:01	1989	0.5833 0.6667 0.7500 0.8333 0.9167 1.0000 1.0833 1.1667	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Unit# 00701 Test# 1 INPUT 1: Level (F) Reference 0.00		1.2500 1.3333 1.4166 1.5000 1.5833	0.00 0.00 0.00 0.00
Scale factor 9.98 Offset - 0.01 Elapsed Time, Value,		1.6667 1.7500 1.8333 1.9167	0.00 0.00 0.00
min ft 0.0000 0.08		2.0000 2.5000 3.0000 3.5000	0.00 0.00 0.00
0.0066 0.03 0.0099 0.01 0.0133 0.39		4.0000 4.5000 5.0000 5.5000	 0.00
0.0200 0.18 0.0233 0.39 0.0266 0.36		6.0000 6.5000 7.0000 7.5000	 0.00 0.00 0.00
0.0300 0.46 0.0333 0.45 0.0500 0.58 0.0666 0.50 0.0833 0.25		8.0000 8.5000 9.0000 9.5000	 0.00
0.1000 - 1.37 0.1166 - 0.07 0.1333 0.03 0.1500 0.00	EN	10.0000	
0.1666			
0.2333			
0.3000 0.00 0.3166 0.00 0.3333 0.00 0.4167 0.00			
0.5000 0.00			

DATE AND START TIME OF DATA ACQUISITION	9/27/87	12:53
DATE AND END TIME OF DATA ACQUISITION	9/27/89	13:03
WELL NUMBER E 33-33		
TYPE OF TEST OR DATA _ 5/us		
TYPE AND IDENTIFICATION NUMBER OF DATA LI	0GGER	Seter
TEST NUMBER 2		
CHANNEL OR INPUT NUMBER	4	
UNITS OF VALUES RECORDED		
NUMBER OF PAGES ATTACHED 2		
COMMENTS: Fest 2 = Lifter	is slu	e.
	0	
	•	
DATA VALIDATION STATEMENT:		- 100
The attached data represent the data as of data logger. Any exceptions and reasons the comments section.	originally reco	orded on the indicated in
William & havin, Hyphologist Name, title	9/281	189
Name, title	Date	

Well: 299-	E33-33		0.5833	0.03
Test Date: Se	ptember 27,	1989	0.6667	0.00
Start Time:	12:53		0.7500	0.03
**			0.8333	0.03
SE1000	В		0.9167	0.03
Environmenta	1 Logger		1.0000	0.03
09/28 0	9:04		1.0833	0.03
			1.1667	0.03
Unit# 00701	Test# 2		1.2500	0.03
			1.3333	0.03
INPUT 1: Leve	1 (F)		1.4166	0.03
			1.5000	0.03
Reference	0.00		1.5833	0.03
Scale factor	9.98		1.6667	0.03
Offset	- 0.01		1.7500	0.02
	- 1 - 2 II		1.8333	0.02
Elapsed Time,	Value,		1.9167	0.02
min	ft		2.0000	0.02
			2.5000	0.02
0.0000	- 1.07		3.0000	0.02
0.0033	- 1.07		3.5000	.0.02
0.0066	- 1.10		4.0000	0.02
0.0099	- 1.16		4.5000	0.02
0.0133	- 1.19		5.0000	0.02
0.0166	- 1.00		5.5000	0.01
0.0200	- 0.86		6.0000	0.01
0.0233	- 0.72		6.5000	0.01
0.0266	- 0.60		7.0000	0.01
0.0300	- 0.50		7.5000	0.01
0.0333	- 0.41		8.0000	0.01
0.0500	- 0.14		8.5000	0.01
0.0666	- 0.03	SPATE TO	9.0000	0.01
0.0833	0.01		9.5000 10.0000	0.01
0.1000	0.03		END	0.01
0.1166	0.03		END	
0.1333	0.04			
0.1666	0.04			
0.1833	0.04			
0.2000	0.04			
0.2166	0.04			
0.2333	0.04			
0.2500	0.04			
0.2666	0.04			
0.2833	0.04			
0.3000	0.04			
0.3166	0.04			
0.3333	0.04			
0.4167	0.04			
0.5000	0.04			
0.000	0.01			

H.14

```
WELL 299-E33-33, SLUG WITHDRAWAL TEST #2
 THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
 USING THE BOUWER AND RICE SLUG TEST METHOD.
 SOURCE= "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
 GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
 RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
 CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
 PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
 OPEN INTERVAL OF WELL.
 Rc (ft) Rw (ft) Le (ft) Lw (ft) H (ft)
   .2297 .3333 17.0000 17.0000 20.0000
           51.0000000
 Le/Rw = 51.00
A= 3.1242380
 B= 5.126348E-001
 C=
           2.7365890
 SANDPACK POROSITY= 3.000000E-001
 t (min)= 1.000000E-002
           100.0000000
 1/t=
Yo= (ft) 1.2000000

Yt= (ft) 7.100000E-001

1/t ln(Yo/Yt)= 52.4811900

1/t ln(Yo/Yt)= 2.1972250
 ln[(H-Lw)/Rw] = 2.1973

ln(Re/Rw) = 2.7539590
 K (ft/day) =
                    323.0699000
   ***********
 T OF THE SATURATED SCREEN INTERVAL
 (ft2/day)= 5492.1880000
```

APPENDIX I

TEST DATA AND ANALYSIS FOR WELL 299-W10-15

APPENDIX I

TEST DATA AND ANALYSIS FOR WELL 299-W10-15

This appendix contains the as-built diagram for the well construction, Slug Test Record Form, Aquifer Test Data Sheets, Equipment Record Forms, Electronic Data Control Forms, and accompanying data logs and plots for well 299-W10-15.

Battelle Pacific Northwest Laboratories	AS-	BUILT D	IAGRAM	
Well Number 299-210 Reviewed by 72 MCA		T	TORNSTAD G	Goodwin , ETC.
Construction [Construction Data			eologic/Hydrologic Data
Description	Diagram	Depth in Feet	Diagram Litho.	Lithologic Description
stool casing to large.	C I C C C C C C C C C C C C C C C C C C	5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 115 110 115 125		Sandy grave! Sand w/mud layers Sandy grave! Grave! Muddy sandy grave! Grave! Grave! Grave! Grave! College sand, laminated Muddy sand, calcarpous dark brown Calche-colcarpous committed muddy Sand

Battelle Pacific Northwest Laboratories				
Well Number 259-W/S Reviewed by 72. WC		eologist <u>B</u>	Date 12-7	F, Goodwin , ETC.
Construction D	ata	Depth	Ge	eologic/Hydrologic Data
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description
		130	0 0 0	Caliche D Janveis @ 132.
8" - e ma orary carbon - stral casily to 222		——————————————————————————————————————		Muddy Sandy Gravel
1773.25' of type 304 4" chainless steel casing		-175 		GRAVELLY SAND SANDY GRAVEL
21' OF 10 SLOT CONTINUOUS WEAT STAINLESS STEEL CHANNEL PACK SEREN		120		
Volclay Perichs Volclay Perichs Volclay Pure Gold Slove Coment				DRILL DEPTH = 222.34 COMPLETION DEPTH = 221.05'

Aquifer	Test	Data
Addito	1031	000

Loca	tion_	20	0 4 r Tes	tes +	Slug T	Tonk Form					1	Pumpii	or Well 299-W10-15 ng Well ration Wells
4	0 14-			_			. 4/5	00-03			/ A :		
tow	W.L.	Me	2SU	red _	TOAS QUE	er Steel tou			epth of	- •			time
120	DIST	ו עם	- 10m	rur 'a	nping W	o" casing							time
Top	of 18	" Ca	sind	is 6	6.8. apa	ve land sur	face		0.000	31 FIG			
per Time t = at t' = 0						Water Le	71' be	11' below ToC Discha		Discharge		Comments	
Day	Clock Time	t	t'	rt.	Reading	Conversions or Corrections		s or s		Read- ing	a	Racorded By	
11/3	1105				212.71							DRN	
1.	1110				D/B =	226.2 +2	.47	228	67'				
	1130				set s	Yua and tra	nsduc	er in u	ell				
+	1/35				15.94							1	Trunsducer reading
						Set slug b	elaw w	atera	nd all	- 40	te- 1	evel t	Stabilize
	1/4/				15.99	Set Ref						DRN	
	1145					Pull Slud	10	+ 1001	cycle)			1	
T	1158					Stop data	loader						Dump data to disk
													file: W10-15-2.56
	1234				16.00	set Ref		TEST					
	1237					Pull Slui			9104	le)		1	
Y	1248					Stop data	hoge	-				-	Damp date to disk
								1				-	file: W10-15-3.56

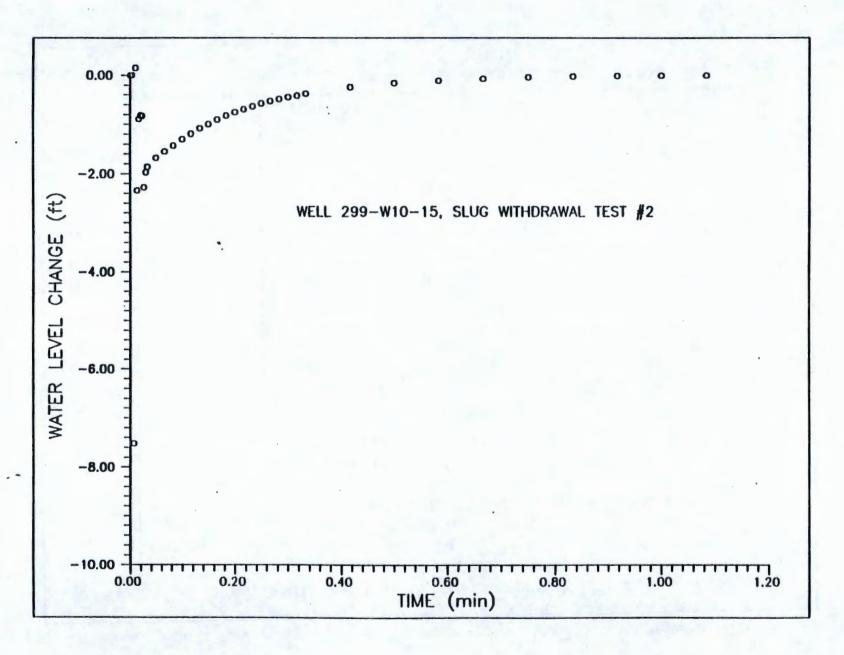
1	DEN TIME			Water Level Data Static Water Level 212.71' below Toc					Discharge		Recorded	Comments	
Day	Clock	t	t'	21	Reading	Conversions or Corrections	Water Level	s or s		Read-	a	Roco	
11/3	1105				212.71							DEN	
1	1110				D/B =	226.2 +2	.47	228	67'			1	
	1130					Vuo and tra							
1	1/35				15.94							14	Trunsducer reading
1			7			Set slug b	elaw u	atera	nd all	- wa	ter 1	evel	to stabilize
1	1/4/				15.99	Set Ref						DRN	
1	1145					Pull Slua						1	
+	1158					Stop data			1				Dump data to disk
1	11,50					J. 7 0212	77					1	file: W10-15-2.56
+	1224				16.00	Set Ref	-0	TEST	# 3				1
+	1234			-	16.00	Pull Slus			9100	1.1	-	1	
1.	The state of the last								9100	(L)	-	1	Day - day 1 /2/
Ψ	1248					Stop data	10992				-	1	Damp date to disk
											-	-	file: W10-15-3.5LG
_													
-									-				
					-	1				-			
_									-		-		
-									A	10	20		11/2/22
									NA	rece	1 len	come	1 11/3/89
												·	
											1		
						1		- 10					
-		1											

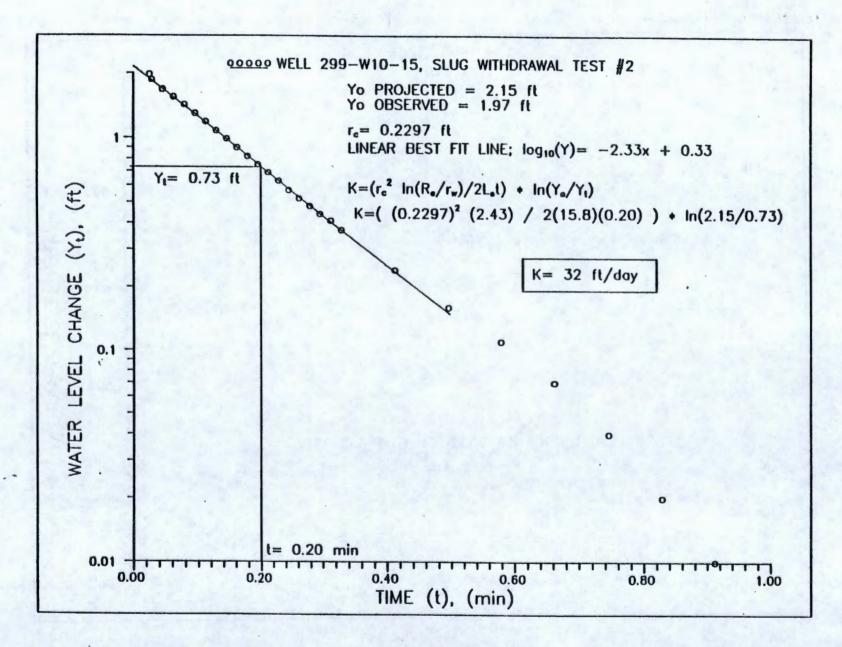
PNL-MA-567, AT-6, Rev. 0 1.4

Location 200	West T Form	Date of Test 11/3/89	- 10 E - 10 E
Well Number 25	19-W10-15	Procedure Number PNL-M	1A-567 AT-6, Rev. 6
Type of Test(s)	Slug Test		
Personnel Condu	cting Test D. R.	Newcomer , Darrell Ludke	(KEH)
		WELL CONFIGURATION	
Well Depth ~2	.22' b.1.s.	Borehole Diameter 8	
Well Casing Inside Diameter	4*	Well Screen Inside Diameter 4"	- 1 - 1 - 1 - 1
Length of Scree	ned Interval -15.	8' below water Depth of Scree	n 200.8' to 221.8'
Comments	Well is undere	cloped	
		Diameter of Slug 24	
Comments			
Volume of Attac	hments (if applic	able)	
	MEASURE	MENT EQUIPMENT INFORMATION	
	Make	Model S	erial Number
Electric Tape			
Steel Tape	Lufkin	Super Hi-way Nubian	L586-83
Data logger	In Situ	Hermit	1 KB-7 Ø Ø
Transducer	Druck	PTX-161D	259198
Other			

Equipment Record Form for the Installation and Removal of Data Loggers and Pressure Transducers

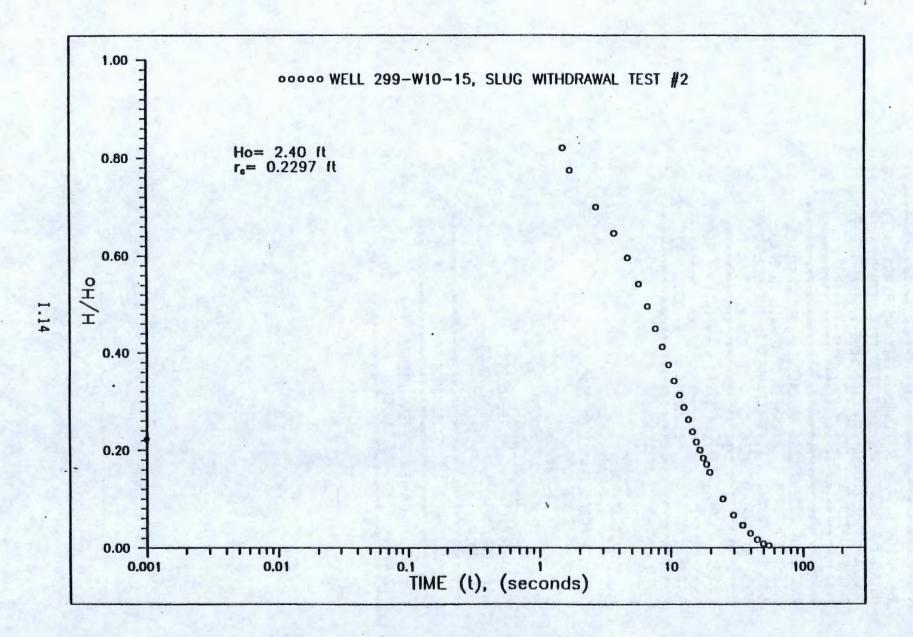
Initial Check: OK Purpose of Installation: To monitor water levels during the slug test Monitored Hydrologic Unit or Water Body: Saturated screen interval within the upper part of the aquifer Procedure Followed: PNL-MA-567 Date/Time of Installation: 11/3/29 1130 hrs. Data Logger Make/Model: In Situ / Hermit SE1000B Serial No.: 1KB-7ØØ Number of Channels Used: 1 Well No.: 299-Pressure Transducer Full Scale Range: انعم Make/Model: Depth: ~ 222' b.l.s. Serial No.: 259198 Druck / PTX-161D Pressure Transducer Full Scale Range: Well No .: Make/Model: Serial No.: Depth: Description of Data Logger Installation and Well Head Configuration: 10" casing is 6'8" above land Surface Well has not been completed in the upper 75 ft. The 10" casing is not completely pulled out. The slug was placed a few feet above static water level before the transducer was lowered to the bottom of the well. The slug was then lowered below static and water evel was allowed to stabilize. Equipment Installed By D. R. Newcomer Date/Time of Equipment Removal: 1300 hrs. 11/3/89 Decontamination Procedure (if required): Equipment Removed By D.R. Newcomer

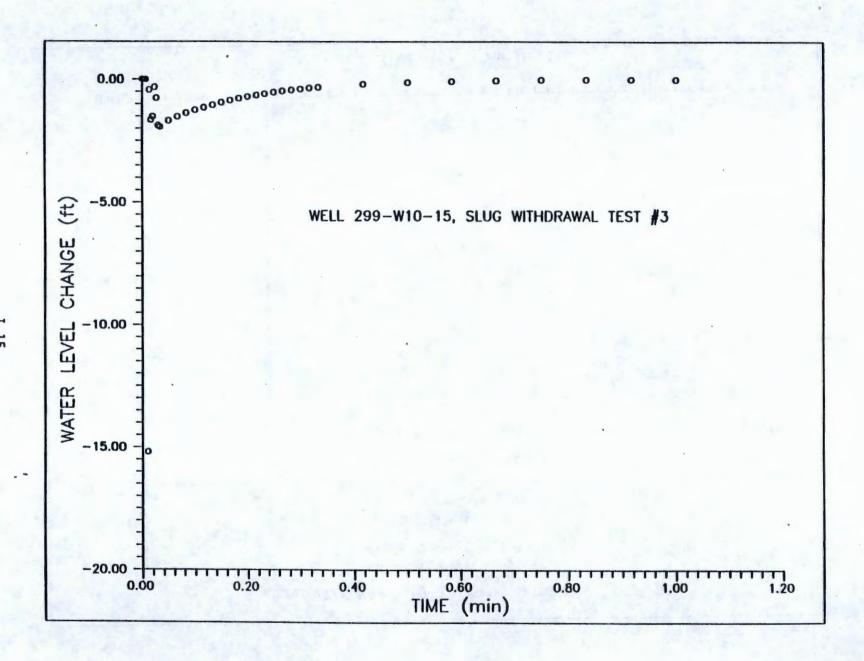

DATE AND START TIME OF DATA ACQUIS	ITION 11/3/89 1145 hrs.
DATE AND END TIME OF DATA ACQUISIT	ION 11/3/89 1157 hrs.
WELL NUMBER 299 - W10-15	
TYPE OF TEST OR DATA Slug Test	
TYPE AND IDENTIFICATION NUMBER OF I	
TEST NUMBER	
CHANNEL OR INPUT NUMBER 1	
UNITS OF VALUES RECORDED ft	
NUMBER OF PAGES ATTACHED 2	
COMMENTS: Tes+ # 2 = Withdrawa	
DATA VALIDATION STATEMENT:	
The attached data represent the data logger. Any exceptions and rethe comments section.	
Darrell Newcomer, Scientist	11/3/89 Date
Name, title	Date '

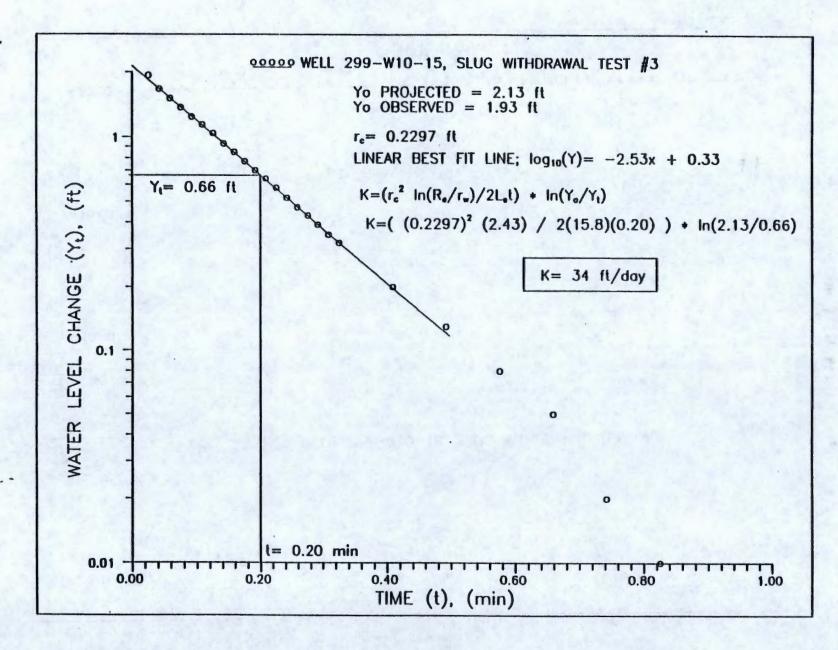

Well: 299-W10-15 Test Date: November 3, 1989	0.5833 0.6667	- 0.11 - 0.07
Start Time: 11:45	0.7500	- 0.04
	0.8333	- 0.02
SE1000B	0.9167	- 0.01
Environmental Logger	1.0000	- 0.00
11/03 12:01	1.0833	0.00
Unit# 00700 Test# 2	1.1667	0.00
011t# 00700 Test# 2	1.3333	0.01
INPUT 1: Level (F)	1.4166	0.01
INFO 1. Level (1)	1.5000	0.02
Reference 0.00	1.5833	0.03
Scale factor 9.99	1.6667	0.03
Offset 0.01	1.7500	0.03
	1.8333	0.03
Elapsed Time, Value,	1.9167	0.04
min ft	2.0000	0.04
	2.5000	0.05
0.0000 0.00	3.0000	0.05
0.0033 0.00	3.5000	0.05
0.0066 - 7.52	4.0000	0.05
0.0099 0.15 0.0133 - 2.34	4.5000 5.0000	0.05
0.0166 - 0.89	5.5000	0.05
0.0200 - 0.82	6.0000	0.05
0.0233 - 0.83	6.5000	0.05
0.0266 2.28	7.0000	0.05
0.0300 - 1.97	7.5000	0.05
0.0333 - 1.86	8.0000	0.05
0.0500 - 1.68	8.5000	0.05
0.0666 - 1.55	9.0000	0.05
0.0833 - 1.43	9.5000	0.05
0.1000 - 1.30	10.0000	0.05
0.1166 - 1.19	12.0000	0.05
0.1333 - 1.08 0.1500 - 0.99	END	
0.1666 - 0.90		
0.1833 - 0.82		
0.2000 - 0.75		
0.2166 - 0.69		
0.2333 - 0.63		
0.2500 - 0.57		
0.2666 - 0.52		
0.2833 - 0.48		
0.3000 - 0.44		
0.3166 - 0.41		
0.3333 - 0.37		
0.4167 - 0.24		
0.5000 - 0.16		

DATE AND START TIME OF DATA ACQUISITION 11/3/89 1237 hrs.	
DATE AND END TIME OF DATA ACQUISITION 11/3/89 1247 hrs.	
WELL NUMBER	
TYPE OF TEST OR DATA Slug Test	
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER	
TEST NUMBER 3	-keir
CHANNEL OR INPUT NUMBER 1	
UNITS OF VALUES RECORDED	
NUMBER OF PAGES ATTACHED 2	
COMMENTS: Test #3 = withdrawar Test	
DATA VALIDATION STATEMENT:	
The attached data represent the data as originally recorded data logger. Any exceptions and reasons for such are indicate the comments section.	on th
Darrell Neurones Scientist 11/3/89 Name, title Date	WILL
Name, title Date	

Well: 299-W10-15	0.!	5833 -	0.08
Test Date: November 3,		5667 -	0.05
Start Time: 12:37		7500 -	0.02
Start Time. 12.57		3333 -	0.01
CE1000D			
SE1000B		9167	0.00
Environmental Logger		0000	0.00
11/03 12:52		0833	0.01
		1667	0.02
Unit# 00700 Test# 3		2500	0.02
	1.3	3333	0.03
INPUT 1: Level (F)		4166	0.03
		5000	0.03
Reference 0.00		5833	0.04
Scale factor 9.99		5667	0.04
		7500	0.04
Offset 0.01			
		8333	0.04
Elapsed Time, Value,		9167	0.05
min ft		0000	0.05
	2.	5000	0.05
0.0000 0.00	3.0	0000	0.05
0.0033 0.00		5000	0.05
0.0066 0.00		0000	0.05
0.0099 - 15.19		5000	0.05
		0000	0.05
0.0133 - 0.43			
0.0166 - 1.64		5000	0.05
0.0200 - 1.51		0000	0.05
0.0233 - 0.32		5000	0.05
0.0266 - 0.76		0000	0.05
0.0300 - 1.87	7.	5000	0.05
0.0333 - 1.93	8.0	0000	0.05
0.0500 - 1.67	8.	5000	0.05
0.0666 - 1.51		0000	0.05
0.0833 - 1.37		5000	0.05
0.1000 - 1.24		0000	0.05
0.1166 - 1.14	END	3000	0.00
	LIND		
0.1333 - 1.04			
0.1500 - 0.93			
0.1666 - 0.85			
0.1833 - 0.77			
0.2000 - 0.70			
0.2166 - 0.64			
0.2333 - 0.58			
0.2500 - 0.52			
0.2666 - 0.47			
0.2833 - 0.43			
0.3000 - 0.39			
0.3166 - 0.35			-1
0.3333 - 0.32			
0.4167 - 0.20			
0.5000 - 0.13			



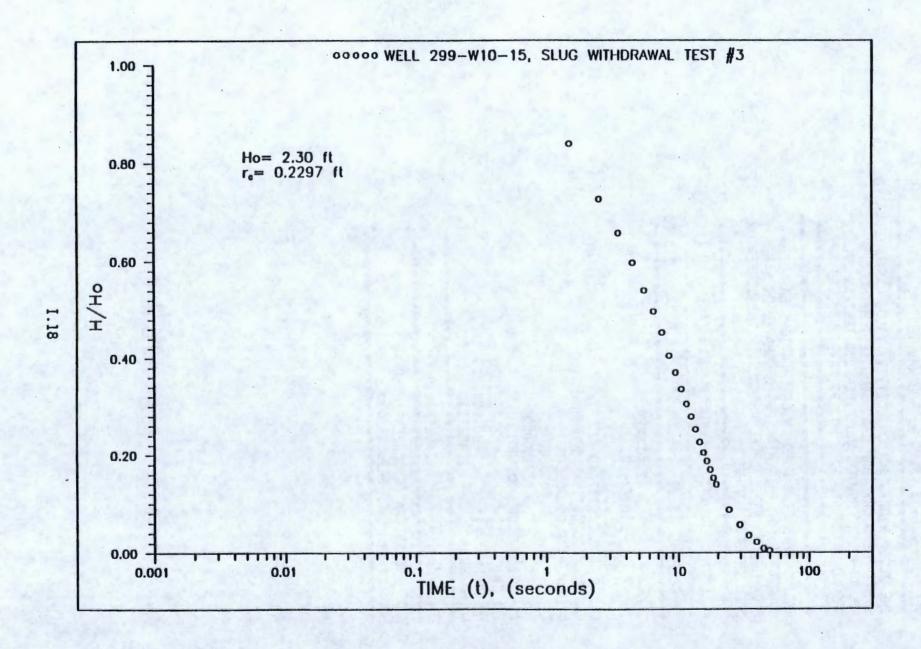



1.12

```
WELL 299-W10-15, SLUG WITHDRAWAL TEST #2
THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
USING THE BOUWER AND RICE SLUG TEST METHOD.
SOURCE - "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
Rc (ft) Rw (ft) Le (ft) Lw (ft) H (ft)
  .2297 .3333 15.8000 15.8000 275.0000
*********
       47.4000000
Le/Rw =
A= 3.0284980
B= 4.921462E-001
C=
          2.6137240
SANDPACK POROSITY= 3.000000E-001
t (min) = 2.000000E-001
         5.0000000
Yo= (ft) 2.1500000
Yt= (ft) 7.300000E-001
1/t ln(Yo/Yt)= 5.4008930
ln[(H-Lw)/Rw] =
                    6.0000000
ln(Re/Rw)=
                 2.4315210
K (ft/day) =
                  31.5842200
T OF THE SATURATED SCREEN INTERVAL
(ft2/day) = 499.0307000
```


3813018,0528

1.1


```
WELL 299-W10-15, SLUG WITHDRAWAL TEST #3
THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
USING THE BOUWER AND RICE SLUG TEST METHOD.
SOURCE- "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
******
Rc (ft) Rw (ft) Le (ft) Lw (ft) H (ft)
  .2297 .3333 15.8000 15.8000 275.0000
Le/Rw = 47.4000000
A= 3.0284980
B= 4.921462E-001
C= 2.6137240
SANDPACK POROSITY= 3.000000E-001
t (min) = 2.000000E-001
       5.0000000
2.1300
1/t=
Yo= (ft) 2.1300000

Yt= (ft) 6.600000E-001

1/t ln(Yo/Yt)= 5.8581870

1/t lw\/Rw|= 6.000000
ln[(H-Lw)/Rw] = 6.0000

ln(Re/Rw) = 2.4315210
K (ft/day) = 34.2584600
T OF THE SATURATED SCREEN INTERVAL
(ft2/day)= 541.2836000
```


APPENDIX J

TEST DATA AND ANALYSIS FOR WELL 299-W10-16

A CARLONAL CONTRACTOR AND CONTRACTOR

dottille lices

APPENDIX J

TEST DATA AND ANALYSIS FOR WELL 299-W10-16

This appendix contains the as-built diagram for the well construction, Slug Test Record Form, Aquifer Test Data Sheets, Equipment Record Forms, Electronic Data Control Forms, and accompanying data logs and plots for well 299-W10-16.

AS-BUILT DIAGRAM

eviewed by VIMIS	her		Date	1-89
Construction E	ata	Depth	Ge	eologic/Hydrologic Data
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description
2'11" of 10" CARBON	マラ	5		SAND
THEL CASING		10		MUDDY SAND
		15	0 0 -	MUDDY SANDY GRAVEL
		20	0 -0	
	11:11	25.	00000	GRAVEL
	11/1/1	30	0.00	MUDDY SANDY GRAVEL
		35	000	GRAVEL
	1,2	40	0.00	**
H' OF H" STAINLESS	1 10	45	.0000	9
STEEL CASING	+	50	0-0-0	MUDDY SANDY GRAVEL
	'''	55		SLIGHTLY GRAVELLY SAND
		60	- 0 -	GRAVELLY MUDDY SAND
		65		SUICHTLY GRANCEY SANG
		70		Sano
		75		
		30	•	£ £ £
				SUIGHTLY GRAVELLY SAND
	1/1 //	95		MUDDY SAND
	1,1			SANDY MUD
	11/1/1/1	95		SHEHTLY GRAVELLY MUDDY S
	1, 1	100		GRAVELLY MUDDY SAND
	1,1	105		* *
	11/1/11	110		SANDY MUD
		115	7-7-7-	

Battelle
 Pacific Northwest Laboratories

AS-BUILT DIAGRAM

Reviewed by 2. L. Mashan Date 12-4-89

Geologist BLEGEN BIRCH TEEL, Page 2 of 2

BJORNSTAD, GILMONE, GOODWIN

Construction Date	a	Depth	Ge	eologic/Hydrologic Data
Description	Diagram	in Feet	Diagram Litho.	Lithologic Description
32'11" OF 10" CARRON		135	000	MUDDY SANDY GRAVEL
STEEL CASING	111	145	0-0	MUDDY SANDY GRAVES
223'0" of 3" (AZ40N —		150	0000	on to to
		160	0000	SANOY GRAVEL
STEEL CASING		170	0	MUONY SANOY GANGE
		175	000	SANON GRAVEL
		180	0.0	
		140	0-0	MUDDY SANDY GRAVEL
	ا ت	200	0,0	SANDY GRAVEL DIM 202.4" 10/25/69
TAP STAINLESS STEEL		205	0 0 0	
HANNEL PACK SCREEN		215	0.00	-
COMPLETION SYMBOLS:				DRILLED DEPTH = 219.4
CEMENT GENT				COMPLETION DEPTH . 219 B
BENTONITE PELLETS				
CASING TOINT				
D CASING CENTRALIZER				

Aquifer Test Data	Aa	uifer	Test	Data
-------------------	----	-------	------	------

WHC-SD-EN-TI-147, Rev. 0

Aguifer Test Data WHC-SD-EN-TI-147, Rev. 0	pageot
7.142.110. 1.001.2.01.0	Data for Well 299- W10-16
and love Track For	Pumping Well
Location 200 West, T Tank Form	Observation Wells
Type of Aquifer Test Sing Test	
How Q Measured	
How W.L.'s Measured Transducer Steel Take # 1500-03 Depth of Pump	/Airpipe
Rad. Dist. From Pumping Well 2" Pump On: date	time
Meas. Point for W.L's Top of 4" casing (1.6'a.l.s.) Pump Off: date	time

Clock 1 1 1 1 1 1 1 1 1	nts	Comments	rded Y		arge	Disch	700	z' below	vel Dat 204.3	Water Level	Static '	= 0	t' =	ime at	T 	t =
1314			Reco		a			s or s'			Reeding	vi.	ť	t		Day
1314		Set up riq	DRN	12		roud	uctoss.	Farm	e of T	in south edg	is located	Well			1300	430
1318 D/8 = 218.22' + 2.47' = 220.69'		steel tape	1	1											1314	1
1320 Set Sing in place above water datalogger 1K 1325 Set up datalogger /transducer transducer 2: 1334 15.50' 1334 15.50'				T			691				0/8 =				1318	
1325 Set up datalogger /transducer transducer 2: 1334 15.50'	8-70	datalogger IKB		T												
1334		transducer 259		T												
1340 Drop sing (dropped sing right at log 1 cycle) 1355 0.06 Stip datalogger Jile: TFARM-2 SL(1403 15.59 Refa0 Test # 2 DRN 1407 Pull Sing (just after ingl cycle) 1418 Stop datalogger / transducer Removed data ingger / transducer File: TFARM-3 Pall Sing (part ingl cycle) Pall Sing (part ingl cycle) Pall Stop datalogger / transducer Framm-3 Pall Removed and before setting submersible pump				T											-	
1355 1358 Stop datalogour Jile: TFARM-2.5L(1403 15059 Refa0 Test to 3 DRN 1407 Pull Slug (inst after lugs kycle) 1418 Stop datalogger / transducer Removed data lagger / transducer File: TFARM-3 131 Removed and before setting submersible pump				T			#2	Test	0=2	Set Re					_	_
1358 Stop data larger W dump data to 1403 15.59 Kefao Test = 3 DRN 1407 Pull Slug (just after lugs kycle) 1 V 1418 Stop data larger transducer Sile: TFARM-3 1420 Removed data larger transducer Sile: TFARM-3 1431 Removed one bail load before setting submersible pump			+	4)	cyok	log 1	ht at	ug rig	oped st	slag (dro	Drep				1340	H
1403 15.59 Kefa Test = 2 DRN 1407 Pull Slug (inst after lugs rycle) V 1418 Stop data logger				T							0.06					
1403 15.59 Refac Test # ? DRN 1407 Rull Slug (just after lugs eyele) 1 V 1418 Stop data logger V diump data to Removed data lugger / transducer Sile: TFARM-3 1420 Removed and before setting submersible pump		dump date to di	_	-					gaer	Stop datal					1358	
1407 Pull Slug (inst after logs kycle) 1418 Stop data logger Value data to 1420 Removed data logger / trenducer Sile: TFARM-3 1418 Removed and before setting submersible pump	6	TFARM-2.SLG	sile:	3												1
V 1418 Stop data logger V dump data to 1420 Removed data logger / transducer File: TFARM-3 131 Removed one boil load before setting submersible pump			NR N	D							15.59				1403	
Removed data bagger / transducer File: TFARM-3 Paramed and bail load before setting submersible pump			1	-		eyele)	- lugs	st ofte	لىز)	Pull Slug					1407	+
PERsoned and bail load before setting submersible pump	o disk	dump data to a	V												1418	V
	SLE	Sile: TFARM -3 S		+			ducer	/trend	a bagger	Removed da				-	1420	
Dannell Mexicany 10/31/89			P	-	E 94	mers ib	ing Sub	re set	d befo	anc bail to	Removed					131
Daniell Menomy 10/31/89				-												
		10/31/89		41	on A	Meno	nell	1/00						-		-
				ľ				~~~								
				t												
			-	+									-	+	-	-
				İ												1
														+		+
				F	•											
					Ì											
			-	-								-	-	+		+

Well Number	299- WID-16	Procedure Number	AT-6 Rev Ø
		ctica / withdrawal	
		R. Newconser, Darrell L	
		WELL CONFIGURATION	
Well Depth	219.8' bls.	Borehole Diameter_	8"
Well Casing Inside Diamete	r_ 4*	Well Screen Inside Diameter 4	4 **
Length of Scre	ened Interval	16.4 below Depth of So	creen 219.3' bb - 198.3
	Vell is undevelope		
Slug Construct	ion Materials	SLUG INFORMATION Carbon Steel	
		Carbon Steel	
Length of Slug	6.0'	Carbon Steel Diameter of Slug 2	
Length of Slug	6.0'	Carbon Steel Diameter of Slug 2	14 "
Length of Slug	6.0'	Carbon Steel Diameter of Slug 2	14 "
Length of Slug	6.0'	Carbon Steel Diameter of Slug 2	114 "
Length of Slug	6.0'	Carbon Steel Diameter of Slug 2 cable)	114 "
Length of Slug	6.0' chments (if application MEASURE	Carbon Steel Diameter of Slug_2 cable) EMENT EQUIPMENT INFORMAT:	ION
Length of Slug Comments Volume of Atta	6.0' chments (if application MEASURE	Carbon Steel Diameter of Slug_2 cable) EMENT EQUIPMENT INFORMAT:	ION
Length of Slug Comments Volume of Atta Electric Tape Steel Tape	6.0' chments (if application MEASURE Make	Carbon Steel Diameter of Slug_2 cable) EMENT EQUIPMENT INFORMAT: Model	ION Serial Number
Length of Slug	chments (if application MEASURE Make	Carbon Steel Diameter of Slug_2 cable) EMENT EQUIPMENT INFORMAT: Model Super Hi-way Nubian	ION Serial Number

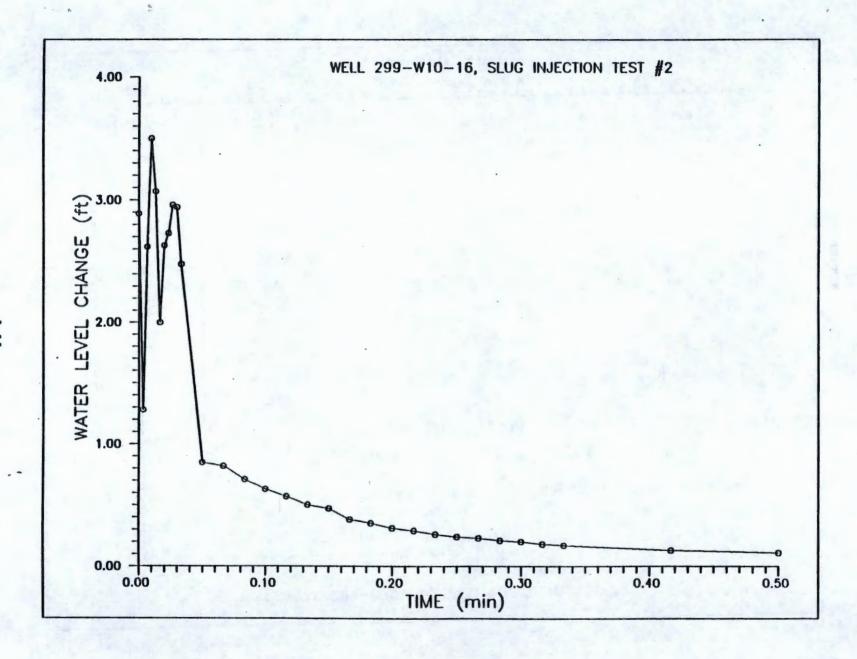
Equipment Record Form for the Installation and Removal of Data Loggers and Pressure Transducers

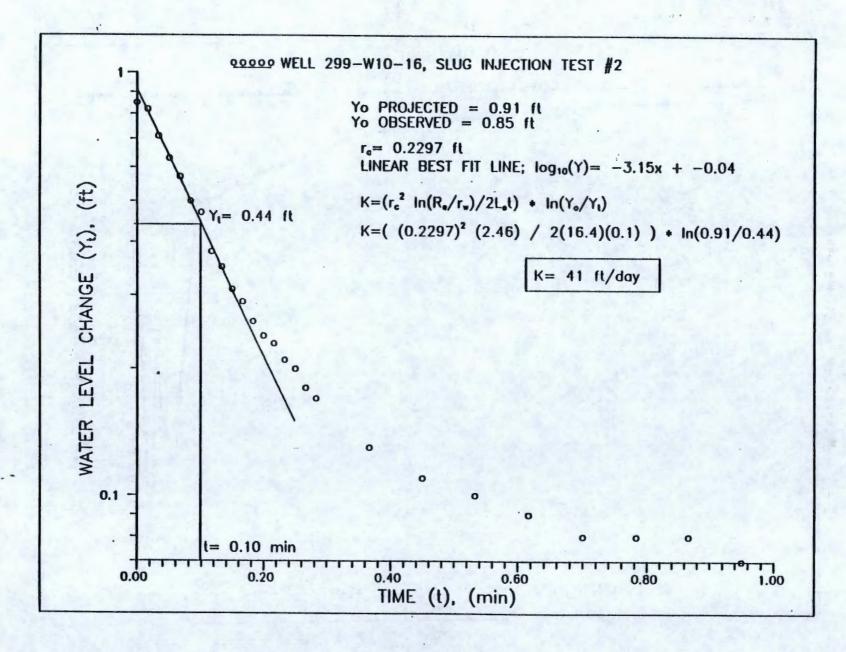
Initial Check: Purpose of Installation: To monitor water levels during slug tests Monitored Hydrologic Unit or Water Body: Saturated screen interval within upper part of uppermust aquifer 1325 hrs. Procedure Followed: WL-4, Ret p Date/Time of Installation: 10/30/89 Data Logger Make/Model: In Situ Hermit SELOWB Serial No.: 1KB-7ØØ Number of Channels Used: 1 Pressure Transducer Full Scale Range: 10 ps; Well No .: 299 w10-16 Make/Model: Depth: 219.9' below TOK (4"casing) Serial No.: 259198 Druck / PTX-161D Pressure Transducer Full Scale Range: Well No .: Make/Model: Serial No .: Depth: Description of Data Logger Installation and Well Head Configuration: Stickup of 4" casing is above land surface Slug was placed -219' from top of 4" casing before dropping slug. Equipment Installed By D.R Newsmer Date/Time of Equipment Removal: 1420 hrs. 10/30/89 Decontamination Procedure (if required): Equipment Removed By D.R. Newcomer

(5/18/89, Rev. 0)

ELECTRONIC DATA CONTROL FORM

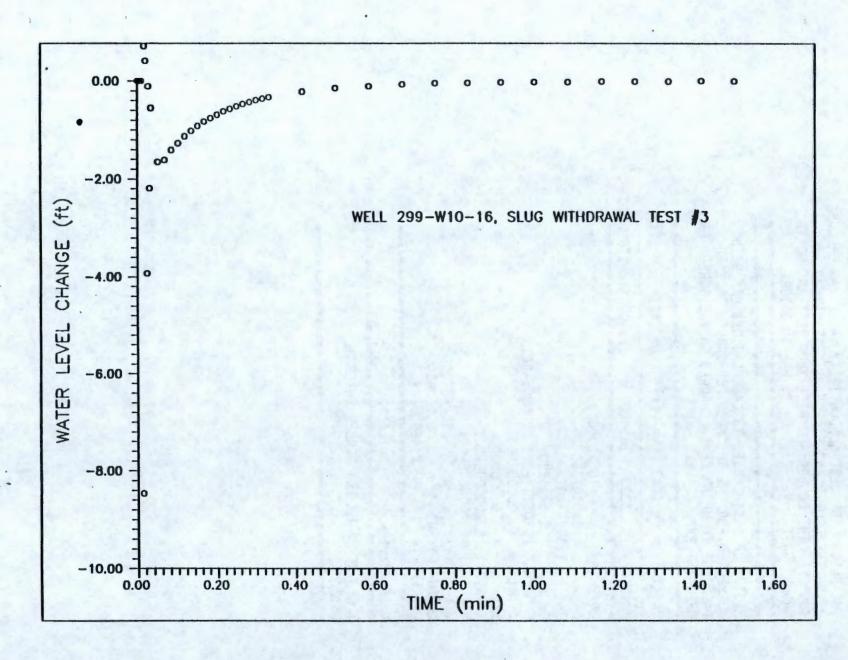
DATE AND START TIME OF DATA ACQUISITION 10/30/89 1340 hrs.
DATE AND END TIME OF DATA ACQUISITION 10/30/89 1358 45.
WELL NUMBER 299-W10-16
TYPE OF TEST OR DATA Sing Test
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER In Situ Herwit SELONS B . S/N 158-700
TEST NUMBER
CHANNEL OR INPUT NUMBER
UNITS OF VALUES RECORDED
NUMBER OF PAGES ATTACHED 2
COMMENTS: Tes+ #2 = slug injection
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Name, title Date Date

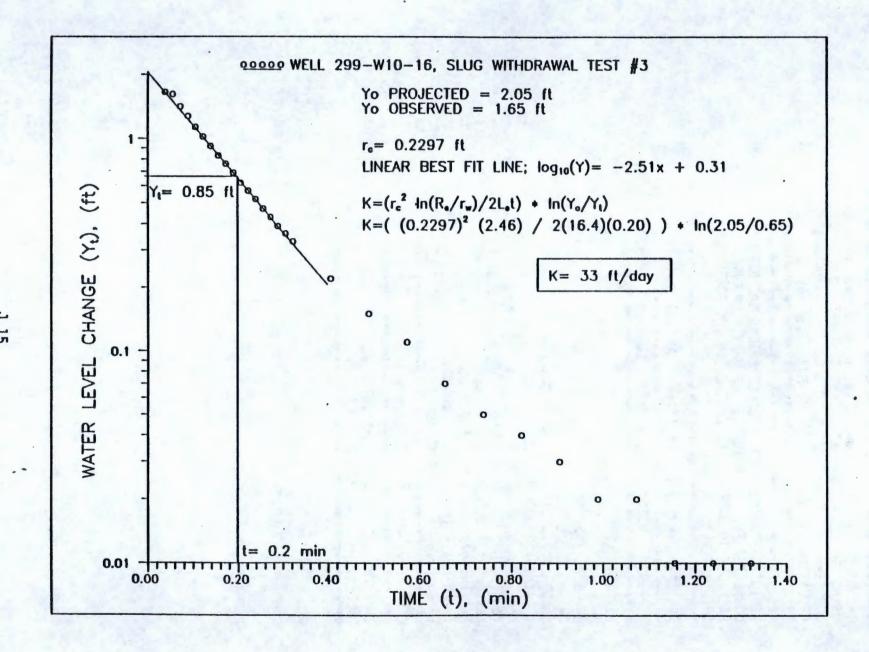

Well: 299-	W10-16	0.5833	0.10
Test Date: Oc	tober 30, 1989	0.6667	0.09
Start Time:	13:40	0.7500	0.08
		0.8333	0.08
SE1000	В	0.9167	0.08
Environmenta		1.0000	0.07
10/30 1		1.0833	0.07
		1.1667	0.07
Unit# 00700	Test# 2	1.2500	0.07
		1.3333	0.06
INPUT 1: Leve	1 (F)	1.4166	0.06
		1.5000	0.06
Reference	0.00	1.5833	0.06
Scale factor	9.99	1.6667	0.06
Offset	0.01	1.7500	0.06
		1.8333	0.06
Elapsed Time,	Value,	1.9167	0.06
min	ft	2.0000	0.06
		2.5000	0.06
0.0000	2.89	3.0000	0.05
0.0033	1.28	3.5000	0.05
0.0066	2.62	4.0000	0.05
0.0099	3.50	4.5000	0.05
0.0133	3.07	5.0000	0.05
0.0166	2.00	5.5000	0.05
0.0200	2.63	6.0000	0.05
0.0233	2.73	6.5000	0.05
0.0266	2.96	7.0000	0.05
0.0300	2.94	7.5000	0.05
0.0333	2.48	8.0000	0.05
0.0500	0.85	8.5000	0.06
0.0666	0.82	9.0000	0.06
0.0833	0.71	9.5000	0.06
0.1000	0.63	10.0000	0.06
0.1166	0.57	12.0000	0.06
0.1333	0.50	14.0000	0.06
0.1500	0.47	16.0000	0.06
0.1666	0.38	18.0000	0.06
0.1833	0.35	END	
0.2000	0.31	The same of the sa	
0.2166	0.29		
0.2333	0.26		
0.2500	0.24		
0.2666	0.23		
0.2833	0.21		
0.3000	0.20		- 5
0.3166	0.18		
0.3333	0.17		
0.4167	0.13		
0.5000	0.11		


(5/18/89, Rev. 0)

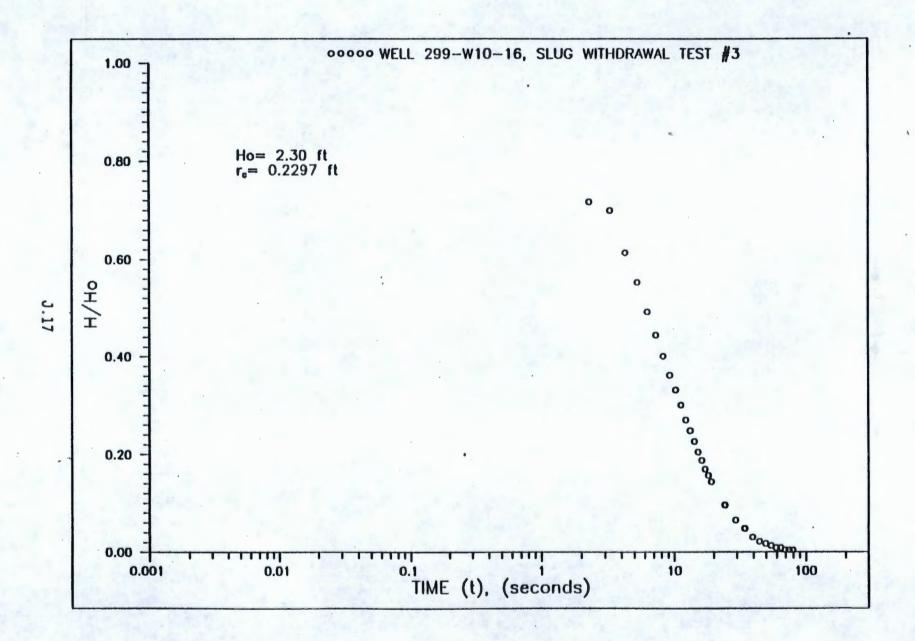
ELECTRONIC DATA CONTROL FORM

DATE AND START TIME OF DATA ACQUISITION 10/30/89 1407 hrs.
DATE AND END TIME OF DATA ACQUISITION 10/30/89 1417 hrs.
WELL NUMBER 299-W10-16
TYPE OF TEST OR DATA Slug Test
TYPE AND IDENTIFICATION NUMBER OF DATA LOGGER _ In Situ Hermit SEIGOOB , S/N IKB-7000
TEST NUMBER # 3
CHANNEL OR INPUT NUMBER
UNITS OF VALUES RECORDED 1
NUMBER OF PAGES ATTACHED 2
COMMENTS: Test 3 = slug withdrawal
DATA VALIDATION STATEMENT:
The attached data represent the data as originally recorded on the data logger. Any exceptions and reasons for such are indicated in the comments section.
Darrell Newcomer, Scientist 11/3/39 Name, title Date
Name, title Date '


Well: 299-W10-16	0.5833	- 0.11
Test Date: October 30, 1989	0.6667	- 0.07
Start Time: 14:07	0.7500	- 0.05
	0.8333	- 0.04
SE1000B	0.9167	- 0.03
Environmental Logger	1.0000	- 0.02
10/30 14:21	1.0833	- 0.02
	1.1667	- 0.01
Unit# 00700 Test# 3	1.2500	- 0.01
0111011 00700 100011 0	1.3333	- 0.01
THE		0.01
INPUT 1: Level (F)	1.4166	- 0.00
	1.5000	- 0.00
Reference 0.00	1.5833	- 0.00
Scale factor 9.99	1.6667	- 0.00
Offset 0.01	1.7500	- 0.00
	1.8333	0.00
Elapsed Time, Value,	1.9167	0.00
min ft	2.0000	0.00
min it		
	2.5000	0.00
0.0000 0.00	3.0000	0.00
0.0033 - 0.00	3.5000	0.00
0.0066 - 0.00	4.0000	0.01
0.0099 0.00	4.5000	0.00
0.0133 - 8.46	5.0000	0.01
0.0166 0.71	5.5000	0.01
0.0200 0.41	6.0000	0.01
0.0233 - 3.93	6.5000	0.01
0.0266 - 0.11	7.0000	0.00
0.0300 - 2.19	7.5000	0.00
0.0333 - 0.55	8.0000	0.01
	8.5000	0.01
0.0500 - 1.65		
0.0666 - 1.61	9.0000	0.01
0.0833 - 1.41	9.5000	0.01
0.1000 - 1.27	10.0000	0.01
0.1166 - 1.13	END	
	LND	
0.1333 - 1.02		
0.1500 - 0.92		
0.1666 - 0.83		
0.1833 - 0.76		
0.2000 - 0.69		
0.2166 - 0.62		
0.2333 - 0.57		
0.2500 - 0.52		
0.2666 - 0.47		
0.2833 - 0.43		
0.3000 - 0.39		
0.3166 - 0.36		
0.3333 - 0.33		
0.4167 - 0.22	and the second second	
0.5000 - 0.15		



J. 1


```
WELL 299-W10-16, SLUG INJECTION TEST #2
 THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
 USING THE BOUWER AND RICE SLUG TEST METHOD.
 SOURCE = "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
 GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
 **********
 RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
 CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
 PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
 OPEN INTERVAL OF WELL.
 Rc (ft) Rw (ft)
                   Le (ft)
                               Lw (ft)
                                          H (ft)
   .2297
          .3333 16.4000
                               16.4000
                                          275.0000
 Le/Rw =
                49.2000000
           3.0792260
 A=
 B= 5.055397E-001
 C=
           2.6715220
 SANDPACK POROSITY= 3.000000E-001
 t (min)= 1.000000E-001
 1/t=
         10.0000000
Yo= (ft) 9.100000E-001
Yt= (ft) 4.40000E-001
 1/t ln(Yo/Yt)=
                      7.2667000
 ln[(H-Lw)/Rw]=
                      6.0000000
                   2.4595060
 ln(Re/Rw) =
K (ft/day) =
                   41.4118800
 T OF THE SATURATED SCREEN INTERVAL
                 679.1549000
 (ft2/day) =
```


J.1


```
WELL 299-W10-16, SLUG WITHDRAWAL TEST #3
THE BELOW HYDRAULIC CONDUCTIVITY VALUE WAS CALCULATED
USING THE BOUWER AND RICE SLUG TEST METHOD.
SOURCE- "THE BOUWER AND RICE SLUG TEST-AN UPDATE"
GROUND WATER, VOL 27, NO. 3, MAY-JUNE 1989.
RADIUS OF CASING USED IN CALCULATIONS HAS BEEN
CORRECTED FOR THE THICKNESS OF GRAVEL OR SAND
PACK DUE TO WATER LEVEL CHANGES IN THE SCREEN OR
OPEN INTERVAL OF WELL.
Rc (ft) Rw (ft) Le (ft) Lw (ft) H (ft)
  .2297 .3333 16.4000 16.4000
                                        275.0000
Le/Rw =
               49.2000000
          3.0792260
A=
B= 5.055397E-001
          2.6715220
C=
SANDPACK POROSITY= 3.000000E-001
t (min) = 2.000000E-001
1/t=
            5.0000000
Yo= (ft)
               2.0500000
Yt= (ft) 6.500000E-001
1/t in(Yo/Yt)=
                     5.7431140
ln[(H-Lw)/Rw]=
                     6.0000000
                 2.4595060
ln(Re/Rw) =
                  32.7291800
K (ft/day) =
***********
T OF THE SATURATED SCREEN INTERVAL
(ft2/day) = 536.7585000
```


4/2/5 30	INF	ORMATION	RELEAS	REQU	JEST	Reference: WHC-CM-3-4	
1112	Co	omplete for all	Types of	Release			
Purp	ose			ID Numb	er (include revision, volu		
Speech or Presentation (Chec	ek [X]	Reference Technical Report	rt	WHC-S	D-EN-TI-147, Rev. C)	
only	one []	and the same of th		List at	List attachments.		
[] Summary suffix	, ,	Manual					
[] Abstract [] VisualAid	0	Brochure/Flier Software/Datab					
Speakers Bureau	n	ControlledDocu		Date Re	elease Required		
Poster Session	D	Other			4/9/93		
Videotape Title Hydrologic Testing a	at the S	ingle Shell	Tanks	1000	Unclassified Category	Impact	
itle Hydrologic lesting a	at the 3	ingre-sileri	I aliks,	1909	UC-NA	Level 4	
New or novel (patentable)subject matter?	[X] No [] Yes			from others in confidence, such as	proprietarydata,	
f "Yes", has disclosure been submitted by W		mpany?	[X] No		ninventions? es (Identify)	•	
X No [] Yes DisclosureNo(s).					co (rocauty)		
Copyrights? [X] No [] Yes			Tradema		as (Ideatify)		
If "Yes", has written permissionbeen granted No Yes (Attach Permission)	a?		[X] No	[] Y	es (Identify)		
No Yes (Attach Permission)	Co	mplete for Speed	ch or Pres	entation			
Title of Conference or Meeting	CO	iptete for speet			Sponsoring		
NA			NA				
	City/State		w	illproceedi	ngs be published?	[] No	
NA	NA		W	illmateriall	oe handed out? [] Yes	[X] No	
view Required per WHC-CM-3-4	Yes			ture Indi	cates Approval Signature	Date	
Classification/Unclassifie Controlled							
		[X]					
NuclearInformation	[] [X]	[X] ~ (//	ISPR	GUA	Menden) 4/12/a	
NuclearInformation Patent - GeneralCounsel	[X]	[X] [] \ <u>\SM</u>	BER	42M	Suseglin) 4/12/p	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel	[X]	[] > 511	BER	424A	Sußerglin) 4/12/p	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram	[X]	[] \{ \(\)	BER	424M) sußerglin) 4/12/g	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram WHCProgram/Project	[X]	[] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	BER	GUN	Sußerglin) 4/12/g	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram WHCProgram/Project Communications	[X]	[] \{ \(\)	BER	GUN.) sußerglin) HIZ	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram WHCProgram/Project Communications	[X]	[] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	BER	GUN.	Sußerglin) 4/12/p	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram WHCProgram/Project Communications RLProgram/Project	[X] [X] [] [] []	[]	BER	ber ber	Sußerglin	Brown 4	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram WHCProgram/Project Communications RLProgram/Project PublicationServices	[X]	[]	BER	gen per	them w/ Xealin	Drumy)	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram WHCProgram/Project Communications RLProgram/Project PublicationServices OtherProgram/Project	[X] [X] [] [] [] [] []	[] > SM [X] [X] [X] [X]			them w/ Xealing certified to be correct.	Brown 4	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informatiomr InternationaProgram WHCProgram/Project Communications RLProgram/Project PublicationServices OtherProgram/Project	[X] [X] [] [] [] [] []	[] > SM [X] [X] [X] [X]	ove inform	nation is			
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram WHCProgram/Project Communications RLProgram/Project PublicationServices OtherProgram/Project Information conforms to all applications	[X] [X] [] [] [] [] [] able require	[] Size	ove inform INFOR	mation is MATION RI	certified to be correct.	OVAL STAMP	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram WHCProgram/Project Communications RLProgram/Project PublicationServices OtherProgram/Project Information conforms to all applications ReferencesAvailableto IntendedAudience Transmitto DOE-HQ/Office Scientific	[X] [X] [] [] [] [] [] [] able require	[] Size	ove inform	mation is MATION RI	certified to be correct.	OVAL STAMP	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram WHCProgram/Project Communications RLProgram/Project PublicationServices OtherProgram/Project Information conforms to all applications ReferencesAvailableto IntendedAudience Transmitto DOE-HQ/Office Scientific	[X] [X] [] [] [] [] [] able require Yes [X]	[X] [X] [X] [X] [X] [X] [X] [X] Sments. The above the second seco	ove inform INFOR	mation is MATION RI	certified to be correct.	OVAL STAMP	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram WHCProgram/Project Communications RLProgram/Project PublicationServices OtherProgram/Project Information conforms to all applica ReferencesAvailableto IntendedAudience Transmitto DOE-HQ/Office Scientific and Technical Information	[X] [X] [] [] [] [] able require Yes [X]	[X] [X] [X] [X] [X] [X] [X] Star man [X]	ove inform INFOR	mation is MATION RI	certified to be correct.	OVAL STAMP	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram WHCProgram/Project Communications RLProgram/Project PublicationServices OtherProgram/Project Information conforms to all applications ReferencesAvailableto IntendedAudience Transmitto DOE-HQ/Office Scientific	[X] [X] [] [] [] [] able require Yes [X]	[X] [X] [X] [X] [X] [X] [X] [X] Sments. The above the second seco	ove inform INFOR	mation is MATION RI	certified to be correct.	OVAL STAMP	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram WHCProgram/Project Communications RLProgram/Project PublicationServices OtherProgram/Project Information conforms to all applica ReferencesAvailableto IntendedAudience Transmitto DOE-HQ/Office Scientific and Technical Information	[X] [X] [X] [] [] [] able require Yes [X] []	[X] [X] [X] [X] [X] [X] [X] [X] Star man [X] Date	ove inform INFOR	mation is MATION RI	certified to be correct.	OVAL STAMP	
NuclearInformation Patent - GeneralCounsel Legal - GeneralCounsel AppliedTechnology/ExporControlled Informationor InternationaProgram WHCProgram/Project Communications RLProgram/Project PublicationServices OtherProgram/Project Information conforms to all applica ReferencesAvailableto IntendedAudience Transmitto DOE-HQ/Offiof Scientific and Technical Information Author/Requestor (Printed/Signature	[X] [X] [X] [] [] [] able require Yes [X] []	[X] [X] [X] [X] [X] [X] [X] Star man [X]	ove inform INFOR	mation is MATION RI	certified to be correct.	OVAL STAMP	

Date Cancelled

R.L. Jackson,

sponsible Manager (Printed/Signature)

Date Disapproved