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Qualitatively, the pole-pole apparent resistivity pseudo-section in Figure A-2 resembles the
starting target more closely than the other arrays. The dipole-dipole and pc :-dipole show
extremely conductive “pantleg” effects, where the target’s edge has been smeared diagona
downward, when the data are analyzed using an apparent resistivity algorithm. Because the
apparent resistivity plotting routine contains information based on a volume-averaged
measurement, artifacts such as pantleg effects can be expected. The apparent resistivity plot of
the Schlumberger array shows a straight vertical smearing as if it were an intrusive conductive
dike. On the other hand, the pole-p«  array measures the electrical potential gradient relative to
a fixed pole at infinity. In the earth, e infinite pole should essentially have no interaction with
the electrical field and is modeled near the boundary condition of V|, =0. The resultis a
measurement of the actual potential as opposed to the gradient in potential measured for closely
spaced dipoles, and a less pronounce pantleg smearing effect.

Another view of the apparent resistivity data can be seen in Figure A-3, where vertical : ces of
data have been extracted at 81 m (center of the domain) and at 65 m. Figure A-3A shows these
slices as a function of the pseudo-depth for all but the pole-dipole array. In general, the
pole-pole and dipole-dipole array show a decrease in resistivity at 81 m (solid lines) that is
loosely coincident with the target dept  while the Schlumberger array does not resemble the
character of the target at all. Off-center at 65 m (dashed lines), where the actual resistivity is a
resistive homogeneous body, the pseudo-section of the pole-pole shows less of an effect than the
dipole-dipole. The Schlumberger array resembles the actual background better at the 65 m slice.

Figure A-3. A) Vertical Slices through Apparent Resistivity Data for Schlumberger,
Dipole-Dipole, and Pole-Pole at 65 m (beside target) and 81 m (within target);
B) Schematic of Linear and Nonlinear Pseudo-Section Plotting.
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