0062757

Waste Site Reclassification Form

Date Submitted: 08/11/04	Operable Unit(s): 100-KR-2	Control Number: 2004-042
	Waste Site ID: 128-K-1	Lead Agency: EPA
Driginator:	Type of Reclassification Action:	MERERAR
A. A. Canson	Type of Reclassification Action.	WE GELVI
Phone: 373-9759	Rejected	CED 17 2004
	Interim Closed Out	QQ SEP 17 2004
	No Action	EDMC
rejected, closed out, interi removal from the Nationa date. Description of current w	im closed out, or no action and authorizing backfil I Priorities List of no action, interim closed out, or o vaste site condition:	l of the site, if appropriate. Final closed-out sites will occur at a future
The 128-K-1 site is locate a 0.91-m (3-ft)-deep depr the southeast corner of th	ed within the 100-KR-2 Operable Unit in the 100-K ession in the landscape that measures 30 by 30 n ne 118-K-1 Burial Ground. The site was reported t	n (100 by 100 ft), and is located near to have been used for the disposal
The 128-K-1 site is locate a 0.91-m (3-ft)-deep depri- the southeast corner of th and burning of nonradioar evaluation of this site hav by the Interim Action Rec 100-HR-1, 100-HR-2, 100 Benton County, Washingt Washington. The selecte through verification samp	ed within the 100-KR-2 Operable Unit in the 100-K ession in the landscape that measures 30 by 30 m the 118-K-1 Burial Ground. The site was reported for ctive combustible materials, including paints, offic rebeen performed in accordance with remedial accord of <i>Decision for the 100-BC-1, 100-BC-2, 100-</i> <i>D-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-C</i> <i>ton</i> (Remaining Sites ROD), U.S. Environmental F ed action involved (1) sampling the site, (2) remed ling that cleanup goals have been met, and (4) pr	Area of the Hanford Site. The site is in (100 by 100 ft), and is located near to have been used for the disposal e waste, and solvents. Sampling and ction objectives and goals established DR-1, 100-DR-2, 100-FR-1, 100-FR-2, W-3 Operable Units, Hanford Site, Protection Agency, Region 10, Seattle, iating the site, (3) demonstrating oposal for interim closed out.
The 128-K-1 site is locate a 0.91-m (3-ft)-deep depri- the southeast corner of th and burning of nonradioa- evaluation of this site hav by the Interim Action Rec 100-HR-1, 100-HR-2, 100 Benton County, Washingt Washington. The selecte through verification samp Basis for reclassificatio	ed within the 100-KR-2 Operable Unit in the 100-K ession in the landscape that measures 30 by 30 m the 118-K-1 Burial Ground. The site was reported to ctive combustible materials, including paints, office the been performed in accordance with remedial accord of <i>Decision for the 100-BC-1, 100-BC-2, 100- D-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-C</i> <i>ton</i> (Remaining Sites ROD), U.S. Environmental F ad action involved (1) sampling the site, (2) remed ling that cleanup goals have been met, and (4) pr	Area of the Hanford Site. The site is in (100 by 100 ft), and is located near to have been used for the disposal e waste, and solvents. Sampling and ction objectives and goals established DR-1, 100-DR-2, 100-FR-1, 100-FR-2, W-3 Operable Units, Hanford Site, Protection Agency, Region 10, Seattle, iating the site, (3) demonstrating oposal for interim closed out.
The 128-K-1 site is locate a 0.91-m (3-ft)-deep depri- the southeast corner of the and burning of nonradioar evaluation of this site hav by the Interim Action Rec 100-HR-1, 100-HR-2, 100 Benton County, Washingt Washington. The selecter through verification samp Basis for reclassificatio The 128-K-1, 100-K Burn results demonstrated that represented (or bounded) support unrestricted futur remaining in the soil are p described in detail in the	ed within the 100-KR-2 Operable Unit in the 100-K ession in the landscape that measures 30 by 30 m the 118-K-1 Burial Ground. The site was reported to ctive combustible materials, including paints, offic rebeen performed in accordance with remedial accord of Decision for the 100-BC-1, 100-BC-2, 100- D-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-C ton (Remaining Sites ROD), U.S. Environmental F ed action involved (1) sampling the site, (2) remed ling that cleanup goals have been met, and (4) pr m: ing Pit meets the remedial action objectives spect t residual contaminant concentrations support futt) by a rural-residential scenario. These results also re use of shallow zone soil (i.e., surface to 4.6 m [protective of groundwater and the Columbia River Remaining Sites Verification Package for 128-K-1	Area of the Hanford Site. The site is in (100 by 100 ft), and is located near to have been used for the disposal e waste, and solvents. Sampling and ction objectives and goals established DR-1, 100-DR-2, 100-FR-1, 100-FR-2, W-3 Operable Units, Hanford Site, Protection Agency, Region 10, Seattle, iating the site, (3) demonstrating oposal for interim closed out.
The 128-K-1 site is locate a 0.91-m (3-ft)-deep depri- the southeast corner of th and burning of nonradioar evaluation of this site hav by the Interim Action Rec 100-HR-1, 100-HR-2, 100 Benton County, Washingt Washington. The selecte through verification samp Basis for reclassificatio The 128-K-1, 100-K Burn results demonstrated that represented (or bounded) support unrestricted futur remaining in the soil are p described in detail in the	ed within the 100-KR-2 Operable Unit in the 100-K ession in the landscape that measures 30 by 30 m the 118-K-1 Burial Ground. The site was reported to crive combustible materials, including paints, office the been performed in accordance with remedial accord of Decision for the 100-BC-1, 100-BC-2, 100- D-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-C ton (Remaining Sites ROD), U.S. Environmental F ed action involved (1) sampling the site, (2) remed ling that cleanup goals have been met, and (4) pr m: ming Pit meets the remedial action objectives spect t residual contaminant concentrations support futto) by a rural-residential scenario. These results also re use of shallow zone soil (i.e., surface to 4.6 m [protective of groundwater and the Columbia River Remaining Sites Verification Package for 128-K-1	Area of the Hanford Site. The site is in (100 by 100 ft), and is located near to have been used for the disposal e waste, and solvents. Sampling and ction objectives and goals established DR-1, 100-DR-2, 100-FR-1, 100-FR-2, W-3 Operable Units, Hanford Site, Protection Agency, Region 10, Seattle, iating the site, (3) demonstrating oposal for interim closed out.
The 128-K-1 site is locate a 0.91-m (3-ft)-deep depri- the southeast corner of the and burning of nonradioar evaluation of this site hav by the Interim Action Rec 100-HR-1, 100-HR-2, 100 Benton County, Washingt Washington. The selecter through verification samp Basis for reclassification The 128-K-1, 100-K Burn results demonstrated that represented (or bounded) support unrestricted futur remaining in the soil are p described in detail in the J, Zeisloft	ed within the 100-KR-2 Operable Unit in the 100-K ession in the landscape that measures 30 by 30 m the 118-K-1 Burial Ground. The site was reported to ctive combustible materials, including paints, offic rebeen performed in accordance with remedial accord of <i>Decision for the 100-BC-1, 100-BC-2, 100- D-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-C</i> ton (Remaining Sites ROD), U.S. Environmental F ed action involved (1) sampling the site, (2) remed ling that cleanup goals have been met, and (4) pr m: tresidual contaminant concentrations support futu) by a rural-residential scenario. These results als re use of shallow zone soil (i.e., surface to 4.6 m [protective of groundwater and the Columbia River <i>Remaining Sites Verification Package for 128-K-1</i>	Area of the Hanford Site. The site is in (100 by 100 ft), and is located near to have been used for the disposal e waste, and solvents. Sampling and ction objectives and goals established DR-1, 100- $DR-2$, 100- $FR-1$, 100- $FR-2$, W-3 Operable Units, Hanford Site, Protection Agency, Region 10, Seattle, iating the site, (3) demonstrating oposal for interim closed out.
The 128-K-1 site is locate a 0.91-m (3-ft)-deep depri- the southeast corner of th and burning of nonradioar evaluation of this site hav by the Interim Action Rec 100-HR-1, 100-HR-2, 100 Benton County, Washingt Washington. The selecte through verification samp Basis for reclassificatio The 128-K-1, 100-K Burn results demonstrated that represented (or bounded) support unrestricted futur remaining in the soil are p described in detail in the 	ed within the 100-KR-2 Operable Unit in the 100-K ession in the landscape that measures 30 by 30 m the 118-K-1 Burial Ground. The site was reported to crive combustible materials, including paints, office the been performed in accordance with remedial accord of <i>Decision for the 100-BC-1, 100-BC-2, 100- 0-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-C</i> ton (Remaining Sites ROD), U.S. Environmental F ed action involved (1) sampling the site, (2) remed ling that cleanup goals have been met, and (4) pr m: tresidual contaminant concentrations support futto) by a rural-residential scenario. These results also re use of shallow zone soil (i.e., surface to 4.6 m [protective of groundwater and the Columbia River <i>Remaining Sites Verification Package for 128-K-5</i> signature	Area of the Hanford Site. The site is in (100 by 100 ft), and is located near to have been used for the disposal e waste, and solvents. Sampling and ction objectives and goals established DR-1, 100-DR-2, 100-FR-1, 100-FR-2, W-3 Operable Units, Hanford Site, Protection Agency, Region 10, Seattle, iating the site, (3) demonstrating oposal for interim closed out. ified in the Remaining Sites ROD. The ure unrestricted land uses that can be so showed that residual concentrations 15 ft]), and that contaminant levels r. The basis for reclassification is 1, 100-K Burning Pit (attached). $\frac{g (2004)}{Date}$
The 128-K-1 site is locate a 0.91-m (3-ft)-deep depri- the southeast corner of the and burning of nonradioal evaluation of this site hav by the Interim Action Rec 100-HR-1, 100-HR-2, 100 Benton County, Washingt Washington. The selecter through verification samp Basis for reclassificatio The 128-K-1, 100-K Burn results demonstrated that represented (or bounded) support unrestricted futur remaining in the soil are p described in detail in the J, Zeisloft DOE-RL Project Lead NA	ed within the 100-KR-2 Operable Unit in the 100-K ession in the landscape that measures 30 by 30 m the 118-K-1 Burial Ground. The site was reported to ctive combustible materials, including paints, office the been performed in accordance with remedial accord of <i>Decision for the 100-BC-1, 100-BC-2, 100- D-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-C</i> ton (Remaining Sites ROD), U.S. Environmental F ed action involved (1) sampling the site, (2) remed ling that cleanup goals have been met, and (4) pr m: ing Pit meets the remedial action objectives spect tresidual contaminant concentrations support futt) by a rural-residential scenario. These results also re use of shallow zone soil (i.e., surface to 4.6 m [protective of groundwater and the Columbia River <i>Remaining Sites Verification Package for 128-K-4</i> Signature	Area of the Hanford Site. The site is in (100 by 100 ft), and is located near to have been used for the disposal e waste, and solvents. Sampling and ction objectives and goals established DR-1, 100- $DR-2$, 100- $FR-1$, 100- $FR-2$, W-3 Operable Units, Hanford Site, Protection Agency, Region 10, Seattle, iating the site, (3) demonstrating oposal for interim closed out.
The 128-K-1 site is locate a 0.91-m (3-ft)-deep depri- the southeast corner of th and burning of nonradioar evaluation of this site hav by the Interim Action Rec 100-HR-1, 100-HR-2, 100 Benton County, Washingt Washington. The selecte through verification samp Basis for reclassificatio The 128-K-1, 100-K Burn results demonstrated that represented (or bounded) support unrestricted futur remaining in the soil are p described in detail in the J, Zeisloft DOE-RL Project Lead <u>NA</u> Ecology Project Manager	ed within the 100-KR-2 Operable Unit in the 100-K ession in the landscape that measures 30 by 30 m the 118-K-1 Burial Ground. The site was reported to crive combustible materials, including paints, office been performed in accordance with remedial accord of <i>Decision for the 100-BC-1, 100-BC-2, 100- 0-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-Cton</i> (Remaining Sites ROD), U.S. Environmental F ed action involved (1) sampling the site, (2) remed ling that cleanup goals have been met, and (4) pr m: hing Pit meets the remedial action objectives spect tresidual contaminant concentrations support futu) by a rural-residential scenario. These results also re use of shallow zone soil (i.e., surface to 4.6 m [protective of groundwater and the Columbia River <i>Remaining Sites Verification Package for 128-K-1</i> Signature Signature	Area of the Hanford Site. The site is in (100 by 100 ft), and is located near to have been used for the disposal e waste, and solvents. Sampling and the waste, and solvents. Sampling and the waste, and solvents. Sampling and the bill of the disposal e waste, and solvents. Sampling and the bill of the disposal e waste, and solvents. Sampling and the bill of the bill of the bill of the bill of the protection Agency, Region 10, Seattle, iating the site, (3) demonstrating oposal for interim closed out. ified in the Remaining Sites ROD. The ure unrestricted land uses that can be so showed that residual concentrations 15 ft]), and that contaminant levels r. The basis for reclassification is 1, 100-K Burning Pit (attached). Date Hardwain $\frac{22004}{2004}$
The 128-K-1 site is locate a 0.91-m (3-ft)-deep depri- the southeast corner of the and burning of nonradioal evaluation of this site hav by the Interim Action Rec 100-HR-1, 100-HR-2, 100 Benton County, Washingt Washington. The selecter through verification samp Basis for reclassificatio The 128-K-1, 100-K Burn results demonstrated that represented (or bounded) support unrestricted futur remaining in the soil are p described in detail in the J, Zeisloft DOE-RL Project Lead <u>NA</u> Ecology Project Manager L. E, Gadbois	ed within the 100-KR-2 Operable Unit in the 100-K ession in the landscape that measures 30 by 30 m the 118-K-1 Burial Ground. The site was reported to ctive combustible materials, including paints, office been performed in accordance with remedial accord of <i>Decision for the 100-BC-1, 100-BC-2, 100- 0-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-C</i> ton (Remaining Sites ROD), U.S. Environmental F ed action involved (1) sampling the site, (2) remed ling that cleanup goals have been met, and (4) pr m: ing Pit meets the remedial action objectives spect t residual contaminant concentrations support futt) by a rural-residential scenario. These results also re use of shallow zone soil (i.e., surface to 4.6 m [protective of groundwater and the Columbia River <i>Remaining Sites Verification Package for 128-K-4</i> Signature Signature	Area of the Hanford Site. The site is in (100 by 100 ft), and is located near to have been used for the disposal e waste, and solvents. Sampling and ction objectives and goals established DR-1, 100- $DR-2$, 100- $FR-1$, 100- $FR-2$, W-3 Operable Units, Hanford Site, Protection Agency, Region 10, Seattle, iating the site, (3) demonstrating oposal for interim closed out. ified in the Remaining Sites ROD. The ure unrestricted land uses that can be so showed that residual concentrations 15 ft]), and that contaminant levels r. The basis for reclassification is 1, 100-K Burning Pit (attached). MADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

REMAINING SITES VERIFICATION PACKAGE FOR 128-K-1, 100-K BURNING PIT

۲.

.

Attachment to Waste Site Reclassification Form 2004-042

August 2004

REMAINING SITES VERIFICATION PACKAGE FOR 128-K-1, 100-K BURNING PIT

EXECUTIVE SUMMARY

The 128-K-1 site is located within the 100-KR-2 Operable Unit in the 100-K Area of the Hanford Site. The site is a 0.91-m (3-ft)-deep depression in the landscape that measures 30 by 30 m (100 by 100 ft), and is located near the southeast corner of the 118-K-1 Burial Ground. The original site dimensions (recorded in the Hanford Site Waste Information Data System) were expanded based on field observations of the site during planning for confirmatory sampling. The site was reported to have been used for the disposal and burning of nonradioactive combustible materials, including paint, office waste, and solvents.

A focused sampling approach, biased toward worst-case sample locations, was selected for this site. Results of the sampling event are used to make a decision for reclassification of the site in accordance with the waste site reclassification guideline TPA-MP-14 (DOE-RL 1998) process.

Confirmatory sampling was conducted at the 128-K-1 site in April and May 2003, and was performed in two phases. Phase I consisted of test trenches and a test pit to evaluate the potential presence of buried debris or contaminated soil. Phase II consisted of identification and removal of surface debris with waste characterization and soil sampling, as needed.

During the Phase II sampling, one location (P16) was found to have semivolatile organic contamination that required remediation. With agreement from the U.S. Environmental Protection Agency, the area with elevated levels of contamination was excavated during December 2003. The contaminated soil was disposed of at the Environmental Restoration Disposal Facility. After remediation, a verification sample of the underlying soil was collected to confirm that cleanup levels had been met. The results indicated that the waste removal action achieved compliance with the remedial action objectives for 128-K-1 site. The maximum detected residual contaminant levels from the soil samples were used to support site reclassification.

In accordance with this evaluation, the confirmatory sampling and verification sampling results support a reclassification of this site to interim closed out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (DOE-RL 2004) and the *Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units* (EPA 1999). A summary of the cleanup evaluation is presented in Table ES-1. The results show that the residual soil concentrations support future unrestricted land uses that can be represented (or bounded) by a rural-residential scenario. The results also demonstrate that residual contaminant levels in the soil are protective of groundwater and the Columbia River.

T			0
R	P.	v	0
11	6	v	v

Regulatory Requirement	Remedial Action Goals	Results	Remedial Action Objectives Attained?
Direct Exposure – Radionuclides	Attain 15-mrem/yr dose rate above background over 1,000 years.	There are no radionuclide COPCs identified for this site.	N/A
Direct Exposure – Nonradionuclides	Attain individual COPC RAGs.	Maximum detected results for nonradionuclide COCs are below the RAGs.	Yes
Risk Requirements – Nonradionuclides	Hazard quotient of <1 for all individual noncarcinogens.	All individual hazard quotients are below 1.	
	Cumulative hazard quotient of <1 for noncarcinogens.	Cumulative hazard quotient (1.1×10^{-3}) is less than 1.	
	Excess cancer risk of $<1 \times 10^{-6}$ for individual carcinogens. Excess cancer risk for individual carcinogens are all less than 1×10^{-6} .		Yes
	Cumulative excess cancer risk of $<1 \times 10^{-5}$ for carcinogens.	Total excess cancer risk (5.3 x 10^{-7}) is below 1 x 10^{-5} .	
Groundwater/River Protection – Radionuclides	Attain single-COPC groundwater and river protection RAGs.There are no radionuclide COPCs identified for this site.		
	Attain national primary drinking water standards: ^a 4 mrem/yr (beta/gamma) dose rate to target receptor/organs.		
	Meet drinking water standards for alpha emitters: the most stringent of 15 pCi/L MCL or 1/25th of the derived concentration guides from DOE Order 5400.5. ^b		N/A
	Meet total uranium standard of 21.2 pCi/L. ^c		
Groundwater/River Protection – Nonradionuclides	Attain individual nonradionuclide groundwater and river cleanup requirements.	Maximum detected results for lead are above groundwater and river protection RAGs. However, RESRAD modeling results indicate that lead will not reach groundwater (and, therefore, the Columbia River) for over 1,000 years. Therefore, the residual lead concentrations achieve the RAOs for groundwater and river protection.	Yes

Table ES-1. Summary of Remedial Action Objectives for the 128-K-1 Site.

^a "National Primary Drinking Water Regulations" (40 Code of Federal Regulations 141).

^b Radiation Protection of the Public and the Environment (DOE Order 5400.5).

^c Based on the isotopic distribution of uranium in the 100 Areas, the 30 µg/L MCL corresponds to 21.2 pCi/L. Concentration-toactivity calculations are documented in *Calculation of Total Uranium Activity Corresponding to a Maximum Contaminant Level for Total Uranium of 30 Micrograms per Liter in Groundwater* (BHI 2001).

COC = contaminant of concern

- COPC = contaminant of potential concern
- DOE = U.S. Department of Energy
- MCL = maximum contaminant level
- N/A = not applicable

RAG = remedial action goal

RAO = remedial action objective

RESRAD = RESidual RADioactivity (dose model)

REMAINING SITES VERIFICATION PACKAGE FOR 128-K-1, 100-K BURNING PIT

STATEMENT OF PROTECTIVENESS

The 128-K-1 Burning Pit site sample results demonstrate that the site achieves the remedial action objectives (RAOs) and remedial action goals (RAGs) established in the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (RDR/RAWP) (DOE-RL 2004) and the *Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units* (commonly called the Remaining Sites ROD) (EPA 1999). These results show that site soil contaminant concentrations support future unrestricted land uses that can be represented (or bounded) by a rural-residential scenario. The results also demonstrate that contaminant levels remaining in the soil are protective of groundwater and the Columbia River.

GENERAL SITE INFORMATION AND BACKGROUND

The 128-K-1 site is located within the 100-KR-2 Operable Unit in the 100-K Area of the Hanford Site (Figure 1). The site is a 0.91-m (3-ft)-deep depression in the landscape that measures 30 by 30 m (100 by 100 ft), and is located southeast of the 118-K-1 Burial Ground and northeast of the 183-KE Settling Basins. This site was active between 1955 and 1972, during which time it was reported to have received nonradioactive combustible materials such as paint waste, office waste, and chemical solvents that were likely burned. Additional waste site information is provided in Appendix A.

CONFIRMATORY SAMPLING ACTIVITIES

Planning

A walkdown of the site was performed on March 19, 2003, to inspect the site and gather information to support development of the confirmatory sampling design. A variety of debris, including some potentially hazardous debris, was noted scattered across the surface of the site. There was also evidence of past ground surface disturbance from heavy earth moving equipment.

An April 2003 geophysical survey of the site indicated magnetic anomalies that were believed to be associated with surface features and surface debris (Bergstrom and Mitchell 2003), and that scattered subsurface anomalies were of unknown nature but could be related to lithology (e.g., basalt boulders) of the site. Figure 2 is an interpretive map of the geophysical survey investigation that indicates areas of anomalies. The site boundaries (as reported in the Hanford Site Waste Information Data System) were expanded to include the anomalies and surface debris that are indicated in Figure 2.

Based on a review of the geophysical surveys and the site walkdown information, planning for confirmatory sampling of the 128-K-1 site indicated that a phased investigative approach would be appropriate. The initial phase included intrusive investigation and sampling in the areas where geophysical anomalies were identified. This decision was made because if contaminated soil or hazardous debris was found in the subsurface soil that exceeded cleanup criteria and required removal,

Figure 2. 128-K-1 Geophysical Survey Interpretive Summary.

Remaining Sites Verification Package for 128-K-1, 100-K Burning Pit

then the surface debris could be identified, characterized, and removed during subsequent subsurface soil remediation. Sampling to verify the adequacy of waste removal would also be performed, as necessary.

The objectives for each phase of confirmatory sampling were as follows:

- Phase I sampling (confirmatory sampling) was performed to evaluate geophysical anomalies and determine if buried hazardous debris or contaminated soil was present. Nine trenches and one test pit were excavated and sampled to evaluate the subsurface soil at the site.
- Phase II sampling (confirmatory sampling) involved identification and evaluation of surface debris and potentially contaminated surface soil including sampling debris and soil, as necessary.

Contaminants of Potential Concern

Contaminants of potential concern (COPCs) for the 128-K-1 waste site were identified through process/historical knowledge. The COPCs included asbestos, pesticides, herbicides, polychlorinated biphenyls, total petroleum hydrocarbons, semivolatile organic compounds, inductively coupled plasma metals, and mercury. These COPCs are associated with materials that may have been disposed of and possibly burned at the site.

Historical information does not indicate radiological COPCs. The absence of radiological contamination at this site was confirmed using gamma energy analysis, gross alpha, and gross beta sample analysis for screening purposes.

Phase I Sample Design

Phase I confirmatory sampling used a focused sampling approach biased toward sampling areas believed to be worst-case locations of potential waste disposal. The results of the geophysical surveys were used to identify anomalous areas that could potentially indicate the presence of subsurface debris or contamination associated with waste disposal or waste burning. Nine trenches and one test pit were excavated at the site with locations shown in Figure 3. The excavations proceeded through disturbed soil until native soil was encountered. Field observations were made concerning buried debris (including type and quantity) and ash (if found). For each excavation, native soil was sampled when field observations indicated the extent of the disturbed soil was reached. The sampling and analyses requirements for Phase I are described in Revision 0 of *Waste Site Evaluation for 128-K-2*, *100-K Burning Pit* (BHI 2003d).

Phase I Sample Results

The test trenches and test pit were excavated from April 22, through April 25, 2003. No hazardous debris, discolored soil, or ash was observed during the excavation of the test trenches or test pit. During excavation, a hard native caliche layer was present from an approximate depth of 0.9 to 1.2 m (3 to 4 ft) in the eastern portion of the site to about 1.5 to 2.4 m (5 to 8 ft) deep in the western portion of the site. The trenches were up to 30 m (100 ft) in length, and the bottom elevation for each trench varied across the length of the trench based on the depth that native soil was encountered. One soil sample, consisting of 15 aliquots distributed across the bottom of the excavation and combined into one sample for laboratory analyses, was collected at the base of each of the nine trench excavations in the native soil.

No soil samples were required at the test pit location. Table 1 provides a summary of the Phase I sampling.

The laboratory analytical results for the Phase I confirmatory samples are presented in Appendix B, Table B-1. Calculated cleanup levels are not presented in the *Cleanup Levels and Risk Calculations under the Model Toxics Control Act Cleanup Regulation* (CLARC Table) under *Washington Administrative Code* (WAC) 173-340-740(3) for aluminum, calcium, iron, magnesium, potassium, silicon, and sodium, and therefore, these analytes are not considered COPCs. The results for each of the COPCs at each of the nine trench locations were evaluated against the cleanup criteria identified in the RDR/RAWP (DOE-RL 2004) and summarized in Table 2 to determine if contamination in the subsurface soil required remediation. The only COPC exceedences for soil samples occurred in Trench #2 (where 10.8 mg/kg for lead exceeded the 10.2 mg/kg groundwater protection RAG) and Trench #7 (where 0.87 mg/kg for bis(2-ethylhexyl)phthalate exceeded the 0.6 mg/kg groundwater protection RAG and the 0.36 mg/kg river protection RAG). However, since the generic RESidual RADioactivity (RESRAD) dose model indicates that these contaminants will not impact groundwater or the river within 1,000 years (DOE-RL 2004), the data for these trenches and the remainder of the Phase I sampling data support the decision that no remediation of subsurface soil at the 128-K-1 site is necessary.

There were no radionuclide COPCs identified for this site. Samples analyzed for gamma energy analysis, gross alpha, and gross beta confirmed the absence of radionuclides. This data is provided in Table B-1.

Phase II Sample Design

The Phase I sampling results indicated that the subsurface soil associated with the geophysical anomalous areas meet the cleanup criteria summarized in Table 2. Therefore, the confirmatory field investigation continued with planning for Phase II sampling to evaluate the surface debris and a surface soil area that indicated burning of debris. In order to finalize the sampling design for Phase II, a second walkdown was performed with the lead regulatory agency (U.S. Environmental Protection Agency [EPA]), the U.S. Department of Energy, Richland Operations Office, and the project team on May 14, 2003 (BHI 2002). During the walkdown, eight locations were identified that required removal of surface debris and one location was identified as a burn site that required further evaluation. Figure 4 provides a map of these nine locations. In addition, some of the debris required sampling to support preparation of a waste profile for disposal of the debris at the Environmental Restoration Disposal Facility (ERDF). The Data Quality Objectives Summary Report for Waste Disposition of Noncomplicated Wastes from the Confirmatory Sites (BHI 2003a) describes the sampling and analytical requirements for waste characterization required to properly dispose of the removed debris and contaminated material at the ERDF.

Two areas (P16 and G27) required soil sampling after removal of the debris. This sampling was performed by collecting 15 soil aliquots distributed over the surface of the removal area and combining them into one sample from each area for laboratory analyses. A description of the debris removal activities for each of the locations and the associated Phase II sampling and analyses requirements are described in Revision 1 of *Waste Site Evaluation for 128-K-1, 100-K Burning Pit* (BHI 2003e). Table 3 provides a summary of the debris and soil sampling and the associated laboratory analyses that were performed as part of the Phase II sampling effort described in BHI (2003e) and agreed to by the EPA.

Sample Designation	Sample Media	HEIS Sample Number	Sample Location and Depth	Date	Sample Analysis
T1	Soil	J00M98	Trench #1 1.2 to 2.1 m	4/22/03	GEA, gross alpha ^b , gross beta ^c , ICP metals, mercury, hexavalent chromium, TPH, PCB, pesticides, and SVOA
		J00MB7	(4 to 7 ft)		Asbestos
T2	Soil	J00M99	Trench #2 1.5 to 2.1 m	4/22/03	GEA, gross alpha ^b , gross beta ^c , ICP metals, mercury, hexavalent chromium, TPH, PCB, pesticides, and SVOA
		J00MB8	(5 to 7 ft)		Asbestos
T3	Soil	J00MB0	Trench #3 1.5 to 2.4 m	4/24/03	GEA, gross alpha ^b , gross beta ^c , ICP metals, mercury, hexavalent chromium, TPH, PCBs, pesticides, and SVOA
		J00MB9	(5 to 8 ft)		Asbestos
T4	Soil	J00MB1	Trench #4 0.9 to 1.2 m	4/24/03	GEA, gross alpha ^b , gross beta ^c , ICP metals, mercury, hexavalent chromium, TPH, PCB, pesticides, and SVOA
		JOOMCO	(3 to 4 ft)	_	Asbestos
Т5	Soil	J00MB2	Trench #5	4/24/03	GEA, gross alpha ^b , gross beta ^c , ICP metals, mercury, hexavalent chromium, TPH, PCB, pesticides, and SVOA
		J00MC1	1.5 m (5 ft)		Asbestos
Т6	Soil	J00MB3	Trench #6 1.8 to 2.4 m	4/24/03	GEA, gross alpha ^b , gross beta ^c , ICP metals, mercury, hexavalent chromium, TPH, PCB, pesticides, and SVOA
		J00MC2	(6 to 8 ft)		Asbestos
T7	Soil	J00MB4	Trench #7 1.5 to 2.1 m	4/25/03	GEA, gross alpha ^b , gross beta ^c , ICP metals, mercury, hexavalent chromium, TPH, PCB, pesticides, and SVOA
		J00MC3	(5 to 7 ft)		Asbestos
Т8	Soil	JOOMB5	Trench #8 0.6 to 0.9 m	4/25/03	GEA, gross alpha ^b , gross beta ^c , ICP metals, mercury, hexavalent chromium, TPH, PCB, pesticides, and SVOA
		J00MC4	(2 to 3 ft)		Asbestos
Т9	Soil	J00MB6	Trench #9	4/25/03	GEA, gross alpha ^b , gross beta ^c , ICP metals, mercury, hexavalent chromium, TPH, PCB, pesticides, and SVOA
		J00MC5	0.9 m (3 ft)		Asbestos
Duplicate of J00MB0	Soil	J00MC6	Trench #3	1/2/102	GEA, gross alpha ^b , gross beta ^c , ICP metals, mercury, hexavalent chromium, TPH, PCB, pesticides, and SVOA
Duplicate of J00MB9	5011	J00MC7	(5 to 8 ft)	8 ft)	Asbestos
Equipment blank for J00MB0	Silica sand	J00MC8	N/A	4/24/03	GEA, gross alpha ^b , gross beta ^c , ICP metals, mercury, and SVOA

^a Logbook EL-1577 (BHI 2003b).
 ^b If gross alpha was detected above background, then GEA data was evaluated to determine if further alpha-specific analysis was needed.
 ^c If gross beta was detected above background, then strontium analysis was performed.

GEA = gamma energy analysis HEIS = Hanford Environmental Information System

ICP = inductively coupled plasma N/A = not applicable PCB = polychlorinated biphenyl SVOA = semivolatile organic analysis

TPH = total petroleum hydrocarbon

2000/000	Remedial Action Goals (mg/kg)						
COPC/COC	Direct Exposure	Groundwater Protection	River Protection				
Arsenic	20 ^a	20 ^a	20ª				
Barium	5,600	132 ^b					
Cadmium ^c	13.9	0.81 ^b	0.81 ^b				
Chromium, total	120,000	18.5 ^b	18.5 ^b				
Chromium VI ^d	240 ^e 2.1 ^f	4.8	2				
Lead	353 ^g	10.2 ^b	10.2 ^b				
Mercury	24	0.33 ^b	0.33 ^b				
Selenium	400	5	1				
ТРН		200	200				
Phenanthrene	24,000	240	1,920				
Benzo(a)anthracene	1.37	0.33 ^h	0.33 ^h				
Benzo(a)pyrene	0.33 ^h	0.33 ^h	0.33 ^h				
Carbazole	50	0.437					
Chrysene	137	1.2	0.33 ^h				
Benzo(k)fluoranthene	13.7	0.33 ^h	0.33 ^h				
Fluoranthene	3,200	64	18				
Benzo(b)fluoranthene	1.37	0.33 ^h	0.33 ^h				
Indeno(1,2,3-cd)pyrene	1.37	0.33 ^h	0.33 ^h				
Benzo(ghi)perylene ⁱ	2,400	48	192				
Pyrene	2,400	48	192				
Bis(2-ethylhexyl)phthalate	71.4	0.6	0.36				
Dibenz(a,h)anthracene	0.33 ^h	0.33 ^b	0.33 ^b				
Anthracene	24,000	240	1,920				

Table 2. Summary of Remedial Action Goals.

"The cleanup value of 20 mg/kg has been agreed to by Tri-Party project managers.

^bWhere cleanup levels are less than background, cleanup levels default to background (WAC 173-340-700[4][d]). ^cHanford Site-specific background is not available; background value is from Ecology (1994).

^dThere is no Washington State or Hanford Site background value.

Noncarcinogenic cleanup limit from WAC 173-340-740(3).

Carcinogenic cleanup limit per WAC 173-340-750(3) Method B; based on BHI (2000a).

⁸WAC 173-340-740(3) value for lead is not available. The cleanup value was calculated using Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children (EPA 1994).

^hWhere cleanup levels are less than the required detection limits (RDLs), cleanup levels default to RDLs (WAC 173-340-707[2]).

Toxicity data for this chemical are not available; cleanup levels are based on pyrene.

-- = not applicable

COC = contaminant of concern

WAC = Washington Administrative Code

Figure 4. Locations of Surface Debris at the 128-K-1 Site.

Sample Designation	Sample Media	HEIS Sample Number	Sample Location and Depth	Date	Sample Analysis
P16	Black plastic	J00P76	P16 Surface	5/22/03	ICP metals, mercury, PCB, pesticides, herbicides, SVOA, sulfide, and cyanide
P16	Soil	J00P77	P16 7.6 cm (3 in.)	5/23/03	ICP metals, mercury, PCB, pesticides, herbicides, TPH, SVOA, sulfide, and cyanide
Duplicate of J00P77	Soil	J00P78	P16 7.6 cm (3 in.)	5/23/03	ICP metals, mercury, PCB, pesticides, herbicides, TPH, SVOA, sulfide, and cyanide
Equipment blank of J00P77	Silica sand	J00P79	N/A	5/23/03	ICP metals, mercury, and SVOA
G25	Electrical cable	J00P80	Surface	5/22/03	ICP metals, mercury, PCB, and SVOA
G27	Rubber hose	J00P81	Surface	5/22/03	ICP metals, mercury, PCB, and SVOA
G27	Battery	J00P82	Surface	5/22/03	ICP metals, mercury, PCB, SVOA, and pH
G27	Battery	J00P86	Surface	5/22/03	ICP metals, mercury, PCB, SVOA, and pH
G27	Soil	J00P75	Surface	5/23/03	Asbestos

Table 3. Phase II Confirmatory Sample Summary Table.^a

^a Logbook EL-1577 (BHI 2003b).

Phase II Sample Results and Summary of Debris Removal

The Phase II sampling effort consisted of focused sampling to characterize debris (if necessary) for disposal at ERDF and limited focused surface soil sampling to determine if the soil was contaminated. This section provides a summary of the debris removal activities and the sampling that was performed. The following activities were performed at each of the nine locations:

- G21 A small pile of transite (suspected to contain asbestos) was removed and disposed of at ERDF. Visual observations were used to verify adequacy of transite removal and no soil sampling was required.
- G22 A small battery and some transite (suspected to contain asbestos) were removed. The battery
 was recycled and the transite was disposed of at ERDF. Visual observations were used to verify
 adequacy of transite removal and no soil sampling was required.
- G23 Transite (suspected to contain asbestos) and small empty metal cans were removed and disposed of at ERDF. Visual observations were used to verify adequacy of transite removal and no soil sampling was required.
- G24 Transite (suspected to contain asbestos) was removed and disposed of at ERDF. Visual observations were used to verify adequacy of transite removal and no soil sampling was required.

- G25 Some metal debris and electrical cable were removed and disposed of at the ERDF. The electrical cable was sampled to support waste characterization and disposal. No soil sampling was required.
- G26 Glass, rubber boots, and wood were removed at this location. No soil sampling was required.
- G27 A large battery, small battery, asbestos pipe wrap, transite (suspected to contain asbestos), metal debris, and rubber material were removed at this location. The two batteries were sampled to support waste characterization and disposal. After the debris was removed, one soil sample for asbestos analysis was collected to verify the adequacy of asbestos removal.
- G28 A light bulb, transite (suspected to contain asbestos), and metal debris were removed. Visual observations were used to verify the adequacy of debris removal and no soil sampling was required.
- P16 This surface location was suspected to have been a burn site with cinders that were later
 determined to be decomposed black, brittle plastic and asphalt debris. One sample of black plastic
 and one sample of the underlying surface soil were collected. The results of these two samples
 indicated remediation was necessary at this location due to the presence of semivolatile organic
 constituents that exceeded the cleanup criteria.

The results of the Phase II sampling are reported in Revision 2 of *Waste Site Evaluation for 128-K-1*, *100-K Burning Pit* (BHI 2003f), with a minor correction concerning the sample media description made in Revision 3 of the waste site evaluation (BHI 2003g). The results are also provided in Appendix B, Table B-2. The Phase II laboratory results indicated that remediation of the soil at location P16 was necessary due to the presence of semivolatile organic contaminants that exceeded the cleanup criteria. The soil sample collected at the G27 location for asbestos analysis did not indicate the presence of asbestos contamination that would present a risk to human health or the environment, and no remediation beyond removal of the surface debris was required. Table 3 provides a summary of the Phase II sampling.

REMEDIAL ACTION SUMMARY

Debris identified during the May 14, 2003, walkdown was removed and disposed of at the ERDF during Phase II confirmatory sampling. As previously stated, the Phase I confirmatory sampling results indicated that no remediation of the subsurface soil was required. However, based on the results of the Phase II confirmatory soil sampling (Table B-2), selective remediation of the 128-K-1 site at the P16 location was necessary due to the presence of benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, bis(2-ethylhexyl)phthalate, carbazole, chrysene, dibenz[a,h]anthracene, and indeo(1,2,3-cd)pyrene, which exceeded the cleanup criteria.

The remediation at the P16 location was performed during December 2003 by removing contaminated soil from an approximate 7- by 15-m (23- by 49-ft) area to a depth of approximately 0.5 m (1.6 ft) based on field observations of discolored soil (see Figure 4). A total of 161 tons of contaminated soil from this location was disposed of at the ERDF.

VERIFICATION SAMPLING ACTIVITIES

The Phase I confirmatory sampling results (Table B-1) demonstrated that the subsurface soil at each of the trench locations meet the site cleanup criteria. After remedial action was performed at the P16 location, sampling was performed to verify the adequacy of the cleanup. Since P16 was the only location that required remediation, other than Phase II debris removal, it was the only location that required verification sampling.

Contaminants of Concern

The contaminants of concern (COCs) for the remediation of the P16 location were identified based on the results of the Phase II confirmatory sampling effort. The COCs included benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, bis(2-ethylhexyl)phthalate, carbazole, chrysene, dibenz[a,h]anthracene, and indeo(1,2,3-cd)pyrene.

Verification Sample Design

Following remediation, a focused sampling approach was used to verify that the P16 location meets the RAGs as specified in the RDR/RAWP (DOE-RL 2004) and summarized in Table 2. The verification sampling performed on December 8, 2003, consisted of collecting 15 aliquots distributed over the surface of the remediated soil area and combining them into one sample (J015N7) for laboratory analysis (BHI 2003c). The soil sample consisted of the native soil at the bottom of the excavated area that represented a soil horizon about 0.5 m (1.6 ft) below the ground surface. The sample was submitted to the laboratory for semivolatile organic analyses (SVOA). Sampling and analytical requirements for this verification sampling were specified in BHI (2003f).

Verification Sample Results

The sample was analyzed by offsite contract laboratories using EPA-approved analytical methods. The sample results are stored in the Environmental Restoration (ENRE) Project-Specific Database prior to archiving in the Hanford Environmental Information System (HEIS) and are summarized in Table B-3 (Appendix B).

In accordance with the focused sampling approach and WAC 173-340-740(7)(d)(iii), a direct comparison of the verification sample results with the RAGs is an acceptable method to evaluate compliance with cleanup objectives for the 128-K-1 site. Table 4 compares the maximum detected results for COPCs for the confirmatory sampling and the verification sampling for the 128-K-1 site, with cleanup levels identified in the RDR/RAWP (DOE-RL 2004).

For the P16 soil data evaluation, the maximum detected results for all COCs are less than the applicable RAGs.

Nonradionuclide risk requirements include an individual hazard quotient of less than 1.0, a cumulative hazard quotient of less than 1.0, an individual contaminant carcinogenic risk of less than 1 x 10^{-6} , and a cumulative carcinogenic risk of less than 1 x 10^{-5} . For the 128-K-1 site, these risk values were not calculated for constituents that were either not detected or were detected at concentrations below Hanford Site or Washington State background. All individual hazard quotients for noncarcinogenic

COPC/COC	Maximum Re	sult (mg/kg)	Remedia	I Action Goals (mg/kg)	Does the Maxi Exceed 1	imum Result RAGs?	Does RESRAD	
corcicoc	Confirmatory Soil	Verification Soil	Direct Exposure	Groundwater Protection	River Protection	Confirmatory Soil	Verification Soil	Indicate the Maximum Result is Protective?	
			Nonradie	onuclides (mg/kg)				
Arsenic	3.7 (<bg)< td=""><td></td><td>20ª</td><td>20ª</td><td>20ª</td><td>No</td><td></td><td></td></bg)<>		20ª	20ª	20ª	No			
Barium	71.5 (<bg)< td=""><td></td><td>5,600</td><td>132^b</td><td></td><td>No</td><td></td><td></td></bg)<>		5,600	132 ^b		No			
Cadmium ^c	0.35 (<bg)< td=""><td></td><td>13.9</td><td>0.81^b</td><td>0.81^b</td><td>No</td><td></td><td></td></bg)<>		13.9	0.81 ^b	0.81 ^b	No			
Chromium, total	13.5 (<bg)< td=""><td></td><td>120,000</td><td>18.5^b</td><td>18.5^b</td><td>No</td><td></td><td></td></bg)<>		120,000	18.5 ^b	18.5 ^b	No			
Chromium VI ^d	0.48		240 ^e 2.1 ^f	4.8	2	No			
Lead	10.8		353 ^g	10.2 ^b	10.2 ^b	Yes		Yes ^h	
Mercury	0.03 (<bg)< td=""><td></td><td>24</td><td>0.33^b</td><td>0.33^b</td><td>No</td><td></td><td></td></bg)<>		24	0.33 ^b	0.33 ^b	No			
Selenium	0.8		400	5	1	No			
ТРН	14.4			200	200	No			
Phenanthrene	2.7	0.046	24,000	240	1,920	No	No		
Benzo(a)anthracene	8.3 ⁱ	0.1	1.37	0.33 ^j	0.33 ^j	Yes	No		
Benzo(a)pyrene	2.9 ⁱ	0.051	0.33 ^j	0.33 ^j	0.33 ^j	Yes	No		
Carbazole	0.82 ⁱ	U	50	0.437		Yes	No		
Chrysene	11 ⁱ	0.15	137	1.2	0.33 ^j	Yes	No		
Benzo(k)fluoranthene	4.1 ⁱ	0.078	13.7	0.33 ^j	0.33 ^j	Yes	No		
Fluoranthene	11	0.22	3,200	64	18	No	No		
Benzo(b)fluoranthene	6.1 ⁱ	0.075	1.37	0.33 ^j	0.33 ^j	Yes	No		
Indeno(1,2,3-cd)pyrene	1.9 ⁱ	0.029	1.37	0.33 ^j	0.33 ^j	Yes	No		
Benzo(ghi)perylene ^k	1.7	0.033	2,400	48	192	No	No		
Pyrene	11 ⁱ	0.153	2,400	48	192	No	No		
Bis(2-ethylhexyl) phthalate	0.87/1.7 ¹	0.069	71.4	0.6	0.36	Yes	No		

Attachment to Waste Site Reclassification Form 2004-042

Rev. 0

Table 4. Comparison of Maximum Values to Action Levels (128-K-1 Burn Pit). (2 Pages)

13

	Maximum Re	sult (mg/kg)	Remedial Action Goals (mg/kg)			Does the Maxi Exceed I	imum Result RAGs?	Does RESRAD
COPC/COC	Confirmatory Soil	Verification Soil	Direct Exposure	Groundwater Protection	River Protection	Confirmatory Soil	Verification Soil	Result is Protective?
bibenz(a,h)anthracene	1.2 ⁱ	U	0.33 ^j	0.33 ^j	0.33 ^j	Yes	No	
nthracene	0.67	U	24,000	240	1,920	No	No	

Table 4. Comparison of Maximum Values to Action Levels (128-K-1 Burn Pit). (2 Pages)

^aThe cleanup value of 20 mg/kg has been agreed to by Tri-Party project managers.

^bWhere cleanup levels are less than background, cleanup levels default to background (WAC 173-340-700[4][d]).

^cHanford Site-specific background is not available; background value is from Ecology (1994).

^dThere is no Washington State or Hanford Site background value.

^eNoncarcinogenic cleanup limit from WAC 173-340-740(3).

^fCarcinogenic cleanup limit per WAC 173-340-750(3) Method B; based on BHI (2000a).

^gWAC 173-340-740(3) value for lead is not available. The cleanup value was calculated using Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children (EPA 1994).

^hThe generic RESRAD model indicates that the contaminant will not impact groundwater or the river within 1,000 years (DOE-RL 2004).

These concentrations are from location P16 prior to remediation. Concentrations of these contaminants from all other 128-K-1 areas are below the applicable cleanup criteria. ^jWhere cleanup levels are less than the required detection limits (RDLs), cleanup levels default to RDLs (WAC 173-340-707[2]).

^kToxicity data for this chemical are not available; cleanup levels are based on pyrene.

¹The Phase I confirmatory sampling result at trench #7 was 0.87 mg/kg, exceeding the RAGs for protection of groundwater and the river, however, the generic RESRAD model indicates that the contaminant will not impact groundwater or the river within 1,000 years (DOE-RL 2004). The Phase II confirmatory sampling result at the P16 location was 1.7 mg/kg, exceeding the RAGs for protection of groundwater and the river, and soil remediation was performed with subsequent verification sampling.

- = not applicable

BG = background

BG = background

U = undetected

constituents were less than 1.0 (phenanthrene: 1.9×10^{-6} , benzo(ghi)perylene: 1.4×10^{-5} , bis(2ethylhexyl) phthalate: 9.7×10^{-4} , fluoranthene: 6.9×10^{-5} , and pyrene: 6.4×10^{-5}). The cumulative hazard quotient for these noncarcinogenic constituents above background or detection levels is 1.1×10^{-3} , which is less than 1.0. The carcinogenic risk values for individual carcinogenic constituents above background or detection levels are all below 1×10^{-6} as follows:

- Benzo(a)anthracene: 7.3 x 10⁻⁸
- Benzo(a)pyrene: 3.7 x 10⁻⁷
- Chrysene: 1.1 x 10⁻⁹
- Benzo(k)fluoranthene: 5.7 x 10⁻⁹
- Benzo(b)fluoranthene: 5.5 x 10⁻⁸
- Indeno(1,2,3-cd)pyrene: 2.1 x 10⁻⁸
- Bis(2-ethylhexyl) phthalate: 9.7 x 10⁻¹⁰.

The cumulative carcinogenic risk value for these constituents is 5.3×10^{-7} , which is below 1×10^{-5} .

A focused sampling approach was selected for this site; therefore, the WAC 173-340-740(7)(e), which is a requirement for statistically-based soil cleanup assessments, is not applicable.

DATA QUALITY ASSESSMENT FOR CONFIRMATORY AND VERIFICATION SAMPLING

A data quality assessment (DQA) was performed to compare the confirmatory and verification sampling approach and resulting analytical data with the sampling and data requirements specified by the project objectives and performance specifications. The review involves evaluation of the data to determine if they are of the right type, quality, and quantity to support project decisions (i.e., interim closeout decisions [EPA 2000]). The assessment review completes the data life cycle (i.e., planning, implementation, and assessment) that was initiated by the data quality objectives process. This DQA review was performed in accordance with BHI-EE-01, *Environmental Investigations Procedures*. Specific data quality objectives for the site are found in the *Sampling and Analysis Plan for the 100 Area Remaining Sites* (SAP) (DOE-RL 2000).

The review of the logbooks (BHI 2003b, 2003c) against the sample design showed that the samples were collected according to the sample design and submitted to the laboratory for the required analyses. The verification sample collected at the P16 location was submitted just for SVOA because the results of the confirmatory sampling only indicated SVOA contamination.

The data quality requirements in the SAP (DOE-RL 2000) are used for assessing data from statistical sampling and do not specifically apply to the data sets resulting from the focused sampling performed for 128-K-1 site. However, to ensure quality data sets, the SAP data assurance requirements as well as the *Data Validation Procedures for Chemical Analysis* (BHI 2000b) are followed, where appropriate.

Data validation was performed and is reported in BHI (2004). All analytical data for the 128-K-1 site were found acceptable for decision-making purposes. There were some minor discrepancies with matrix spikes, practical quantitation limits, and relative percent differences. All discrepancies were within tolerance levels; therefore, all data sets for the 128-K-1 site were determined to be acceptable.

The DQA review for the 128-K-1 site concludes that the data are of the right type, quality, and quantity to support the intended use. The DQA review found the results to be accurate within the standard errors associated with the methods, including sampling and sample handling. The nondetect results have detection limits below established project specifications.

SUMMARY FOR INTERIM CLOSURE

A phased sampling approach was implemented at the 128-K-1 waste site based on geophysical surveys and site walkdowns. Confirmatory sampling was conducted during April and May 2003. The analytical laboratory results for the soil achieved compliance with the RAOs. However, the analytical laboratory results for P16 sublocation failed SVOA RAGs and required contaminated soil removal. A remedial action was implemented during December 2003, removing the contaminated soil from the site. Verification sampling was conducted December 8, 2003. The SVOA analytical verification sample results met the RAGs.

In accordance with this evaluation, the sampling results support a reclassification of the 128-K-1 waste site to interim closed out. The maximum detected results from soil samples collected at locations suspected of having the greatest potential for contamination were shown to meet the RAOs for direct exposure, groundwater protection, and river protection.

REFERENCES

- 40 CFR 141, "National Primary Drinking Water Regulations," Code of Federal Regulations, as amended.
- Bergstrom, K. A. and T. H. Mitchell, 2003, "Results of Geophysical Investigation at Remaining Sites," Memorandum to R. A. Carlson, CCN 108137, dated June 25, 2003, Bechtel Hanford, Inc., Richland, Washington.
- BHI-EE-01, Environmental Investigations Procedures, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2000a, Calculation of Hexavalent Chromium Carcinogenic Risk, Calculation No. 0100X-CA-V0031, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2000b, Data Validation Procedure for Chemical Analysis, BHI-01435, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2001, Calculation of Total Uranium Activity Corresponding to a Maximum Contaminant Level for Total Uranium of 30 Micrograms per Liter in Groundwater, Calculation No. 0100X-CA-V0038, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2002, "100-K Remedial Sampling," Logbook EL-1572, p. 49, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2003a, Data Quality Objectives Summary Report for Waste Disposition of Noncomplicated Wastes from the Confirmatory Sites, BHI-01689, Rev. 3, Bechtel Hanford, Inc., Richland, Washington.

- BHI, 2003c, "Remaining Sites Field Sampling," Logbook EL-1578-1, p. 60, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2003d, Waste Site Evaluation for 128-K-1, 100-K Burning Pit, Calculation No. 0100K-CA-V0015, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2003e, Waste Site Evaluation for 128-K-1, 100-K Burning Pit, Calculation No. 0100K-CA-V0015, Rev. 1, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2003f, Waste Site Evaluation for 128-K-1, 100-K Burning Pit, Calculation No. 0100K-CA-V0015, Rev. 2, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2003g, Waste Site Evaluation for 128-K-1, 100-K Burning Pit, Calculation No. 0100K-CA-V0015, Rev. 3, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2004, Final Validation Package, SAF-B03-015, 128-K-1, Bechtel Hanford, Inc., Richland, Washington.
- DOE Order 5400.5, Radiation Protection of the Public and the Environment, as amended, U.S. Department of Energy, Washington, D.C.
- DOE-RL, 1998, Tri-Party Agreement Handbook Management Procedures, RL-TPA-90-0001, Guideline Number TPA-MP-14, "Maintenance of the Waste Information Data System (WIDS)," U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2000, Sampling and Analysis Plan for the 100 Area Remaining Sites, DOE/RL-99-58, Rev. 0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2004, Remedial Design Report/Remedial Action Work Plan for the 100 Area, DOE/RL-96-17, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- Ecology, 1994, National Background Soil Metals Concentrations in Washington State, Publication No. 94-115, Washington State Department of Ecology, Olympia, Washington.
- EPA, 1994, Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children, EPA/540/R-93/081, Publication No. 9285.7-15-1, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 1999, Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington, U.S. Environmental Protection Agency, Region 10, Seattle, Washington.

EPA, 2000, Explanation of Significant Difference for the 100 Area Remaining Sites ROD, U.S. Environmental Protection Agency, Region 10, Seattle, Washington.

WAC 173-340, "Model Toxics Control Act--Cleanup," Washington Administrative Code, 1996.

•

APPENDIX A

WASTE INFORMATION DATA SYSTEM GENERAL SUMMARY REPORT (3 Pages)

Remaining Sites Verification Package for 128-K-1, 100-K Burning Pit

A-i

Waste Information Data System General Summary Report

Site Code: 128-	K-1	Site Classification: Accepted	Page 1
Site Names:	128-K-1, 100-K Burning P	it	
Site Type:	Burn Pit	Sta	rt Date: 1955
Status:	Inactive	End	I Date: 1971
Operable Unit:	100-KR-2	Cod	ordinates:
Hanford Area:	100K	(E)	569604.375
		(N)	146591.641
		Was	hington State Plane
Site Description:	The site is a slight depress (mostly concrete and meta	sion, about 0.91 meters (three feet) belo II) showing at the surface.	w the surrounding grade, with pieces of debris
	The site has been backfille March 19, 2003 verified th As of March 19, 2003, the of the ground is covered b	ed to the surrounding grade with clean fil at the location has been covered over wi site is slowly revegetating with cheatgra y small cobbles and is poor for vegetatio	I material. A field visit on ith soil by heavy equipment. ss and rabbitbrush, but much n growth.
Location Description:	The site is located outside and northeast of the 183-M	of the perimeter fence, southeast of the KE Settling Basins.	100-K Burial Ground (118-K-1)
Process Description:	This site was used for the office waste, and chemica	disposal of nonradioactive combustible I solvents.	materials such as paint waste,
Site Comment:	A July 12, 1965 aerial pho meters (100 feet by 100 fe (See the attached aerial pl possible that the blackene the material around. In ad uncropped aerial photo to case this site had been mi	to of the 100-K area shows a disturbed a bet), very close to the location provided b hoto.) While there is no evidence of bun d material was covered over periodically Idition, enough of the area surrounding 1 verify that there is no other obvious burn smapped.	area, about 30.48 meters by 30.48 by Stenner and as mapped by GIS. ning in the aerial photo, it is to prevent the wind from blowing 00-K is visible in the entire, ning area in this vicinity, in
Cleanup	Ground Penetrating Rada	r scans were done in March 2003. Nine	trenches and a test pit were dug
Activities:	to assess the subsurface of trenching activity. Debris, site. Results of one soil sa action levels for semi volation	of the area. An ash layer was discovere ash and soil samples were collected in imple obtained from below the surface o tile organic compounds.	d during the exploratory April 2003 to characterize the f the burn site was above
References:	1. R. D. Stenner, K. H. Cra Inactive Waste Sites at Ha	amer, D. A. Lamar, 10/88 Hazard Rankir anford, PNL-6456 Vol 1,2,3.	ng System Evaluation of CERCLA
	2. Carpenter, RW and SL Rev 0.	Cote, 1994 100-K Area Technical Basel	ine Report, WHC-SD-EN-TI-239,
	3. A. D. Krug, WIDS Site M 4. Stephen G. Weiss, 3/30 be filled out.	Modification: Consolidate OUs 100-KR-	2 and 100-KR-3 (#94-421). 19, 2003 and requesting site fields
	5. SG Welss, 6/26/03 Was Rev 3.	Ste Site Evaluation for 128-K-1, 100-K B	uming Pit, 0100K-GA-90015,
Waste Inform	ation:		
Туре:	Misc. Trash and Debris		
Category:	Hazardous/Dangerous		

Physical State:	Solid
Description:	The site was used for the disposal of nonradioactive, combustible materials, such as paint waste, office waste, and chemical solvents.
References:	1. R. D. Stenner, K. H. Cramer, D. A. Lamar, 10/88 Hazard Ranking System Evaluation of CERCLA Inactive Waste Sites at Hanford, PNL-6456 Vol 1.2.3

Remaining Sites Verification Package for 128-K-1, 100-K Burning Pit

Rev. 0

05/19/2004

Dimensions: Length: Width: Depth/Height: References:	30.48 30.48 3.05 1. R. D. Stenner, K. H. Cra Inactive Waste Sites at Ha	Meters Meters Meters	100.00	Feet		
Length: Width: Depth/Height: References:	30.48 30.48 3.05 1. R. D. Stenner, K. H. Cra Inactive Waste Sites at Ha	Meters Meters Meters	100.00	Feet		
Width: Depth/Height: References:	30.48 3.05 1. R. D. Stenner, K. H. Cra Inactive Waste Sites at Ha	Meters Meters	100.00			
Depth/Height: References:	3.05 1. R. D. Stenner, K. H. Cra Inactive Waste Sites at Ha	Meters		Feet		
References:	1. R. D. Stenner, K. H. Cra Inactive Waste Sites at Ha		10.00	Feet		
	Inactive Waste Sites at Ha	mer. D. A. Lamar.	10/88 Haz	ard Rank	ing System Evaluation of (CERCLA
		nford, PNL-6456	/ol 1,2,3.			
Field Work:						
Туре:	Site Walkdown					
BeginDate:	03/19/2003	Fiel	dCrew:	Stepher	Weiss	
End Date:	03/19/2003					
Purpose:	Verification					
Comment:	During the site walkdown p	hotos were taken	to verify th	e location	of the waste site,	
	and show that material has	been covered ov	er with soil	by heavy	equipment.	
References:	1. Stephen G. Weiss, 3/30/	03 E-mail describ	ing the site	on March	h 19, 2003 and requesting	site fields be filled ou
Type:	Geophysical Survey					
BeginDate:	03/01/2003	Fiel	dCrew:	Bergstro	om, Mitchell	
End Date:	03/01/2003			0		
Purpose:	Investigation					
Comment:	Scattered pockets of magn	etic anomalies we	ere detecte	d. Many c	of the anomalies	
	correlate with surface debr with basalt boulders.	is. Some of the m	agnetic an	nomalies o	could be associated	
References:	1. Tom Mitchell, Kevin Berg	strom, 3/29/03 Ge	ophysical	Site Inves	tigation Forms for March 2	2003.
Type:	Analytical Sampling					
BeginDate:	04/22/2003	Fiel	dCrew:	ERC Te	am	
End Date:	05/23/2003	Dat	a Reposi	tory:	HEIS	•
Purpose:	Confirmatory Sampling					
Comment:	Soil, ash and debris sample through J00MB9, J00MC0 analyzed for semi-volatile of TPH GEA gross alpha or	es were collected through J00MC8, organics, pesticide oss beta and asb	Sample r J00P75 th es, PCB's, estos	numbers J rough J00 ICP meta	J00M98, J00M99, J00MB0 0P86 were collected and Is, hexavalent chrome,)
References:	1. SG Weiss, 6/26/03 Was	te Site Evaluation	for 128-K-	1, 100-K	Buming Pit, 0100K-CA-V0	0015, Rev 3.
Regulatory Info	mation:					
inequinter y info	Prog	rammatic Res	ponsibili	tv		
DOE Brogram	EM-40	Co	ofirmed 5	N Proor	ami Voc	
DOE Program:	ERD - Environmental Be	storation Division		by Frogr	ann. Tes	
Responsible	BHI. Bechtel Hanf	ord, Inc.				
Contractor/Subco	ntractor:					
		Site Evaluat	ion			
Solid Waste Mana	gement Unit:	Yes				
TPA Waste Manag This site was con	gement Unit Type: solidated with:	Waste Disposal U	nit			
Reason:						

Site Code: 1	28-K-1	Site Classification: Accepted	d	Page 3
		Permitting		·····
RCRA Part	B Permit: No	TSD Number:		
RCRA Part	A Permit: No	Closure Plan:	No	
RCRA Perm	itStatus:			
Septic Perm	nit: No	216/218 Permit:	No	
Inert LandF	ill: No	NPDES:	No	
		State Waste		
		Discharge Permit	t: No	
Air Operatir Permit:	ng No			
		Tri-Party Agreement		
Lead Regula	atory Agency:	EPA		
Unit Catego	ry:	CERCLA Past Practice (CPP)		
TPA Append	dix:	С		
		Remediation and Closure		
Decision Do	cument:	Interim Action Record of Decision, 100 Area	Remaining Sites (1999)	
Decision Do	cument Status:	Final		
Remediation	n Design Group:	Group 5		
Closure Doo	cument:			
Closure Typ	e:			
Post Closur	e Requirements:	Desider Witzeter		
		HesiqualWaste:		
mages:				
athname:	\\apwids01\widsimo	100K\0210\0210_01.JPG	DateTaken:	03/19/2003
Description:	The photo shows th small cobbles and is revegetating.	at the waste site has been covered over with so s poor for vegetation growth, however some che	bil. Much of the site is co patgrass and rabbitbrush	vered by are slowly
Pathname:	\\apwids01\widsimo	\100K\0210\0210 02.ipg	DateTaken:	03/19/2003
	Aerial photo from I	Iv 12 1965 of the 100-K area showing a disturt	hed area This area mat	ches the

_

- .

APPENDIX B

128-K-1 SAMPLE RESULTS (17 Pages)

Remaining Sites Verification Package for 128-K-1, 100-K Burning Pit

Sample	HBS	Sample	Americi	um-	241 GEA	A	rsen	ic	B	a riu	m	Ca	dmi	um	Ces	ium-	137	Chi	omi	ım
Area	Number	Date	pCVg		MDA	mg/kg	0	PQL	mg/kg	Q	PQL	mg/kg	0	PQL	pCi/g	Q	MDA	mg/kg	Q	PQL
Trench 1	J00M98	22-Apr-03	0.15	U	0.15	2.9		0.35	69.5		0.01	0.04	U	0.04	0.044	U	0.044	9.5		0.06
Trench 2	J00M99	22-Apr-03	0.1	U	0.1	3.4		0.37	67.6		0.01	0.04	U	0.04	0.026	U	0.026	9.7		0.06
Trench 3	J00MB0	24-Apr-03	0.21	U	0.21	2.8		0.35	60.6		0.01	0.11		0.04	0.087	U	0.087	7.6		0.06
Trench 4	J00MB1	24-Apr-03	0.045	U	0.045	3		0.34	65.2		0.01	0.15		0.04	0.035	U	0.035	9.5		0.06
Trench 5	JOOM B2	24-Apr-03	0.29	U	0.29	1.8		0.32	54.4		0.009	0.11		0.04	0.034	U	0.034	5.9		0.06
Trench 6	JOOM B3	24-Apr-03	0.086	U	0.086	2.8		0.37	53.9		0.01	0.09		0.04	0.024	U	0.024	6.4		0.06
Trench 7	JOOM B4	25-Apr-03	0.077	U	0.077	2.7		0.36	65.8		0.01	0.08		0.04	0.089	U	0.089	10.1		0.06
Trench 8	JOOM B5	25-Apr-03	0.12	U	0.12	3.7		0.37	57.8		0.01	0.04	U	0.04	0.052	U	0.052	8.7		0.06
Trench 9	JOOM B6	25-Apr-03	0.2	U	0.2	3		0.35	71.5		0.01	0.04	U	0.04	0.093	U	0.093	10.5		0.06
Duplicate	J00MC6	24-Apr-03	0.37	U	0.37	2.8		0.32	66.6		0.009	0.04	U	0.04	0.07	U	0.07	9.1		0.06
Equipment Blank	J00MC8	24-Apr-03	0.024	U	0.024	0.35	U	0.35	1.2		0.01	0.04	U	0.04	0.018	U	0.018	0.06	U	0.06
Sample	HBS	Sample	Co	balt	-60	Euro	piun	n-152	Euro	piun	n-154	Euro	pium	-155	Gro	ssal	pha	Gro	ss b	eta
Area	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
Trench 1	J00M98	22-Apr-03	0.051	U	0.051	0.11	U	0.11	0.15	U	0.15	0.11	U	0.11	3.73	U	4.7	18.6		6.5
Trench 2	J00M99	22-Apr-03	0.032	U	0.032	0.062	U	0.062	0.096	U	0.096	0.073	U	0.073	4.21		3.8	12.9		6.6
Trench 3	J00M B0	24-Apr-03	0.093	U	0.093	0.23	U	0.23	0.38	U	0.38	0.23	U	0.23	3.94		3.8	15		5.5
Trench 4	J00MB1	24-Apr-03	0.034	U	0.034	0.081	U	0.081	0.11	U	0.11	0.07	U	0.07	5.58		4.3	22.2		6.5
Trench 5	J00MB2	24-Apr-03	0.039	U	0.039	0.077	U	0.077	0.1	U	0.1	0.11	U	0.11	4.04		3.4	16.4		5.5
Trench 6	JOOM B3	24-Apr-03	0.024	U	0.024	0.056	U	0.056	0.076	U	0.076	0.062	U	0.062	4.82		3.1	13.9		5.9
Trench 7	JOOM B4	25-Apr-03	0.091	U	0.091	0.18	U	0.18	0.27	U	0.27	0.15	U	0.15	2.97	U	3.1	12.3		5.2
Trench 8	JOOM B5	25-Apr-03	0.061	U	0.061	0.12	U	0.12	0.17	U	0.17	0.11	U	0.11	2.77	U	2.9	11.2		5.6
Trench 9	JOOM B6	25-Apr-03	0.08	U	0.08	0.22	U	0.22	0.28	U	0.28	0.21	U	0.21	3.53	U	4.2	14.3		6.6
Duplicate of Trench 3	J00MC6	24-Apr-03	0.084	U	0.084	0.17	υ	0.17	0.22	U	0.22	0.18	U	0.18	3.51		3.3	17.2		5.5
Equipment Blank	J00MC8	24-Apr-03	0.019	U	0.019	0.042	U	0.042	0.056	U	0.056	0.037	U	0.037						
Sample	HBS	Sample	Hex	romi	lent		Lea	d	м	ercu	ıry	Pota	ssiur	m-40	Rad	lum	-226	Rad	ium-	228

Sample	HBS	Sample	Hex	ava	lent	1	ead	1	M	ercu	ry	Pota	ssiur	m-40	Rad	lum	-226	Rad	ium-	-228
Area	Number	Date	mg/kg	Q	PQL	mg/kg	0	PQL	mg/kg	Q	PQL	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
Trench 1	J00M98	22-Apr-03	0.48		0.44	6.2		0.26	0.02		0.01	11		0.5	0.492		0.083	0.641		0.21
Trench 2	.100M99	22-Apr-03	0.42	U	0.42	10.8		0.28	0.02		0.02	12.9		0.23	0.525		0.052	0.753		0.13
Trench 3	JOOMBO	24-Apr-03	0.43	U	0.43	4.2		0.26	0.02		0.02	6.56		0.65	0.372		0.17	0.5	U	0.5
Trench 4	100MB1	24-Apr-03	0.43	Ū	0.43	5.2		0.25	0.02		0.02	13.4		0.26	0.495		0.063	0.666		0.15
Trench 5	IOOMB2	24-Apr-03	0.43	ũ	0.43	3.5		0.24	0.02		0.02	9.12		0.39	0.386		0.065	0.689		0.16
Tropph 6	JOOM B2	24-401-03	0.42	11	0.42	3.8		0.27	0.02		0.01	10.7		0.26	0.375		0.046	0.694		0.097
Trench 7	JOOMBS	24-Apr-03	0.42	H	0.44	47		0.26	0.02		0.02	7.39		0.59	0.304		0.15	0.405		0.33
Irench /	JUUMB4	25-Apr-03	0.44		0.44	5.9		0.27	0.02		0.02	8.89		0.38	0.288		0.1	0.533		0.29
Irench 8	JOOM B5	25-Apr-03	0.44		0.44	5.0		0.26	0.02		0.02	8.83		0.66	0.438		0.12	0.435		0.43
Trench 9	JOOM B6	25-Apr-03	0.44	U	0.44	5./		0.20	0.02		0.02	0.00	+-+	0.00	0.400	+ +	0.12	0		
Duplicate	J00MC6	24-Apr-03	0.43	U	0.43	5		0.24	0.02		0.01	7.16		0.81	0.366		0.14	0.718		0.3
of Trench 3																				
Blank	J00MC8	24-Apr-03				0.4		0.26	0.01		0.01	4.31		0.17	0.15		0.032	0.173		0.086

Rev. 0

B-1

Sample	HES	Sample	Se	leniu	Im		live	r	Thorium	m-22	8 GEA	Thoriu	m-23	2 GEA	Total Hydr	Petnoca	rboi
Area	Number	Date	mg/kg	IOT	PQL	mg/kg	Q	PQL	pCi/g	Q	MDA	pCi/g	Q	MDA	mg/kg	Q	F
Trench 1	J00M98	22-Apr-03	0.36	U	0.36	0.08	U	0.08	0.628		0.048	0.641		0.21	4.2		
Trench 2	J00M99	22-Apr-03	0.38	U	0.38	0.08	U	0.08	0.644		0.031	0.753		0.13	14.4		
Trench 3	JOOM BO	24-Apr-03	0.54		0.37	0.08	U	0.08	0.396		0.15	0.5	U	0.5	5		
Trench 4	JOOM B1	24-Apr-03	0.67		0.35	0.08	U	0.08	0.858		0.061	0.666		0.15	7.2		
Trench 5	JOOM B2	24-Apr-03	0.76		0.33	0.07	U	0.07	0.538		0.042	0.689		0.16	4.8		
Trench 6	JOOM B3	24-Apr-03	0.8		0.38	0.08	U	0.08	0.576		0.026	0.694		0.097	3.5	U	
Trench 7	JOOM B4	25-Apr-03	0.74		0.37	0.08	U	0.08	0.388		0.089	0.405		0.33	4.2		
Trench 8	JOOM B5	25-Apr-03	0.38	U	0.38	0.08	U	0.08	0.5		0.055	0.533		0.29	3.6	U	
Trench 9	JOOM B6	25-Apr-03	0.36	U	0.36	0.08	U	0.08	0.437		0.14	0.435		0.43	3.6	U	
Duplicate of Trench 3	J00MC6	24-Apr-03	0.33	U	0.33	0.07	U	0.07	0.475		0.076	0.718		0.3	5.7		
Equipment Blank	J00MC8	24-Apr-03	0.36	U	0.36	0.08	υ	0.08	0.208	Π	0.034	0.173	Π	0.086			

a I Confirmatory Sampling Results (continued)

Sample	HEIS	Sample	Uraniu	m-23	8 GEA
Area	Number	Date	pCl/g	Q	MDA
Trench 1	J00M98	22-Apr-03	4.9	U	4.9
Trench 2	J00M99	22-Apr-03	3.4	U	3.4
Trench 3	JOOM BO	24-Apr-03	13.	U	13
Trench 4	JOOM B1	24-Apr-03	3.6	U	3.6
Trench 5	JOOM B2	24-Apr-03	3.7	U	3.7
Trench 6	JOOM B3	24-Apr-03	2.8	U	2.8
Trench 7	JOOM B4	25-Apr-03	9.4	U	9.4
Trench 8	JOOM B5	25-Apr-03	6.6	U	6.6
Trench 9	JOOM B6	25-Apr-03	11	U	11
Duplicate of Trench 3	J00MC6	24-Apr-03	8.4	U	8.4
Equipment Blank	J00MC8	24-Apr-03	2.2	υ	2.2

128-K-1 Asbestos Results

Sample Area	HEIS Number	Sample Date	Asbestos Result
Trench 1	JOOM B7	22-Apr-03	None Detected
Trench 2	JOOM B8	22-Apr-03	None Detected
Trench 3	JOOM B9	24-Apr-03	None Detected
Trench 4	JOOMCO	24-Apr-03	None Detected
Trench 5	J00MC1	24-Apr-03	Trace presence of chrysotile asbestos
Trench 6	J00MC2	24-Apr-03	None Detected
Trench 7	J00MC3	25-Apr-03	None Detected
Trench 8	JOOMC4	25-Apr-03	None Detected
Trench 9	JOOMC5	25-Apr-03	None Detected
Duplicate of Trench 3	J00MC7	24-Apr-03	Trace presence of amosite asbestos

-232 are not evaluated based on environmental fate decay rates and analogous site information (Data Quality Objectives Summary Report for 100/300 Area Remaining Stes Analytical Sampling Effort, BHI-01249, Rev. 3, Bechtel Hanford Inc., Richland, Washington).

Acronyms

- = blank contamination В
- bgs = below ground surface
- = exceeded calibration range Ε
- GEA = gamma energy analysis
- HES = Hanford Environmental Information System
- = estimate J
- MDA = minimum detectable activity
- PQL = practical quantitation limit

= qualifier Q

- SVOA = semivolatile organic analyses
- = undetected U

Uranium-235 GEA

U

U

U

U

U

U

U

U

U

U

U

MDA 0.17

0.1

0.35

0.11

0.15

0.084 0.25

0.16

0.31

0.27

0.063

pCi/g Q

0.17

0.1

0.35 0.11

0.15

0.084

0.25

0.16

0.31

0.27

0.063

Constituent	J Tr Sample	00M9 rench Date	8 1 4/22/03	J Tr Sample	00M99 ench Date	9 2 4/22/03	J(Tr Sample	OMB ench Date	0 3 4/24/03	J Ti Sample	00MB rench Date	1 4 4/24/03	J Ti Sample	oomB ench Date	2 5 4/24/03	J Ti Sample	00MB rench Date	3 6 4/24/03
	µg/kg	Q	PQL	µg/kg	0	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
Aroclor-1016	36	U	36	35	U	35	36	U	36	36	U	36	35	U	35	35	U	35
Aroclor-1221	73	U	73	71	U	71	72	U	72	72	U	72	71	U	71	71	U	71
Aroclor-1232	36	U	36	35	U	35	36	U	36	36	U	36	35	U	35	35	tut	35
Aroclor-1242	36	U	36	35	U	35	36	TŨ	36	36	TŬ	36	35	tüt	35	35	tüt	35
Aroclor-1248	36	U	36	35	U	35	36	U	36	36	1U	36	35	tül	35	35	tňt	35
Aroclor-1254	36	U	36	35	U	35	36	TU	36	36	TU	36	35	tül	35	35	tit	35
Aroclor-1260	36	U	36	35	U	35	36	Ū	36	36	TU	36	35	tŭ	35	35	tŭt	35

Constituent	J T Sample	00ME rencl Date	34 n 7 e 4/25/03	J Ti Sample	00MB rench Date	5 8 4/25/03	J(Tr Sample	00MB ench Date	6 9 4/25/03	J00MC Ti Sample	6 Dup rench Date	olicate 3 4/24/03
	µg/kg	Q	PQL	µg/kg	Q	PQL	µq/kq	Q	PQL	µq/kq	0	PQL
Aroclor-1016	36	U	36	36	U	36	36	U	36	36	U	36
Aroclor-1221	73	U	73	73	U	73	72	U	72	72	U	72
Aroclor-1232	36	U	36	36	U	36	36	U	36	36	U	36
Aroclor-1242	36	U	36	36	U	36	36	U	36	36	U	36
Aroclor-1248	36	U	36	36	U	36	36	U	36	36	U	36
Aroclor-1254	36	U	36	36	U	36	36	U	36	36	U	36
Aroclor-1260	36	U	36	36	U	36	36	U	36	36	U	36

Rev. 0

Constituent	J Ti Sample	00M9 rench Date	98 n 1 e 4/22/03	J(Tr Sample	00M9 ench Date	9 1 2 4/22/03	J(Tr Sample	DOMI rencl Date	B0 h 3 e 4/24/03	J Tr Sample	DOME ench Date	31 1 4 2 4/24/03	J Ti Sample	00ME ench Date	32 n 5 e 4/24/03	J Ti Sample	00ME rencl Date	33 n 6 e 4/24/03
	uq/ka	IQI	PQL	ua/ka	IQI	PQL	ua/ka	Q	POL	ua/ka	IQI	POI	ua/ka	IOI	POL	ua/ka	Tol	POL
3-Nitroaniline	910	U	910	880	tūt	880	900	Ū	900	900	tūt	900	880	tũ	880	880	tõt	880
Nitrobenzene	360	U	360	350	tūt	350	360	Ŭ	360	360	tŭ	360	350	H	350	250	Til	250
2,4,5-Trichlorophenol	910	U	910	880	tul	880	900	Ŭ	900	900	tŭ	900	880	til	890	000		000
2-Chlorophenol	360	U	360	350	Ū	350	360	Ŭ	360	360	tŭ	360	350	H	250	250	10	250
1,2-Dichlorobenzene	360	U	360	350	Ū	350	360	Ŭ	360	360	tül	360	350	Hill	350	350		350
2-Methylphenol	0.00	1							000	000	1	000	000	14	330	330	10	350
(cresol, o-)	360	U	360	350	0	350	360	U	360	360	U	360	350	U	350	350	U	350
3,3'-Dichlorobenzidine	360	U	360	350	U	350	360	U	360	360	U	360	350	10	350	350	+	350
2-Chloronaphthalene	360	U	360	350	U	350	360	U	360	360	Ū	360	350	tül	350	350	H	350
2-Methylnaphthalene	360	U	360	350	U	350	360	U	360	360	1Ŭ	360	350	tŭ	350	350	tü	350
Naphthalene	360	U	360	350	U	350	360	U	360	360	tūl	360	350	tŭ	350	350	tŭ	350
2-Nitrophenol	360	U	360	350	U	350	360	U	360	360	Ū	360	350	tŭ	350	350	tül	350
2-Nitroaniline	910	U	910	880	U	880	900	U	900	900	U	900	880	tŭ	880	880	tut	880
2,4,6-Trichlorophenol	360	U	360	350	U	350	360	U	360	360	U	360	350	Ū	350	350	tŭ	350
Pentachlorophenol	910	U	910	880	U	880	900	U	900	900	U	900	880	U	880	880	U	880
Hexachlorobutadiene	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Carbazole	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Fluorene	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
N-Nitrosodiphenylamine	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Butylbenzylphthalate	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Phenanthrene	360	U	360	350	U	350	66	J	360	360	U	360	350	U	350	350	U	350
Di-n-butylphthalate	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Diethylphthalate	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Acenaphthene	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Isophorone	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Hexachlorocyclo-	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
A Chlorophonylphonyl								+			+			+			+	
4-Chiorophenyiphenyi	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Hevachloroethane	360	+	360	350	tut	350	360	lu l	360	360	tut	360	350	tut	350	350	tut	350
N-Nitroso-di-n-	000	14	000	000		000	000	1×1	000	000	1 t	000	000		000	000	Ť	
dipropylamine	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
2 6-Dinitrotoluene	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
4-Chloro-3-methylphenol	360	Ŭ	360	350	Ũ	350	360	U	360	360	U	360	350	U	350	350	U	350
Benzo(a)anthracene	360	Ŭ	360	350	U	350	61	J	360	360	U	360	350	U	350	350	U	350
1.3-Dichlorobenzene	360	tŭ	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
4.6-Dinitro-2-methylphenol	910	tŭ	910	880	Ū	880	900	U	900	900	U	900	880	U	880	880	U	880
Dibenzla hlanthracene	360	tut	360	350	Ū	350	360	U	360	360	U	360	350	U	350	350	U	350
2.4-Dinitrophenol	910	U	910	880	U	880	900	U	900	900	U	900	880	U	880	880	U	880

B-4

Rev. 0

Constituent	J(Tr Sample	00M9 ench Date	1 4/22/03	Ji Tr Sample	00M9 ench Date	9 2 4/22/03	JC Tr Sample	oome ench Date	30 1 3 4/24/03	JC Tr Sample	OMB ench Date	1 4 4/24/03	JC Tr Sample	00ME ench Date	32 5 4/24/03	J(Tr Sample	00ME ench Date	3 6 4/24/03
	µg/kg	Q	PQL	µg/kg	0	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
Benzo(a)pyrene	360	U	360	350	U	350	44	J	360	360	U	360	350	U	350	350	U	350
Chrysene	360	U	360	350	U	350	64	J	360	360	U	360	350	U	350	350	U	350
Acenaphthylene	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Benzo(k)fluoranthene	360	U	360	350	U	350	43	J	360	360	U	360	350	U	350	350	U	350
Fluoranthene	360	U	360	350	U	350	140	J	360	360	U	360	350	U	350	350	U	350
Benzo(b)fluoranthene	360	U	360	350	U	350	37	J	360	360	U	360	350	U	350	350	U	350
Indeno(1,2,3-cd)pyrene	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Benzo(ghi)perylene	360	U	360	350	U	350	33	J	360	360	U	360 ~	350	U	350	350	U	350
Dibenzofuran	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Dimethyl phthalate	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Pyrene	360	U	360	350	U	350	120	J	360	360	U	360	350	U	350	350	U	350
2,4-Dinitrotoluene	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
2,4-Dichlorophenol	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
1,2,4-Trichlorobenzene	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Anthracene	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Hexachlorobenzene	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Di-n-octvlphthalate	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Bis(2-ethylhexyl) phthalate	18	J	360	350	U	350	360	U	360	34	J	360	30	J	350	350	U	350
Bis(2-Chloroethoxy)	360	U	360	350	U	350	360	υ	360	360	υ	360	350	U	350	350	U	350
Bis(2-chloroethyl) ether	360	1ul	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
Phenol	360	tŭ	360	350	Ū	350	360	U	360	360	U	360	350	U	350	350	U	350
Bis(2-chloro-1-methylethyl)	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
4-Chloroaniline	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
1.4-Dichlorobenzene	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
4-Methylphenol (cresol n-)	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
2.4-Dimethylphenol	360	U	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
4-Bromophenylphenyl ether	360	Ū	360	350	U	350	360	U	360	360	U	360	350	U	350	350	U	350
4-Nitrophenol	910	tū	910	880	U	880	900	U	900	900	U	900	880	U	880	880	U	880
4-Nitroaniline	910	U	910	880	U	880	900	U	900	900	U	900	880	U	880	880	U	880

Constituent	J(Tr Sample	00MB ench Date	4 7 4/25/03	J(Tr Sample	DOME ench Date	5 8 4/25/03	J(Tr Sample	00MB ench Date	9 4/25/03	J00MC Tr Sample	6 Du ench Date	plicate 3 4/24/03	JC Equipr Sample	0MC nent Date	8 Blank 4/24/03
	ua/ka	Tot	POL	ua/ka	TOT	PQL	ua/ka	TOT	PQL	µa/ka	Q	PQL	ua/ka	IQI	PQL
3-Nitroaniline	910	tũt	910	910	tūt	910	900	tūt	900	900	Tut	900	840	Ū	840
Nitrobenzene	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
2,4,5-Trichlorophenol	910	U	910	910	1U	910	900	Ū	900	900	tut	900	840	Ũ	840
2-Chlorophenol	360	U	360	360	U	360	360	U	360	360	U	360	330	tŭ	330
1,2-Dichlorobenzene	360	U	360	360	U	360	360	U	360	360	Ũ	360	330	Ŭ	330
2-Methylphenol (cresol, o-)	360	υ	360	360	U	360	360	U	360	360	U	360	330	U	330
3,3'-Dichlorobenzidine	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
2-Chloronaphthalene	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
2-Methylnaphthalene	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
Naphthalene	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
2-Nitrophenol	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
2-Nitroaniline	910	U	910	910	U	910	900	U	900	900	U	900	840	U	840
2,4,6-Trichlorophenol	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
Pentachlorophenol	910	U	910	910	U	910	900	U	900	900	U	900	840	U	840
Hexachlorobutadiene	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
Carbazole	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
Fluorene	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
N-Nitrosodiphenylamine	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
Butylbenzylphthalate	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
Phenanthrene	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
Di-n-butylphthalate	360	U	360	360	U	360	360	U	360	360	U	360	130	J	330
Diethylphthalate	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
Acenaphthene	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
Isophorone	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
Hexachlorocyclo-	360	U	360	360	U	360	360	U	360	360	υ	360	330	U	330
4-Chlorophenylphenyl	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
Hexachloroethane	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
N-Nitroso-di-n-dipropylamine	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
2 6-Dinitrotoluene	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
4-Chloro-3-methylphenol	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
Benzo(a)anthracene	360	U	360	360	U	360	360	U	360	23	J	360	330	U	330
1.3-Dichlorobenzene	360	U	360	360	U	360	360	U	360	360	U	360	330	U	330
4 6-Dinitro-2-methylphenol	910	U	910	910	U	910	900	U	900	900	U	900	840	U	840
Dibenzía hlanthracene	360	Ū	360	360	U	360	360	U	360	360	U	360	330	U	330
2 4-Dinitrophenol	910	TU	910	910	U	910	900	U	900	900	U	900	840	U	840

Rev. 0

B-6

	Tuble	0 11	12011	made		minute	, camp								
	J	OOME	4	J	DOME	8	J	DOME	36	JOOMC	6 Du	plicate	Fauip	nent	8 Blank
Constituent	Sample	Date	4/25/03	Sample	Date	4/25/03	Sample	Date	4/25/03	Sample	Date	4/24/03	Sample	Date	4/24/03
	µg/kg	Q	PQL	µg/kg	0	PQL									
Benzo(a)pyrene	360	U	360	330	U	330									
Chrysene	360	U	360	360	U	360	360	U	360	28	J	360	330	U	330
Acenaphthylene	360	U	360	330	1U	330									
Benzo(k)fluoranthene	360	U	360	330	Ū	330									
Fluoranthene	360	U	360	360	U	360	360	U	360	46	J	360	330	Ū	330
Benzo(b)fluoranthene	360	U	360	330	Ū	330									
Indeno(1,2,3-cd)pyrene	360	U	360	330	Ū	330									
Benzo(ghi)perylene	360	U	360	330	Ū	330									
Dibenzofuran	360	U	360	330	U	330									
Dimethyl phthalate	360	U	360	330	U	330									
Pyrene	360	U	360	360	U	360	360	U	360	46	J	360	330	U	330
2,4-Dinitrotoluene	360	U	360	330	U	330									
2,4-Dichlorophenol	360	U	360	330	U	330									
1,2,4-Trichlorobenzene	360	U	360	330	U	330									
Anthracene	360	U	360	330	U	330									
Hexachlorobenzene	360	U	360	330	U	330									
Di-n-octylphthalate	360	U	360	330	U	330									
Bis(2-ethylhexyl) phthalate	870		360	27	J	360	88	J	360	200	J	360	330	U	330
Bis(2-Chloroethoxy)methane	360	U	360	330	U	330									
Bis(2-chloroethyl) ether	360	U	360	330	U	330									
Phenol	360	U	360	330	U	330									
Bis(2-chloro-1-methylethyl)	000	1.1	000	000	1	000	000	Tul	200	200	1.1	260	220	1.1	220
ether	360	10	360	360	10	360	360	10	300	360	0	300	330	0	330
4-Chloroaniline	360	U	360	330	U	330									
1.4-Dichlorobenzene	360	U	360	330	U	330									
4-Methylphenol (cresol, p-)	360	U	360	330	U	330									
2.4-Dimethylphenol	360	U	360	330	U	330									
4-Bromophenylphenyl ether	360	U	360	330	U	330									
4-Nitrophenol	910	U	910	910	U	910	900	U	900	900	U	900	840	U	840
4-Nitroaniline	910	U	910	910	U	910	900	U	900	900	U	900	840	U	840

Attachment to Waste Site Reclassification Form 2004-042

.

Constituent	J(Tr Sample	00M9 ench Date	8 1 4/22/03	J(Tr Sample	ench Date	9 1 2 4/22/03	JC Tr Sample	OME ench Date	30 1 3 4/24/03	J(Tr Sample	ooME ench Date	31 1 4 e 4/24/03	J(Tr Sample	OOMB ench Date	2 5 4/24/03	J(Tr Sample	00MB ench Date	3 6 4/24/03
	µg/kg	Q	PQL	µg/kg	0	PQL	µg/kg	Q	PQL	µg/kg	0	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
Endosulfan I	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Toxaphene	180	U	180	180	U	180	180	U	180	180	U	180	180	U	180	180	U	180
Heptachlor	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Endrin aldehyde	3.6	U	3.6	3.5	U	3.5	3.6	U	3.6	3.6	U	3.6	3.5	U	3.5	3.5	U	3.5
Dichlorodiphenyl- dichloroethylene	3.6	U	3.6	3.5	U	3.5	3.6	U	3.6	3.6	U	3.6	3.5	U	3.5	3.5	U	3.5
Dichlorodiphenyl- dichloroethane	3.6	U	3.6	3.5	U	3.5	3.6	U	3.6	3.6	U	3.6	3.5	U	3.5	3.5	U	3.5
Methoxychlor	18	U	18	18	U	18	18	U	18	18	U	18	18	U	18	18	U	18
Endrin	3.6	U	3.6	3.5	U	3.5	3.6	U	3.6	3.6	U	3.6	3.5	U	3.5	3.5	U	3.5
Dieldrin	3.6	U	3.6	3.5	U	3.5	3.6	U	3.6	3.6	U	3.6	3.5	U	3.5	3.5	U	3.5
Gamma-BHC (Lindane)	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Endrin ketone	3.6	U	3.6	3.5	U	3.5	3.6	U	3.6	3.6	U	3.6	3.5	U	3.5	3.5	U	3.5
gamma-Chlordane	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
alpha-Chlordane	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Dichlorodiphenyl- trichloroethane	3.6	U	3.6	3.5	U	3.5	3.6	υ	3.6	3.6	U	3.6	3.5	U	3.5	3.5	U	3.5
Endosulfan II	3.6	U	3.6	3.5	U	3.5	3.6	U	3.6	3.6	U	3.6	3.5	U	3.5	3.5	U	3.5
Delta-BHC	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
beta-1,2,3,4,5,6- Hexachlorocyclohexane	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Alpha-BHC	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Aldrin	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Endosulfan sulfate	3.6	U	3.6	3.5	U	3.5	3.6	U	3.6	3.6	U	3.6	3.5	U	3.5	3.5	U	3.5
Heptachlor epoxide	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8

Rev. 0

B-8

Constituent	Ji Tr Sample	00MB ench Date	4 7 4/25/03	J(Tr Sample	00ME ench Date	8 4/25/03	J(Tr Sample	00MB ench Date	6 9 4/25/03	J00MC Tr Sample	6 Du ench Date	plicate 3 4/24/03
	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
Endosulfan I	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Toxaphene	180	U	180	180	U	180	180	U	180	180	U	180
Heptachlor	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Endrin aldehyde	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6
Dichlorodiphenyl- dichloroethylene	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6
Dichlorodiphenyl- dichloroethane	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6
Methoxychlor	18	U	18	18	U	18	18	U	18	18	U	18
Endrin	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6
Dieldrin	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6
Gamma-BHC (Lindane)	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Endrin ketone	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6
gamma-Chlordane	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
alpha-Chlordane	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Dichlorodiphenyl- trichloroethane	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6
Endosulfan II	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6
Delta-BHC	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
beta-1,2,3,4,5,6-	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Alpha-BHC	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Aldrin	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8
Endosulfan sulfate	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6	3.6	U	3.6
Heptachlor epoxide	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8	1.8	U	1.8

Rev. 0

Sample	HBS	Sample	A	rse nie	0	E	la riun	1	Ca	dmiu	m	Ch	romi	m	1	Lead		M	ercu	y
Area	Number	Date	mg/kg	0	MDA	mg/kg	0	MDA	mg/kg	0	MDA	mg/kg	0	MDA	mg/kg	0	MDA	mg/kg	0	MDA
P16 Subsurface	J00P77	23-May-03	3.6	Π	0.31	68	Π	0.02	0.32	Π	0.04	13.4		0.09	9.3	Π	0.21	0.03	Π	0.01
Duplicate of J00P77	J00P78	23-May-03	3.5	Π	0.33	63.8	Π	0.02	0.35	Π	0.04	13.5	Π	0.1	8.7	Π	0.23	0.03		0.02
Equipment Blank	J00P79	23-May-03	0.32	U	0.32	1.1	Π	0.02	0.04	U	0.04	0.22	Π	0.1	6.3	Π	0.22	0.02	U	0.02
G25	J00P80	22-May-03	0.96		0.32	0.82		0.02	0.04	U	0.04	0.24	П	0.1	586		0.23	0.05		0.02
G27	J00P81	22-May-03	1.7		0.3	167		0.02	2.5		0.04	6.5		0.09	25.1		0.21	0.2		0.01
G27	J00P82	22-May-03	226		7.3	327		0.44	53.9		0.88	9.7		2.2	166		5.1	144		2.5
G27	J00P86	22-May-03	254		7.1	261		0.43	164		0.86	14.6		2.2	457		4.9	79.6		1.6
P16 Black Plastic	J00P76	22-May-03	4	Π	0.26	15.4	Π	0.02	0.2		0.03	4	Π	0.08	30.4		0.18	0.02	U	0.02

Table B-2.	128-K-1	Pha se II	Confirmatory	Sampling	Results.
------------	---------	-----------	--------------	----------	----------

Sample	HES	Sample	9	eleniu	m		Silver		C	anid	8		Sulfid	e	Total Hydro	Petrol	eum ons
Area	Number	Date	mg/kg	0	MDA	mg/kg	0	MDA	mg/kg	0	MDA	mg/kg	0	MDA	mg/kg	0	MDA
P16 Subsurface	J00P77	23-May-03	0.39	U	0.39	0.11	U	0.11	0.44	U	0.44	40.5	U	40.5	3.5	Π	3.4
Duplicate of J00P77	J00P78	23-May-03	0.42	U	0.42	0.12	U	0.12	0.42	U	0.42	33.1	U	33.1	3.5		3.4
Equipment Blank	J00P79	23-May-03	0.4	U	0.4	0.12	U	0.12									
G25	J00P80	22-May-03	0.56		0.41	5.2		0.12									
G27	J00P81	22-May-03	0.93		0.39	0.11	U	0.11									-
G27	J00P82	22-May-03	12.4		9.3	7.4		2.6									
G27	J00P86	22-May-03	13.4		9	5.7		2.6	1								
P16 Black	J00P76	22-May-03	0.68		0.33	0.09	U	0.09	0.47	U	0.47	39.2	U	39.2			

Sample	HBS	Sample	Asbestos Result
Area	Number	Date	
G27	J00P75	23-May-03	Trace presence of chrysotile asbestos. Obvious presence of amosite asbestos.

B-10

Rev. 0

Constituent	J P16 Bl Sample	00P lack Date	76 Plastic e 5/22/03	J(P16 S Sample	00P7 ubsu Date	7 urface 5/23/03	J Duplica Sample	00P te of Date	78 5/23/03	J	00P8 G25 Date	0 5/22/03	Ji Sample	00P8 G27 Date	1 5/22/03	J Sample	00P8 G27 Date	32 5/22/03	J Sample	00P8 G27 Date	96 e 5/22/03
	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
Aroclor-1016	150	U	150	15	U	15	300	U	300	25	U	25	19	U	19	45	U	45	750	U	750
Aroclor-1221	150	U	150	15	U	15	300	U	300	25	U	25	19	U	19	45	U	45	750	U	750
Aroclor-1232	150	U	150	15	U	15	300	U	300	25	U	25	19	U	19	45	U	45	750	U	750
Aroclor-1242	150	U	150	15	U	15	300	U	300	25	U	25	19	U	19	45	U	45	750	U	750
Aroclor-1248	150	U	150	15	U	15	300	U	300	25	U	25	19	U	19	45	U	45	750	U	750
Aroclor-1254	150	U	150	15	U	15	300	U	300	25	U	25	19	U	19	45	U	45	750	U	750
Aroclor-1260	150	U	150	15	U	15	300	U	300	25	U	25	170		19	45	U	45	750	U	750

Table B-2. 128-K-1 Phase II Confirmatory Sampling Results (continued).

Attachment to Waste Site Reclassification Form 2004-042

B-11

Constituent	J(P16 Bla Sample	DOP7 ack Date	76 Plastic e 5/22/03	J P16 S Sample	00P7 Subsi Date	77 urface e 5/23/03	J Duplica Sample	00P te o Dat	78 f J00P77 e 5/23/03	J Equip Sample	00P men Date	79 t Blank e 5/23/03
	µq/kq	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µq/kq	Q	PQL
3-Nitroaniline	500000	U	500000	4200	U	4200	4200	U	4200	840	U	840
Nitrobenzene	200000	U	200000	1700	U	1700	1700	U	1700	330	Ū	330
2,4,5-Trichlorophenol	200000	U	200000	1700	U	1700	1700	U	1700	330	Ŭ	330
2-Chlorophenol	200000	U	200000	1700	U	1700	1700	U	1700	330	Ū	330
1,2-Dichlorobenzene	200000	U	200000	1700	U	1700	1700	U	1700	330	Ŭ	330
2-Methylphenol (cresol, o-)	200000	υ	200000	1700	υ	1700	1700	U	1700	330	U	330
3,3'-Dichlorobenzidine	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
2-Chloronaphthalene	200000	U	200000	1700	U	1700	1700	Ū	1700	330	Ŭ	330
2-Methylnaphthalene	200000	Ū	200000	1700	Ū	1700	1700	Ũ	1700	330	Ŭ	330
Naphthalene	200000	Ū	200000	1700	Ū	1700	1700	U	1700	330	Ŭ	330
2-Nitrophenol	200000	Ũ	200000	1700	Ū	1700	1700	Ŭ	1700	330	tŭ	330
2-Nitroaniline	500000	Ū	500000	4200	Ŭ	4200	4200	Ŭ	4200	840	Ŭ	840
2.4.6-Trichlorophenol	200000	U	200000	1700	U	1700	1700	U	1700	330	Ū	330
Pentachlorophenol	500000	U	500000	4200	U	4200	4200	Ū	4200	840	Ŭ	840
Hexachlorobutadiene	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
Carbazole	100000	J	200000	820	J	1700	260	J	1700	330	U	330
Fluorene	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
N-Nitrosodiphenylamine	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
Butylbenzylphthalate	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
Phenanthrene	530000		200000	2700		1700	700	J	1700	330	U	330
Di-n-butylohthalate	200000	U	200000	1700	U	1700	1700	U	1700	54	J	330
Diethylphthalate	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
Acenaphthene	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
Isophorone	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
Hexachlorocyclo-	200000	U	200000	1700	U	1700	1700	υ	1700	- 330	υ	330
pentadiene	200000		200000	1700	1.1	1700	1700	111	1700	330	111	330
4-Chlorophenyl-phenylether	200000		200000	1700	Hit	1700	1700	11	1700	330	tü	330
Hexachioroethane	200000	H	200000	1700	Hill	1700	1700	Hi	1700	330	H	330
N-Nitroso-di-n-propylamine	200000	10	200000	1700	10	1700	1700	1 iii	1700	330	Hill	330
2,6-Dinitrotoluene	200000	HH	200000	1700	Hill	1700	1700	tŭ	1700	330	tŭ	330
4-Chloro-3-methylphenol	200000	10	200000	8300	10	1700	3200	1	1700	330	Hil	330
Benzo(a)anthracene	350000	111	200000	1700	tut	1700	1700	111	1700	330	Hül	330
1,3-Dichlorobenzene	200000	1.1	200000	4200	Hill	1200	1200	H	4200	840	Hill	840
4,6-Dinitro-2-metnyipnenol	350000	14	200000	1200	14	1700	520	H	1700	330	Hill	330
Dibenzla, njantnracene	50000	1	200000	1200	1 iii	4200	4200	11	4200	840	tiil	840
2.4-Dinitrophenol	500000	101	200000	4200	101	4200	4200	10	4200	040	10	040

Remaining Sites Verification Package for 128-K-1, 100-K Burning Pit

Rev. 0

Constituent	J(P16 Bla Sample	00P7 ack Date	76 Plastic 5/22/03	J P16 S Sample	00P7 Subsu Date	77 urface 5/23/03	J Duplica Sample	00P7 te of Date	78 J00P77 5/23/03	J Equip Sample	00P7 ment Date	9 Blank 5/23/03
	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	9	PQL	µg/kg	0	PQL
Benzo(a)pyrene	130000	J	200000	2900		1700	1200	J	1700	330	U	330
Chrysene	440000		200000	11000		1700	4500		1700	330	U	330
Acenaphthylene	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
Benzo(k)fluoranthene	210000		200000	4100		1700	2400		1700	330	U	330
Fluoranthene	880000		200000	11000		1700	5100		1700	330	U	330
Benzo(b)fluoranthene	170000	J	200000	6100		1700	2300		1700	330	U	330
Indeno(1,2,3-cd)pyrene	55000	J	200000	1900		1700	840	J	1700	330	U	330
Benzo(ghi)perylene	49000	J	200000	1700		1700	800	J	1700	330	U	330
Dibenzofuran	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
Dimethylphthalate	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
Pyrene	690000		200000	11000		1700	5000		1700	330	U	330
2,4-Dinitrotoluene	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
2,4-Dichlorophenol	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
1,2,4-Trichlorobenzene	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
Anthracene	81000	J	200000	670	J	1700	240	J		330	U	330
Hexachlorobenzene	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
Di-n-octylphthalate	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
Bis(2-ethylhexyl) phthalate	200000	U	200000	1700	U	1700	1700	U	1700	19	JB	330
Bis(2-Chloroethoxy) methane	200000	U	200000	1700	U	1700	1700	υ	1700	330	υ	330
Bis(2-chloroethyl) ether	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
Phenol	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
2.2'-oxybis (1-Chloropropane)	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
4-Chloroaniline	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
1.4-Dichlorobenzene	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
4-Methylphenol (cresol, p-)	200000	U	200000	1700	U	1700	1700	U	1700	330	U	330
2 4-Dimethylphenol	200000	Ū	200000	1700	U	1700	1700	U	1700	330	U	330
4-Bromophenyl-phenylether	200000	Ū	200000	1700	TU	1700	1700	U	1700	330	U	330
4-Nitrophenol	500000	Ū	500000	4200	U	4200	4200	U	4200	840	U	840
4-Nitroaniline	500000	Ũ	500000	4200	U	4200	4200	U	4200	840	U	840

Table B-2. 128-K-1 Phase II Confirmatory Sampling Results (continued).

Constituent	JC Sample I	OP8 G25 Date	30 e 5/22/03	J(Sample	00P G27 Dat	81 7 e 5/22/03	Ji Sample	00P G27 Dat	82 7 e 5/22/03	Ji Sample	00P G27 Date	86 e 5/22/03
	µg/kg	Q	PQL	µg/kg	Q	PQL	ug/kg	Q	PQL	µa/ka	Q	PQL
3-Nitroaniline	130000	U	130000	120000	U	120000	100000	U	100000	400000	U	400000
Nitrobenzene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
2,4,5-Trichlorophenol	130000	U	130000	120000	U	120000	100000	U	100000	400000	Ū	400000
2-Chlorophenol	54000	U	54000	49000	U	49000	40000	U	40000	160000	Ū	160000
1,2-Dichlorobenzene	54000	U	54000	49000	U	49000	40000	U	40000	160000	Ū	160000
2-Methylphenol (cresol, o-)	54000	U	54000	49000	υ	49000	40000	U	40000	160000	U	160000
3,3'-Dichlorobenzidine	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
2-Chloronaphthalene	54000	U	54000	49000	U	49000	40000	U	40000	160000	Ū	160000
2-Methylnaphthalene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Naphthalene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
2-Nitrophenol	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
2-Nitroaniline	130000	U	130000	120000	U	120000	100000	U	100000	400000	Ū	400000
2.4.6-Trichlorophenol	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Pentachlorophenol	130000	U	130000	120000	U	120000	100000	U	100000	400000	U	400000
Hexachlorobutadiene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Carbazole	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Fluorene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
N-Nitrosodiphenvlamine	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Butylbenzylphthalate	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Phenanthrene	54000	Ū	54000	49000	U	49000	40000	U	40000	160000	U	160000
Di-n-butvlphthalate	54000	Ū	54000	49000	U	49000	40000	U	40000	160000	U	160000
Diethylphthalate	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Acenaphthene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Isophorone	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Hexachlorocyclo-	54000	υ	54000	49000	υ	49000	40000	U	40000	160000	U	160000
4-Chlorophenyl-phenylether	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Hexachloroethane	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
N-Nitroso-di-n-propylamine	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
2.6-Dinitrotoluene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
4-Chloro-3-methylphenol	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Benzo(a)anthracene	54000	U	54000	3400	J	49000	40000	U	40000	160000	U	160000
1.3-Dichlorobenzene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
4.6-Dinitro-2-methylphenol	130000	U	130000	120000	U	120000	100000	U	100000	400000	U	400000
Dibenz(a,h)anthracene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
2 4-Dinitrophenol	130000	U	130000	120000	U	120000	100000	U	100000	400000	U	400000

B-14

Constituent	J0 C Sample D	0P8 625 Date	0 5/22/03	J Sample	00P8 G27 Date	31 e 5/22/03	J(Sample	00P8 G27 Date	32 5/22/03	J(Sample	00P8 G27 Date	36 a 5/22/03
	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
Benzo(a)pyrene	54000	U	54000	4300	J	49000	40000	U	40000	160000	U	160000
Chrysene	54000	U	54000	74000	J	49000	40000	U	40000	160000	U	160000
Acenaphthylene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Benzo(k)fluoranthene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Fluoranthene	54000	U	54000	2800	J	49000	40000	U	40000	160000	U	160000
Benzo(b)fluoranthene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Indeno(1,2,3-cd)pyrene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Benzo(ghi)perylene	54000	U	54000	3200	J	49000	40000	U	40000	160000	U	160000
Dibenzofuran	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Dimethylphthalate	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Pyrene	54000	U	54000	7100	J	49000	40000	U	40000	160000	U	160000
2,4-Dinitrotoluene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
2.4-Dichlorophenol	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
1,2,4-Trichlorobenzene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Anthracene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Hexachlorobenzene	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Di-n-octvlphthalate	49000	J	54000	49000	U	49000	40000	U	40000	160000	U	160000
Bis(2-ethylhexyl) phthalate	44000000	E	54000	6900	JB	49000	40000	U	40000	160000	U	160000
Bis(2-Chloroethoxy)				10000		10000	40000		40000	100000		100000
methane	54000	U	54000	49000	10	49000	40000	10	40000	160000	10	160000
Bis(2-chloroethyl) ether	54000	U	54000	49000	U	49000	40000	U	40000	160000	U	160000
Phenol	54000	Ŭ	54000	49000	U	49000	40000	U	40000	160000	U	160000
2 2'-owhis (1-Chloropropage)	54000	Ŭ	54000	49000	U	49000	40000	U	40000	160000	U	160000
4-Chloroaniline	54000	Ŭ	54000	49000	U	49000	40000	U	40000	160000	U	160000
1 4-Dichlorobenzene	54000	Ŭ	54000	49000	U	49000	40000	U	40000	160000	U	160000
4-Methylphenol (cresol p-)	54000	Ū	54000	49000	U	49000	40000	U	40000	160000	U	160000
2 4-Dimethylphenol	54000	Ŭ	54000	49000	U	49000	40000	U	40000	160000	U	160000
4-Bromonhenyl-nhenylether	54000	Ŭ	54000	49000	U	49000	40000	U	40000	160000	U	160000
4-Nitrophenol	130000	Ŭ	130000	120000	U	120000	100000	U	100000	400000	U	400000
4 Nitroanilino	130000	Ŭ	130000	120000	U	120000	100000	U	100000	400000	U	400000

Constituent	J P16 Bl Sample	00P ack Date	76 Plastic e 5/22/03	J P16 S Sample	00P7 Subsu Date	7 urface 5/23/03	J Duplica Sample	00P7 te of Date	8 J00P77 5/23/03
	µg/kg	Q	PQL	µg/kg	Q	PQL	µg/kg	Q	PQL
			Pestici	des					
Endosulfan I	830	U	830	34	U	34	34	U	34
Toxaphene	83000	U	83000	3400	U	3400	3400	U	3400
Heptachlor	830	U	830	34	U	34	34	U	34
Endrin aldehyde	1700	U	1700	68	U	68	68	U	68
Dichlorodiphenyl- dichloroethylene	1700	U	1700	68	υ	68	68	U	68
Dichlorodiphenyl- dichloroethane	1700	U	1700	68	U	68	68	U	68
Methoxychlor	8300	U	8300	340	U	340	340	U	340
Endrin	1700	U	1700	68	U	68	68	U	68
Dieldrin	1700	U	1700	68	U	68	68	U	68
Gamma-BHC (Lindane)	830	U	830	34	U	34	34	U	34
Endrin ketone	1700	U	1700	68	U	68	68	U	68
gamma-Chlordane	830	U	830	34	U	34	34	U	34
alpha-Chlordane	830	U	830	34	U	34	34	U	34
Dichlorodiphenyl- trichloroethane	1700	U	1700	68	U	68	68	U	68
Endosulfan II	1700	U	1700	68	U	68	68	U	68
Delta-BHC	830	U	830	34	U	34	34	U	34
beta-1,2,3,4,5,6- Hexachlorocyclobexane	830	U	830	34	U	34	34	U	34
Alpha-BHC	830	U	830	34	U	34	34	U	34
Aldrin	830	Ŭ	830	34	U	34	34	U	34
Endosulfan sulfate	1700	Ŭ	1700	68	U	68	68	U	68
Heptachlor epoxide	830	U	830	34	U	34	34	U	34
topication of study			Herbici	des					
Dalapon	25000	TUT	25000	3400	TUT	3400	3400	TUT	3400
Dicamba	10000	tut	10000	1400	tut	1400	1400	tut	1400
Dichloroprop	25000	Ŭ	25000	3400	1U	3400	3400	U	3400
2 4-D	5000	Ŭ	5000	680	tut	680	680	U	680
2 4 5-TP (Silvex)	2500	Ŭ	2500	340	tū	340	340	Ū	340
2 4 5-T	2500	Ŭ	2500	340	tūt	340	340	U	340
2 4-DB	25000	Ŭ	25000	3400	U	3400	3400	U	3400
Dinoseh	2500	U	2500	340	lut	340	340	U	340

Remaining Sites Verification Package for 128-K-1, 100-K Burning Pit

Table B-3. 128-K-1 Verification Sampling Results (Phase III).

Constituent	J015N7 P16 Surface Sample Date 12/8/03		
	µg/kg	Q	PQL
3-Nitroaniline	900	U	900
Nitrobenzene	360	U	360
2,4,5-Trichlorophenol	900	U	900
2-Chlorophenol	360	U	360
1,2-Dichlorobenzene	360	U	360
2-Methylphenol (cresol, o-)	360	U	360
3,3'-Dichlorobenzidine	360	U	360
2-Chloronaphthalene	360	U	360
2-Methylnaphthalene	360	U	360
Naphthalene	360	U	360
2-Nitrophenol	360	U	360
2-Nitroaniline	900	U	900
2,4,6-Trichlorophenol	360	U	360
Pentachlorophenol	900	U	900
Hexachlorobutadiene	360	U	360
Carbazole	360	U	360
Fluorene	360	U	360
N-Nitrosodiphenylamine	360	U	360
Butylbenzylphthalate	360	U	360
Phenanthrene	46	J	360
Di-n-butylphthalate	360	U	360
Diethylphthalate	360	U	360
Acenaphthene	360	U	360
Isophorone	360	U	360
Hexachlorocyclopentadiene	360	U	360
4-Chlorophenyl-phenylether	360	U	360
Hexachloroethane	360	U	360
N-Nitroso-di-n-propylamine	360	U	360
2.6-Dinitrotoluene	360	U	360
4-Chloro-3-methylphenol	360	U	360
Benzo(a)anthracene	100	J	360
1.3-Dichlorobenzene	360	U	360

Constituent	J015N7 P16 Surface Sample Date 12/8/03		
	µg/kg	Q	PQL
4,6-Dinitro-2-methylphenol	900	U	900
Dibenz[a,h]anthracene	360	U	360
2,4-Dinitrophenol	900	U	900
Benzo(a)pyrene	51	J	360
Chrysene	150	J	360
Acenaphthylene	360	U	360
Benzo(k)fluoranthene	78	J	360
Fluoranthene	220	J	360
Benzo(b)fluoranthene	75	J	360
Indeno(1,2,3-cd)pyrene	29	J	360
Benzo(ghi)perylene	33	J	360
Dibenzofuran	360	U	360
Dimethylphthalate	360	U	360
Pyrene	153	J	360
2,4-Dinitrotoluene	360	U	360
2,4-Dichlorophenol	360	U	360
1,2,4-Trichlorobenzene	360	U	360
Anthracene	360	U	360
Hexachlorobenzene	360	U	360
Di-n-octylphthalate	360	U	360
Bis(2-ethylhexyl) phthalate	69	JB	360
Bis(2-Chloroethoxy)methane	360	U	360
Bis(2-chloroethyl) ether	360	U	360
Phenol	360	U	360
2,2'-oxybis (1-Chloropropane)	360	U	360
4-Chloroaniline	360	U	360
1,4-Dichlorobenzene	360	U	360
4-Methylphenol (cresol, p-)	360	U	360
2,4-Dimethylphenol	360	U	360
4-Bromophenyl-phenylether	360	U	360
4-Nitrophenol	900	U	900
4-Nitroaniline	900	U	900

Rev. 0

Remaining Sites Verification Package for 128-K-1, 100-K Burning Pit