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conductivity plots from electromagnetic induction (EM) measurements in Figures A-21 through
A-30.

B1.2.2 Horizontal Slice at 180 ] TS

Figure A-75 shows the results of all apparent resistivity data at a coincident elevation of
180 meters above mean sea level. igure B-2 shows the modi and experimental variogram.

Figure B-2. Variogram of Modeled and Experimental
High-Resolutii Resistivity Data at 180 Meters.
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Figure A-75 shows high resistivity values as orange to red colors on the outer edge of the site.

The values in the central portion have lower resistivity and represent the background (i.¢., greater

than 500« m-meters). The low resisti' y values encompassed the area of the tank farm

footprint shown in infrastructure maps. The low resistivity values may result from near surface
organic waste or infrastructure re itec  the tank farm.

Several zones within the data show sm: r than expected resistivity (indicated in colors other
than brown). These include the areas over to the east and southeast, where nol own disposal
facility exists. ( 1er anomalies, located to the west and northeast, coincide with known disposal
facilities. A few of these low resistivity anomalies appeared also as anomalies o ie electrical
conductivity plots from EM measurements in Figures A-21 through A-30.
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B1.2.3 Horizontal Slice at 168.5V ers

Figure A-76 shows the results of all apparent resistivity data at a coincident elevation of
58.5 meters above mean sea level. Figure B-3 shows the model and experimental variogram.

Figure B-3. Variogram of Modeled and Experimental
High-Resolution esistivity ata at 168.5 Meters.
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The HRR data of Figure A-76 shows th the apparent resistivity at 58.5 meters has become
generally less resistive. The decrease in resistivity becomes most notably in the east and
southeast portion of the survey site. Linear features extend g from this region to outside the
survey area would suggest the presence of pipelines. However, their large signature in the
HRR data makes it impossible to determine if they have leaked. To address this limitation, the
area was investigated using additional processing techniques, including ree-dimensional
surface resistivity inversion (Section 6.3.2) and well-to-well inversion (Section 6.3.3).

Other areas of interest in Figure A-76 include the waste disposal facilities outside the T tank
farm fence. These include trenches through T-17 in the northeast and T-7, T-5, T-32, and
T-36 to the west of the tank farm. 1 areas display characteristics consistent with possible
waste migration beneath these facilities. The northeast trenches, for example, show T-16 an
T-17 may have received more waste than T-14 and T-15. Additionally, areas around T-7 and
T-32 show significant decreases in resi  vity.

In ad tion to identifying areas possibly contaminated with waste, Figures A-74 through A-76
show areas free of waste. The absence of a plume appears as background apparent resistivity

ar 1is shown as a brown color. The data provide a high degree of confidence that these areas do
not contain contamination in the upper vadose zone. Sampling could confirm the HRR results.
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igure B-5. Varic ram of Modeled and Experimental
High-Resolution Resistivity Data at 156 Meters.
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The conductive region identified in Fig e A-77 appears to increase in size as the HRR  ta gets
closer to the water table. The w or table sits approximately 134 meters above mean sea level.
From this point, HRR data cannot discriminate between infrastructure and plumes.

Other processing metho . presented in later sections of this report use inversion theory to
calculate the distribution of electrical - Hperties an provide additional visual clarity

(Sections 6.3.2 and 6.3.3).

B1.2.6 Horizontal ¢ ce at 152 M¢

Figure A-79 shows the results of all apparent resistivity data at a coincident elevation of
152 meters above mean sea level. Figure B-6 shows the model and experimental variogram.
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he inversion results from the  :set of nes, 6N through 9N, appear in Figure A-89.

he results from these lines at e best of any group presented thus far. Both inversion
statistics, the RMS and L2, are qui w. The excellent convergence statistics are noticeable in
the actual results. Line 6N, the fir e north of the fence and a line completely free of
infrastructure, ¢ »ws two coherent low resistivity features. The first feature appears in the center
of the plot and extends down to groundwater. The feature is quite large and its exact source 1is
unknown. The second feature is tc ast on the right he 1side of the plot. This feature is
much smaller and is well containec in the vadose zone. This region is coincident with the
southern boundary of trenches T-14 through T-17, which received a combined total of
I million gallons of discharge waste.

Lines 7N though 9N show results from -ectly over the trenches  ine 9N is immediately north
of the trench boundary. A conductive feature between about 10 ¢ 45 meters below ground
surface is likely the result of a plume fre  historical disposal activities. The plume has a
coherent shape and meets expectations for a hydrologically significant feature. Additionally, this
feature a) ears in the north-south lines OE through 15E, confirming its existence and size.
Of all the two-dimensional inversionre  , lines 6N through 9N provide the strongest basis for
inferring the presence and migration of  ntaminant plume.
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south of the roadway, and is labeled as “6.” Both pipelines appear to continue past the
north-south oriented access road. Pipeline 5 appears to turn north at approximately 566770E.
Pipeline 6 intercepts the T-36 trench, terminating at approximately 566740E. A possible
pipeline emanates from the western edge of the T-36 trench (labele as “7”). It has a north-sou
orientation at 566660E. A nearby response associated with a drywell at the northwest corner of
the T-36 trench partially masks the line: response, making interpretation of this pipeline
suspect.

Two steel pipelines come into the southwestern survey area at approximately 566980E and
136550N, and continue northwest towar  23rd Street. These pipeline responses are collectively
labeled as “8” on the figures.

Identified as “9” on the figures, the longest and one of the most discernible buried pipeline
anomalies begins at the southwestern survey area (566580E, 136575N), crosses 23rd Street, and
continues northwards the western T tank farm fence. At the northwestern fence corner, 1e
pipeline bears eastwards.  intercepts the mobile field office, continues in a northeastern
orientation past the T-4-1/T-4-2 ditch, turns south at approximately S6880E, and terminates at a
fenced off area located at the northeastern fence corner.

B2.4 EX-FARM ELECTROMAGN TIICINDUCTION

B2.4.1 In-1 ase Electromagnetic duction

Appendix A contains 11 figures (Figures A-21 through A-31) representing e EM
measurements taken outside the T tank farm fence. Bo in-phase and quadrature data were
collected.

Figures A-21 throu; A-25 show the contours of the in-phase data for the frequencies of 5, 7.5,
10, 15, and 20 kilohertz, respectively. Table B-7 provides the summary statistics for the
5 kilohertz data.
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Resistivity and resistance are related through a geometric factor. The simplest example is a solid
cylinder with a cross sectional area, A and length, L (Equation C-2):

p= R—Z (C_z)

Resistivity can be calculated by using the voltage, current, and geometry over which the
measurement is made. In the earth, a hemispherical geometry exists. The hemispherical
geometry is called a half-space, due tc e fact that all current applied at the surface travels into
the ground; above the ground, air has . infinite resistivity.

For the four-electrode array, the geom¢ ic factor, K, is (Equation C-3):

K =21 (C-3)

where:
r; through ry = distance between electrodes.

An inverse calculation (or inverse mod  is needed to convert the measured voltage potential to
resistivity. Inversion estimates earth parameters, given the measured potential, input current, and
boundary conditions. The inverse calc tion assumes that each measurement of potenti: was a
result of a homogeneous earth (Equation C-4):

p, = 25K (C-4)

Equation C-4 assumes isotropy (i.e., no directional dependence of resistivity), no displacement
currents (using a direct current or low frequency current application), and the resistivity is
constant throughout such that Laplace’s equation can be assumed. Because the degree of
heterogeneity is not known a priori,att  resistivity is not calculated. To obtain a true
resistivity requires tomography. Tomography generates a mod: of true resistivity using the
measurements of apparent resistivity, electrode arrangement, and other boundary conditions.

The high-resolution resistivity (HRR) surveys in this report used a pole-pole array. Ina
pole-pole array, one electrode pair is fix  effectively at infinity, while the other f racts as a
rover. Practically, the infinite electrodes are spaced approximately 2 to 10 times the distance of
the furthest separation of the rover electrodes, which can be up to 200 meters (656 :et) apart.

he pole-pole array provides higher data density, increased signal to noise ratio, and requires less

ansmitted energy. Roy and Apparao (1971), “Depth of investigation in direct current

ethods,” discuss the superiority of the le-pole me when conducting shallow

ear-surface) surveys.
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The following example quation C-11) uses a homogeneous and isotropic earth with a well
located at r=0. Laplace’s Equation in cylindrical coordinates solves for the voltage potential
around a well:

iéa_(ﬁ‘gl}:o (C-11)
p (A s

Equation C-13 does not explicitly mo | the current source. Instead, it changes 1e boundary
conditions to apply a source, I (amps), at =0, z=0. Other boundary conditions are:

V=0 at z=-infinity (very deep)

c 0 at z=0 (surface)
Oz

V=0 at r=infinity

The potential distribution around a well of length, b, is shown in Equation C-12. It was derived
from integrating the solution resulting »m a point source, which assumed a uniform current
distribution, over the length of the well.

0.5
b+ 4 (z+b)
V(r,z)=—1’0 In [ ( )}

03 (C-12)
4 Z—b+[r2+(z—b)2]

Figure C-7 shows the results (as colored contours) of modeling the forward solution in
Equation C-14 for p. mtial distribution around a 10-meter (33-foot) long well with an
infinitesimal resistivity. ( »se to the well, the iso-potential ne is elongated. As the distance
from the well increases, the shape of the contour becomes similar to the point electrode

(i.c., spherical).
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The res s for the second test are shown in the lower left corner of Figure C-11. For this leak,
more s« tion was added to tank T-106 and the ta were collected approximately 6 hours after
infiltration. The results show that the lume has migrated laterally, but is irly concentrated
around tank T-106.

The results of the last test are shown in the bottom right of Figure C-11. For this test, the salt
solution was poured into tank T-103 ar left standing for about 4 hours. The salt plume is seen
beneath tanks T-103 and T-106. Hydr gically speaking, the results appear consistent with
expectations (1.€., the plume is confine o areas beneath tanks where infiltration was initiated).
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Therefore, the system can produce a maximum voltage of 400 volts and a maximum current of
1 ampere, but not at ¢ same time. This will naturally follow Ohms Law: V =I*R.

Fc  wing review of the SuperSting 3 IP system, it was determined that it was acceptable for

us 1 the tank farms providing >)ck and tag procedures were used to prevent energizing the
equipment while personnel were in the farm moving the cables or electrodes.
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